保温伴热(电伴热)
电伴热适用于这五种输送管道的伴热保温

电伴热适用于这五种输送管道的伴热保温
电伴热是指用电能使输送管道内流体介质的温度维持在期望的工艺温度范围内。
在工业生产领域,电伴热的应用越来越广泛,为各个行业管道输送系统的正常运行提供了保障。
总的来说,电伴热主要适用于下面输送管道中:
1、用于防冻型管道的伴热,输气管线含有饱和蒸汽,要求维持温度不低于6℃。
2、用于常温时凝固状态,输送时管道维持温度不低于50℃的流质中。
这类流质只有加热到一定温度时才能变成液态可以输送。
如运送巧克力,牛奶等。
3、要求管道维持温度为50-100℃,在常温下为固态或黏度很高,难以流动,但加热到一定温度后又易于流动物质的管道输送,如:稠油、高凝油、燃料重油、煤焦油和蜡等的输送。
4、要求维持高温,温度高于100℃而低于150℃的输液管道,如刘欢个必须加热到130-140℃时,才能变成液态,易于输送。
5、间歇输送的高凝点介质或粘稠介质,如码头燃料油,管线不用扫线,可直接再起动等。
电伴热保温原理

电伴热保温原理电伴热保温是一种利用电能进行加热,从而实现对管道、容器等设备进行保温的技术。
电伴热保温原理基于电热能量的传导和散热规律,通过一系列的热电传感器、加热电缆等设备,将电能转换为热能,从而达到保温的效果。
电伴热保温技术在工业生产中得到广泛应用,既可以保证生产设备的正常运行,又可以节约能源,提高效率。
电伴热保温的关键在于控制加热温度和保温效果。
通过对设备周围的温度进行实时监测,可以根据不同环境条件和要求来调节加热电缆的功率和工作时间,从而实现对设备的精准保温。
此外,合理设计加热系统的布局和结构也是确保电伴热保温效果的重要因素之一。
通过对加热电缆的铺设方式、密度和位置的合理设计,可以最大限度地提高保温效果,减少能量的浪费。
在实际应用中,电伴热保温技术不仅可以用于管道、容器等设备的保温,还可以应用于地面的冰雪融化、油罐的加热防冻等领域。
例如,在石油化工行业,油罐的加热防冻是一个重要的问题,传统的保温材料往往难以满足需求,而电伴热保温技术通过其快速、均匀的加热特性,可以有效解决这一难题。
通过控制加热电缆的功率和工作时间,可以实现对油罐温度的精准控制,确保油品在低温环境下的正常流动。
除了工业领域,电伴热保温技术还可以应用于建筑领域。
在寒冷地区的居民楼、办公楼等建筑中,地面的冰雪融化是一个常见的问题,传统的保温措施难以解决。
而采用电伴热保温技术,可以通过在地面铺设加热电缆,实现对地面温度的加热,从而快速、有效地消除积雪和冰冻,确保人员和车辆的安全通行。
在电伴热保温技术的发展过程中,如何提高设备的稳定性和安全性是一个需要不断探讨的问题。
由于电伴热保温设备通常会长时间工作,设备的稳定性对于保温效果和安全性都至关重要。
因此,在设计和选择电伴热保温设备时,应该考虑设备的耐高温性、防水防潮性、防爆性等方面的要求,确保设备在恶劣环境下可以正常工作,同时保证使用过程中不会发生安全事故。
另外,随着科技的不断发展,电伴热保温技术也在不断更新换代。
电伴热保温安装过程及注意事项

电伴热保温安装过程及注意事项电伴热是一种有效的保温方式,广泛应用于各种管道和设备的保温。
以下是电伴热保温做法的详细步骤:一、准备工作在开始安装电伴热系统之前,需要对电伴热的外观、型号和尺寸进行仔细的检查和核对。
二、安装过程1. 清理安装场所,对管道表面进行清理,如毛刺等,以避免对电伴热产品造成损伤。
2. 电伴热可以采用直铺或者缠绕的方式紧贴敷于管道表面,用压敏胶带或铝箔胶带每隔一段距离进行固定。
这样可以保证电伴热系统的安全,同时确保管道表面与电伴热带保持紧密结合。
3. 电伴热系统的尾部应使用尾端接线盒进行密封。
4. 使用保温棉包裹好电伴热产品。
5. 电伴热带安装时要注意电伴热带的最小弯曲半径,避免因弯曲半径过小导致电伴热带损坏。
6. 恒功率电伴热不可以交叉缠绕,避免因重叠出现交叉处过热烧毁,只有自限温电伴热带可交叉缠绕。
7. 在安装电伴热附件时,电伴热带应留有一定富裕量,以便下次检修时重复使用。
8. 电伴热系统配电系统应具有过载、短路和漏电保护功能。
三、验收与测试在安装完毕后,应进行验收测试,以确保电伴热系统正常工作。
此外,隔热层的施工应在电伴热系统安装完毕并经验收合格后进行。
四、标签与警示在隔热层外每隔一段距离应加贴警示标签,以提醒人们此处有电伴热系统。
五、注意事项1. 在安装过程中,应避免打硬折或在地面拖拉电伴热带,以防将电伴热带外层边缘划破。
2. 碰到锐利的边棱时,应先垫上铝箔胶带或将其打磨光滑。
3. 电伴热系统的安装和隔热层的施工都应避免损伤电伴热系统,施工完毕后应立即对电伴热系统进行绝缘测试。
4. 防潮层和保护层的设置和施工要求与非电伴热保温相同。
六、维护与保养使用过程中应定期检查电伴热系统的运行状况,发现异常应及时处理。
同时,应定期清理和维护电伴热系统,以保证其长期稳定运行。
以上就是电伴热保温做法的详细步骤。
需要注意的是,如果用户自己不会安装,可以请专业的安装团队进行安装或者让厂家指导安装,以免造成安装错误导致无法使用。
电伴热保温施工方案

电伴热保温施工方案一、方案背景电伴热保温是一种通过电能转换热能来实现保温的技术方法。
在建筑领域,电伴热保温广泛应用于管道、储罐、地面等设施的保温工程中。
本文将介绍电伴热保温施工的方案,包括施工流程、具体操作、安全措施等,以期为需求方提供一份完整可行的方案。
二、施工流程1. 方案设计在电伴热保温施工前,首先要进行方案设计。
根据需求方的具体要求和工程情况,设计合理的电伴热保温布置图纸,包括设备安装位置、布线图等。
同时,根据工程规模和预算情况,确定所需材料和设备的数量。
2. 材料准备根据方案设计,准备所需的电伴热保温材料,包括电伴热带、绝缘材料、接线盒等。
同时,确保材料的质量和数量符合施工要求。
3. 现场准备在施工现场,先清理工作区域,确保施工面积干净整洁。
清理完毕后,进行必要的防护措施,包括设置安全警示标志,确保施工人员的人身安全。
4. 电伴热带安装根据方案设计,将电伴热带按照布置图纸进行安装。
首先,在管道或设备表面涂抹胶水,然后将电伴热带缠绕在管道或设备上,并用绝缘胶带进行固定。
在电伴热带的交接处使用专业的接线盒进行连接。
5. 绝缘材料施工在电伴热带安装完毕后,需要对其进行绝缘处理。
使用绝缘材料将电伴热带进行包裹,确保其不受外界环境影响并提高保温效果。
绝缘材料应与电伴热带紧密贴合,避免留有空隙。
6. 电气接线在电伴热带和绝缘材料安装完成后,进行电气接线。
根据电伴热带的功率和工程要求,按照相关标准进行接线,确保接线的牢固和可靠。
7. 安全检查施工过程中,需要进行安全检查,确保电伴热保温系统的安全运行。
检查包括接线是否牢固、绝缘材料是否完好、设备接地是否良好等。
8. 系统调试在安全检查通过后,进行电伴热系统的调试工作。
按照施工方案中的要求,对电伴热系统进行参数设置和测试,确保其正常工作。
三、安全措施1. 施工人员应接受相关的培训和资质认证,熟悉电伴热保温施工方案,具备必要的安全意识和操作技能。
2. 在施工现场,设置明显的安全警示标志,确保他人不会误入施工区域,并采取必要的防护措施,如设置临时栏杆。
什么是伴热?电伴热原理及应用

什么是伴热?电伴热原理及应用
什么是伴热
伴热是补充被伴热体系在环境中散失的热量,以组持体系的温度不降低加热是给被加热体系提供热量,以提高体系的温度达到要求。
在石油、石化、化工等行业由于管线、设备需要在一定的温度(高于环境温度)下运行,如果采取保温措施,不论保温措施做的多厚,管线或设备的温度最终都会下降到环境温度。
仪表在冬天或气温较低时上冻, 将引起数据显示不正常,甚至冻坏表、造成停车等,会严重影响工艺安全生产,所以仪表的保温伴热在冬季安全生产中至关重要。
伴热,就是通过外界对管线或设备提供热量,当提供的热量与管线或设备的热损失相当时,管线既可以在该温度下保持温度的相对恒定,这种外界向管线或者设备提供热量的方法就是伴热。
伴热、温度、时间的关系
伴热分类,伴热有: 1,以电为能源的称为电伴热。
2,以蒸汽作为传热介质的称为蒸汽伴热。
蒸汽保温伴热系统
蒸汽走向:系统蒸汽→总进汽→放空(倒淋)→分管线→一次阀→仪表管钱→仪表表箱→回水阀→疏水器→回水集管→回水总阀→凝结水系统。
仪表蒸汽伴热示意图
保温伴热系统的启用
①在冬季即将来临时,先少开一点仪表蒸汽伴热供给阀,约10%~30%,供热一至两天让仪表伴热蒸汽预热,各保温设备,如伴热管、切断阀、疏水器,让各个法兰均匀受热,避免突然增压,使各连接头和法兰泄漏。
电伴热保温施工方案

电伴热保温施工方案1. 引言电伴热技术是利用电伴热带进行加热的一种方法,广泛应用于建筑、石化、供热、食品等领域的保温工程中。
本文将针对电伴热保温施工方案进行详细介绍,包括设计、材料选取、施工工艺等方面的内容。
2. 设计在开始施工之前,需要进行电伴热保温系统的设计。
设计的目标是根据具体的使用需求和施工条件,确定电伴热带的布置方式、功率大小等参数。
设计时需要考虑以下几个方面:•温度要求:根据被保温对象的使用需要,确定保温系统的温度要求。
•表面负荷:根据被保温对象的表面材料和结构,确定电伴热带的功率密度,以保证表面温度均匀且不超过安全范围。
•控制系统:根据使用需求,选择合适的温度控制器和传感器,以实现温度的精确控制和监测。
3. 材料选取电伴热保温系统的材料选取是保证施工质量的关键。
以下是常用的材料:•电伴热带:可根据具体施工要求选择不同类型的电伴热带,如自限温电伴热带、自调温电伴热带等。
•绝缘层:选用绝缘性能良好、耐高温、耐腐蚀的材料作为电伴热带的保护层,常用的材料有聚氨酯、交联聚乙烯等。
•安装配件:选择合适的安装配件,如固定夹具、防水套管等,以确保电伴热系统的稳定安全。
4. 施工工艺4.1 准备工作在施工前,需要对施工现场进行准备工作,包括清理现场、检查电源情况、确认被保温对象的结构和尺寸等。
4.2 布置电伴热带根据设计要求,在被保温对象的表面进行电伴热带的布置。
需要注意以下几点:•电伴热带的布置应均匀、紧密,不得交叉或拥挤,以保证热量的传递均匀;•在不同部位的电伴热带应进行绝缘处理,以确保安全;•根据需要,可以选择将电伴热带布置在被保温对象的内部,以提高保温效果。
4.3 安装控制系统根据设计要求,安装温度控制器和传感器。
控制系统的安装主要包括以下几个步骤:1.将温度控制器安装在合适的位置,接通电源和电伴热带;2.根据需要,连接传感器并进行校准;3.进行功能测试,确保温度控制器和传感器工作正常。
4.4 完成施工施工完成后,需要进行系统的测试和调试。
消防电伴热保温 工作原理(一)

消防电伴热保温工作原理一、电伴热保温的基本概念电伴热保温是一种通过电力加热的方式来保持管道、容器等设备在一定温度范围内的保温技术。
它通过电热线圈或电热膜等电热元件将热量传导到被保温设备上,从而实现保温的目的。
二、电伴热保温的工作原理1. 电热元件的加热电伴热保温的核心是电热元件的加热。
电热元件一般分为电热线圈和电热膜两种形式,它们通过接通电源,使电阻发热,产生一定的热量。
2. 传热与保温当电热元件加热后,产生的热量通过导热材料传导到被保温设备表面,使其达到所需的保温温度。
同时,设备表面的保温材料也起到了一定的保温作用,减少热量的散失。
3. 温度控制电伴热保温系统通常配备有温度控制装置,可以根据需要对被保温设备的温度进行精确控制。
一般来说,温度控制装置会根据设定的温度值来控制电热元件的加热时间和温度,以保持设备在稳定的温度范围内。
三、电伴热保温的应用领域1. 管道保温电伴热保温广泛应用于工业管道的保温,特别是在化工、石油、医药等行业中,通过电热元件的加热,可以有效防止管道在低温环境下结冰或凝结。
2. 容器保温对于需要保持一定温度的液体储存容器,电伴热保温也可以发挥重要作用。
通过电热元件的加热,可以保持液体在所需的温度范围内,确保生产过程的正常进行。
3. 冷冻设备保温在冷冻设备中,为了避免设备结霜或温度下降过快,常常需要采用电伴热保温技术,通过电热元件的加热来保持设备在稳定的工作温度下运行。
四、电伴热保温的优势和发展趋势1. 节能环保相比传统的蒸汽、热水保温方式,电伴热保温可以更精确地控制温度,避免能量的浪费,具有更好的节能环保效果。
2. 自动化程度高电伴热保温系统可以实现全自动化控制,减少了人工操作的需求,提高了生产效率和安全性。
3. 多样化应用随着技术的不断进步,电伴热保温系统的应用范围也在不断扩大,已经可以满足更多复杂工况下的保温需求。
4. 安全可靠电伴热保温系统采用低压供电,安全可靠,不会引起火灾和爆炸等安全隐患。
浅谈管道电伴热保温

浅谈管道电伴热保温施工技术的应用曹淑琴山西一建集团有限公司山西太原 030006摘要:电伴热保温施工技术就是通过电伴热的电热带安装在绝热层和管道外壁之间,将电热带接入电源,利用其所散发的电热来补充管道内输水或贮水过程中散失的热量,以维持水温在一定范围内,达到保温和防冻的目的。
关键词:管道电伴热保温施工技术随着社会的不断进步,各种管道保温技术应运而生,在众多保温措施中,电伴热保温施工技术,以其升温迅速、温度可调、造价低、节能等特点,被广泛应用于给水、消防、喷淋管道上,是一种新型的管道保温技术,本文以太原富力华庭C区地下车库的实际运用为例进行简要论述。
1 电伴热系统的作用及组成管道电伴热系统由电源开关柜、电源接线盒、温度控制器、尾端盒和附件等组成,2 工作原理通过电伴热的电热带安装在绝热层和管道外壁之间,将电热带接入电源,利用其所散发的电热来补充管道内输水或贮水过程中散失的热量,以维持水温在一定范围内,达到保温和防冻的目的。
3 适用范围适用于工业与民用建筑室内给排水金属管道保温和防冻,特别是在无采暖设施、保温性能差的小区、商场地下车库的给水、消防管道系统等。
4 电伴热施工技术4.1认识电伴热带电伴热带主要可分为恒功率电伴热带、自限温电伴热带、限功率电伴热带等,目前较常用的是恒功率电伴热带及自限温电伴热带。
选择原则:A.根据供电条件及管道长度,确定电伴热方案和电伴热产品的型号,如恒功率、自限式或串联型等。
B.根据管道维持温度及偶然性的最高操作温度选定最高维持温度高于它的电伴热产品。
C.根据管道单位长度的散热量或容器单位面积上的散热量来确定所需电伴热产品的单位功率和长度。
D.根据不同的使用环境来确定所需电伴热产品的结构;一般情况下,可选用普通型;除煤矿外,防爆场合建议使用编织加强型;埋地或在有腐蚀性物质场所也应选用编制加强型。
目前市场上各种品牌的电热带很多,选择时可根据环境温度、应用场合及工作电压等计算选择电伴热电缆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管道附件的热损失可换算成一定长度相同管径管道的热损失,所需电缆应敷设在相应附件上。
管道附件所需伴热电缆长度 = 附件散热系数×每米管道所需同种电缆长度
1) 每个阀门所需电缆长度Lf,为:
Lf=kf×Lg………………………………………………………(9)
式中,kf为阀门散热系数
2)熔断器、空气开关要选择适中,要考虑大于全线起动电流。
3)易燃易爆地区必须采用专用的电源接线盒,中间接线盒和终端等专用附件。
4 ) 根据电源容量、电压、电网平衡状态,确定采用单相供电或三相供电及电压等级。
5 ) 管道周围环境是否便于电缆安装,确定电伴热带,采用直线敷设还是螺旋敷设。
四:电伴热系统图
或设备散热量(QP)见附表二
根据查得的QB或QP按下式计算出实际的散热量
管道QTB==f×QB
平壁设备QTP=f×QP
式中:TM--需要伴热的维持温度(℃)
TA--极端平均最低温度(℃),室内有空调的按室内空调最低温度计算
QTB--管道实际需要伴热热量(W/m)
QTP--平壁实际需要伴热热量(W/m)
2. 电伴热工程建议应在供货方的指导下进行安装施工,并做好详细的工程进展记录表.
3. 电伴热防冻系统设计原理:利用电热来补充输水或贮水过程中所散失的热量,以维持水温在一定的范围内,达到保温和防冻的目的,所以电伴热仍需要有绝热层、防潮层和保护层。
4. 电伴热防冻系统总体设计旨在经济的满足管道流体(如:水)系统防冻(降粘及防堵),从功能性、可实现性、经济性的角度出发,达到防冻(降粘及防堵)的效果。
阀门散热系数
阀门品种 闸 阀 蝶 阀 球 阀 球心阀
散热系数 1.5 0.9 1.0 1.4
2) 每个管道其他附件所需电缆长度Lj为:
Lj=kj×Lg …………………………………………………(10)
式中,kj为其他附件散热系数
管道附件散热系数
附件项目 法兰 弯头 直型接头 T型接头 托架 吊架
散热系数 2 2 2 3 3 3
14) 多回路电热带从同一接线盒接出时,各母线都要有绝缘套隔离,以防短路。
15) 接线盒应密封,防止雨水进入。
5.4电伴热系统的现场测试与检查
1) 电热带的连续性和绝缘电阻,用1000V摇表检查,系统绝缘电阻大于50MΩ为合格。
2) 电热带安装完毕,每个电伴热回路的测试结果应有记录和报告。
3) 检查人员应按照工程规定对伴热系统的安装进行中间检查和最终核实、验收。
f----保温材料修正参数见附表三
2.1.2.直接计算方法:
管道QTB={[2π(TM-TA) ]/[( LnD2/D1)1/λ+2/( D2α)]}×1.3 ………(1)
设备QTP=[(TM-TA)/(δ/λ+1/α)] ×1.3 …………………………… (2)
式中:
TM--需要伴热的维持温度(℃)
六:相关电气设计:
设计电伴热配电系统时,电热带应与过载、短路、漏电保护和温度保护装置配合,并应符合我国有关电气规范要求。
6.1单一电源电热带长度的定义如下图:
变功率单一电源电热带最大使用长度与过流保护开关的容量关系可查电伴热编制说明,当实际过流保护开关容量介于两档之间,应选用容量大的一档。
6.2电路对地漏电保护
f----保温材料修正参数见附表三
2.2确定电伴热带的功率及长度:
2.2.1.计算所需伴热电缆的总长度L
A:计算管道所需伴热电缆的总长度L1
用Q值(QTB、QTP)来选择合适规格的伴热电缆,并确定每米管道Lg所用伴热电缆的长度和敷设方法。
Lg=Q/QM (m)……………………………………………(4)
4.1 电伴热系统图绘制原则
1)每个单一电源供电的电伴热系统,应绘制各自的电伴热系统图。
2)电伴热系统图以该被伴热管道配管图为依据,用轴侧投影图表示。
3)电伴热系统图是示意图,可以不按比例绘制。
4.2 电伴热系统图图示要求
1)电伴热系统图应列出管道编号、管径、材质,保温材质和保温厚度;
2)应标出管道上的阀门、管件、支架、法兰的位置及管道的长度,同时标出接线盒的位置;
7) 每米管道热损失大于每米伴热电缆输出功率时,采用缠绕方式,以利维修时拆卸。
8)法兰处易产生泄漏,缠绕电伴热带时,应避开其正下方。
9) 电热带在管道上的安装方法与固定,扎带材料应根据管道的温度选用。
10) 电热带安装完毕后,必须逐个回路进行电气测试合格后,再进行通电试验,检查电热带发热情况。确认正常后,才允许保温。
B:平面部分用伴热电缆长度L2
1) 每平方米表面应敷设伴热电缆长度为:
Lp=(Qp×f)/ QM m/㎡
2) Lp≥3,即每㎡面积须敷设不短于3m长度的伴热电缆。
3) 平面部分用伴热电缆长度为:
L2=S×Lp m…………………………………………………(8)
S为散热平面面积(m2)。当管径大于600mm时可当作平面容器处理。
3.4 电热带结构的选择
根据安装环境和条件进行结构选择
1)在塑料或表面涂有油漆,而不能可靠接地的容器和管道上选用屏蔽型产品。
2)在易燃易爆地区,或管内介质是易燃易爆介质,应选用屏蔽型防爆电伴热产品。
3)管道内介质如有腐蚀性,或电缆有可能接触腐蚀屏蔽层的化学品,则应采用防护型产品。
3.5 其他事项
1)电伴热带的电源接线截面要大于伴热电缆导体截面。
1.3--安全系数
2.1.3.管道材质修正系数
不同材质的导热系数不同,在同等TM的情况下所需功率不同,修正系数f,见附表四;
QTB、QTP值的条件是钢材,如材质变动应乘以材质修正系数。
Q=Qt×f W/m ………………………………………(4)
式中:
Q--表示最后确定的总实际需要伴热热量(W/m)
Qt--表示代表QTB、QTP伴热热量(W/m)
5) 管道的保温材料品种及厚度(mm);
6) 管道是在室内或室外属于什么工作区域。
二、系统设计:
2.1散热量计算
散热量计算有两种方法:一查表法;二是按公式直接计算法。
2.1.1.查表法
首先根据需要伴热的维持温度TM和最低环境温度TA
计算温差:ΔT
ΔT=TM-TA
根据ΔT查金属管道散热量(QB)见附表一
2) 电气设备和控制设备均须进行外观检查,有变形、有裂纹,器件不全又无法修复的,不能使用。
3) 安装前,应先按照电伴热系统图,逐一核对管道编号、管道规格、工艺条件、电伴热带参数、规格型号、电气设备和控制设备规格型号,确认无误后,才能进行安装。
4) 没有产品标记,或标记模糊不清,无法辨认的产品,不能安装。
11) 保温材料应干燥。潮湿的保温材料不但影响伴热效果,还会导至对电热带的腐蚀,缩短使用寿命,未包外保护层的保温管道,被雨雪浇湿后,应风干后再施工外保护层。
12) 伴热系统施工完毕,应在管道的外保护层,做出明显的电伴热标记,以提醒人们注意。
13) 电热带安装时,当电缆一端接入电源前应将母线另一端用配套的封头套封好,两条母线不得短路。
Lg等于n时(n为整数),则每米管道采用n根这种规格的伴热电缆,n根直线敷设。
Lg大于1且不等于n ,可采用螺旋卷绕敷设,节距为LS(m)
LS=π(D+d)/(Lg2-1)0.5 m ………………………(6)
式中:
D为管道外径(m)
d为伴热电缆厚度(m)
管道部分用伴热电缆长度,为:
L1=管道总长度×Lg (m)………………………………(7)
3) 电热带严禁用重物硬砸,如被砸 伴热电缆应重新进行电气测试,合格后才能使用。
4) 电热带应与被伴热管道(或设备)贴紧并固定,以提高伴热效率。固定电伴热带时应用专用尼龙扎带,严禁用金属丝绑扎。
5)非金属管道应在管外壁与伴热电缆之间贴一层铝胶带,用来增大接触传热面积。
6) 电热带的安装要充分考虑管道附件(或设备)的拆卸可能性,且电伴热带又不需要被切断。电热带被剪断或接头时要注意接头的密封。
最低气象温度标准和防冻标准:
北京地区气象参数(极端平均最低温度TA=-17.1℃);维持设备的水不结冰状态,采用管道水系统维持在5℃的标准。计算管道最大的散热功率。
设计需要确定的工艺参数
1) 管道要求的维持温度 TM(℃);
2) 当地最低环境温度 TA(℃);
3) 管道的外径D(mm);
4) 容器的表面积S(m2);
每条电热带线路应采用30MA对地漏电开关做电气保护。特别是防爆区、危险区或腐蚀区,和管道需要经常维修和电热带易受到机械损坏的区域。
注附表1~5正在编辑中
举例说明
1.1室内热水管道伴热
我公司针对山东某高级公寓室内卫生间热水管道伴热热水维持温度TM=50℃,偶然性操作温度65℃。室内空调温度最低温度TA=16℃,管道通过普通区。电压220V。管径为DN100。
3.2根据功率—温度曲线选择电热带功率
选择电热带的输出功率,不是以标称功率为依据,而是以系统维持温度时电热带必须输出的功率为依据。
选择电热带的温度等级及伴热功率与系统所需的维持温度有直接关系,应选用最高表面温度高于系统维持温度(例如20℃)并能补偿体系热损失的电热带。
3.3单一电源最大电热带的确定
从同一个电源接线盒引出的所有各段伴热电缆的长度之和,称为单一电源最大伴热电缆长度。据此选择过流保护开关的容量。根据管道分布及支线长短选用电热带,低功率电热带单根使用长度较大,适合较长的支线使用,若一根的功率不够可用多根。
管长50M,管道上有3个闸阀,8对法兰(包括阀门的6对)5个管架。保温层材料为泡沫橡塑(λ=0.038W/m℃),厚30mm确定电伴热带的长度、功率和选型。
第一步:计算温差:ΔT
ΔT=TM-TA TM=50℃ TA=16℃