2017-2018学年福建省南平市九年级上期末质量检测数学试题含答案

合集下载

2017-2018学年上期期末考试九年级数学试题含答案

2017-2018学年上期期末考试九年级数学试题含答案

2017-2018学年上期期末考试九年级数学试题一.选择题(每小题3分,共24分)1.在1-,0,2这四个数中,最大的数是( ) A.-1 B.0 C.2 D.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .3.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为( )A .1.42×105B .1.42×104C .142×103D .0.142×1064.如图,能判定ECAB 的条件是()A .B ACE ∠=∠ B .A ECD ∠=∠C .B ACB ∠=∠D .A ACE ∠=∠5.下列计算正确的是( ) A.32a a a ÷= B.()32628xx -= C.22423a a a += D.()222a b a b -=-6.在下列调查中,适宜采用调查的是( )A .了解全国中学生的视力情况B .了解九(1)班学生鞋子的尺码情况C .检测一批电灯泡的使用寿命D .调查郑州电视台《郑州大民生》栏目的收视率7.抛物线()212y x =-+的顶点坐标是( ) A.()1,2- B.()1,2-- C.()1,2- D.()1,28.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点F 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为( )秒时.ABF △和DCE △全等.A .1B .1或3C .1或7D .3或7二.填空题(每小题3分,共21分) 9.计算:2=-__________.10.已知四条线段a ,b ,c ,d 是成比例线段,即ac b d=,其中3cm,2cm,6cm a b c ===,则11.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋子中搅匀,如果不放回的从中随机连续抽取两个,则这个两个球上的数字之和为偶数的概率是__________.12.如图,点A 是反比例函数k y x=图象上的一个动点,过点A 作AB x⊥轴,AC y ⊥轴,垂足点分别为B 、C ,矩形ABOC 的面积为4,则k =_____________.13如图,已知函数2y x b =+与函数3y kx =-的图象交于点P ,则不等式32kx x b ->+的解集是_____________.14.如图,如果圆内接四边形ABCD 两组对边的延长线分别相交于点E 、F ,且40E ∠=,60F ∠=,那么A ∠=____________.15.如图,Rt ABC △中,90ACB ∠=,3AC =,4BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点'B 处,两条折痕与斜边AB 分别交于点E 、F ,则线段'B F 的长为___________.三.解答题(本大题共8个小题,共75分)16.(本题8分) 先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中x 是方程220x x +=的解。

(word完整版)2017年福建南平市初中毕业班数学质量检测卷(附答案)

(word完整版)2017年福建南平市初中毕业班数学质量检测卷(附答案)

2017年南平市初中毕业班适应性检测数学试题(满分:150分;考试时间:120分钟)★友情提示:①所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;②试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的 选项,请在答题卡的相应位置填涂)21 •计算: 3 =A . 9B . -9 C. 6 D. -62 . 2016年,南平市生产总值( GDP )完成145 774 000 000元,将145 774 000 000用科学记数法表示为A . 145 774 X 6 0B . 14 577.4 X 710 C. 1.457 74 X 11I0 D. 0.145 774 7彳06 .如图是由几个完全相同的小正方体搭建的几何体,则它的左视图是3 .下列调查中,适宜采用普查方式的是A. 对一批LED 节能灯使用寿命的调查B. 对冷饮市场上冰淇淋质量情况的调查C. 对一个社区每天丢弃塑料袋数量的调查D. 对大型民用直升机各零部件的检查4 .如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB// OC, CD 与OA 交于点E ,已知/ A=30 °则/ DEO 的度数 为A . C.5-H-.右aA .45 ° 70 °.17 2 B . 60 ° D . 75 °b ,且a 、b 是两个连续整数,则a b 的值是B . 4 C. 3 D . 2(第 4题7. 若一组数据2, 3,4,5,x的方差与另一组数据则x的值为25,26,27,28,29的方差相等,B. 6C.D. 5 或6(第15题图)13. 两组数据:3, 5, 2a , b 与b , 6, a 的平均数都是 6,若将这两组数据合并为一组数据,则这组新数据的众数 为 . 14. 如图,已知 AD// BC,要使四边形 ABCD 为平行四边形,需要增加的一个条件是: __________ .(?只填一个你认为正确的条件即可,不添加任何线段与字母 15. 如图,已知 菱形ABCD 的边长为4,1,点P 为CD 边上一动点,PE 与O 16 .有A 、B 、C 三种不同型号的卡片, 每种卡片各有7张.其 中A 型卡片是边长为 2的正方形,B 型卡片是长为2、 宽为1的矩形,C 型卡片是边长为1的正方形.从其中 取出若干张卡片,每种卡片至少取一张.,把取出的这些 卡片拼成一个正方形(•所拼的图中既不能有缝隙,也不 能有重合部分).可以拼成 ______________________ 种面积不同的正方形.8. 如图,在△ ABC 中,/ ACB=90 °分别以点 A 和点C 为圆心,1以相同的长(大于- AC )为半径作弧,两弧相交于点 M 和2点N ,作直线 MN 交AB 于点D ,交AC 于点E ,连接CD. 下列结论错误的是A . AD=CDB .Z A=2Z DCB C.Z ADE=Z DCB D .Z A=Z DCA9 .如图,矩形 ABCD 中,AB=4, BC=2, O 为对角线 AC 的中点,点 P 、Q 分别从A 和B 两点同时出发,在边 AB 和BC 上匀速运动, 并且同时到达终点 B 、C ,连接PO 、QO 并延长分别与 CD DA 交于点M 、N .A. 一直增大B. 一直减小C.先减小后增大D.先增大后减小10.对某一个函数给出如下定义:如果存在常数 M ,对于任意的函数值 y ,都满足y < M ,那么称这个函数是有上界函数;在所有满足条件的M 中,其最小值称为这个函数的上确2界.例如,函数 y x 1 2 , y w 2,因此是有上界函数,其上确界是2•如果函数 y 2x 1 ( m w x w n , m v n ) 则m 的取值范围是的上确界是n ,且这个函数的最小值不超过2 m ,1C . 一3 二、填空题位置)11 .若代数式 12.因式分解 1B . m -36小题,每空4分,共24分.将答案填入答题卡 的相应-1 x 有意义,则实数x 的取值范围是2:3ax +6ax+3a= ________ . BC D NB(第 9题图))半径为AA OP(第 15题图)三、解答题(本大题共9小题,共86分•在答题卡的相应位置作答)21(a b)(a b) (a b),其中 a 3,b -2x1的小正方形组成的 6X 4网格,此时小正方形的顶点称为 顶点在格点上的三角形称为格点三角形.已知△ ABC 中,AB=2, AC= , 5, BC= .. 13 .在图1所给的网格中画出格点厶 ABC;在图2所给的网格中共能画出 _________ 个与△ ABC 相似且面积最大的格点三角形,并画出其中一个(不需证明).21. (8分)某校在七、八年级开展以“百日攻坚战,再上新台阶,建设新南平”为主题的征 文活动,校学生会对这两个年级所有班级的投稿情况进行统计,并制成了如图所示的两 幅不完整的统计图.(1) _____________________________________________________________________ 投稿2篇的班级个数在扇形统计图中所对应的扇形的圆心角等于 _______________________________(2) 求该校七、八年级各班投稿的平均篇数;(3)投稿9篇的4个班级中,七、八年级各有两个班,学校准备从这四个中选出两个班代表学校参加上一级的比赛,请你用列表法或画树状图的方法求出所选两个班5 tan45 38.17. (8分)18. (8 分) 19. (8 分) 20. (8 分)格点,(1))(2))计算: 先化简,再求值:2b 2 解分式方程: ----- x 2如图是由24个边长为 (第20题图2)不在同一年级的概率.投稿班级个数扇形统计图(第21题图)22. (10 分)如图,已知点 A (6, 0), B ( 0, 2J 3 ),O 为坐标原点,点 O 关于直线AB 的对称点C 恰好k落在反比例函数 y (k 0)的图象上,求k 的值.x23. (10分)如图,AB 为O O 直径,且弦 CD 丄AB 于点E , 过点B作O O 的切线与AD 的延长线交于点 F.(1 )若EN 丄BC 于点N ,延长NE 与AD 相交于点 M . 求证:AM=MD ;(2)若0 O 的半径为10,且cosC =-,求切线BF 的长.5C ( 2, 2)三点.(1) 求二次函数 y ax 2 bx c 的解析式;(2) 设点D ( 6 , m )在二次函数的图象上,将/ ACB5绕点C 按顺时针方向旋转至/ FCE 使得射线CE 与y 轴的正半轴交于点 E,且经过点 D ,射线CF 与线段OA 交于点F .求证:BE = 2FO ;(3) 是否存在点 H(n , 2),使得点A 、D 、H 构成的△ ADH 是直角三角形?若存在,有几个符合条件的点 H ? (直接回答,不必说明理由 )25. (14分)如图,已知正方形 ABCD 的边长为2,以DC 为底向正方形外作等腰厶 DEC 连接AE ,以AE 为腰作 等腰△ AEF,使得 EA=EF,且/ DEC=Z AEF. (1) 求证:△ ED3A EAF ; (2) 求 DE- BF 的值;(3) 连接 CF AC ,当CF 丄AC 时,求/ DEC 的度数.24. (12分)如图,已知二次函数ax 2 bx c 的图象经过 A (3, 0), B (0,1),(第 23题图)ADEF(第 25题图)2017年南平市初中毕业班适应性检测数学试题参考答案及评分说明说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分.(2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅•当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分.(4)评分只给整数分•选择题和填空题不给中间分.一、选择题(本大题共10小题,每小题4分,共40分)I • A ; 2 •C; 3. D; 4• D; 5. A; 6. D ; 7. C; 8 • B; 9. C; 10 •B.二、填空题(本大题共6小题,每小题4分,共24分)2II . x 1 ; 12. 3a(x 1) ; 13. 8; 14. AD=BCAB// DC/ A=Z C, / B=Z D 等;15. 2 ; 16. 5;三、解答题(本大题共9小题,共86分)17.解:原式 5 1(2) •…........................................ 6分Q.... 8分8 ....18 .解:原式2b2a2 b2/ 2 2(a b2ab)..4分2b2a2 b2 2 .2a b2ab•- (5)分2a b -6分2 219.解:3x 5(x 2) ........................................ 3 分3x 5x 10 ......................................... 4 分3x 5x 10 .......................................... 5 分2x 10 ............................................ 6 分x 5 ............................................. 7 分经检验x 5是原方程的解,所以原方程的解是x 520. (1 )答案见图1; .......................... 3分(2) 4个......................... 6分当a 3,b丄时,原式2 ( 3) 1 3 .....................................2.(^ DEF, △HGM,A FNE A MPH,只要画出其中的一个即) ____________________________ MNPF ______________21. ................................................................ 解:(1) 30; 2 分3(2)班级总数=12 (个) ................ 3分25%投稿5篇的班级为2个 ................... 4分22. 解:•••点 A (6, 0), B (0, 2 暑),• OA=6, OB=2J3.OB V3 在 Rt A AOB 中,tan / BAO ............ 1 分OA 3/•Z BAO =30° ........................................... 2 分连接OC, •••点O 关于直线AB 的对称点是C, • OC X AB ,则 Z AOC=60° ........................ 4 分AOC 为等边三角形,且 AO= CO=6, 过点C 作CF 丄AO 于F 点,12 23253649 126 (篇)a 1a 2b 1 b 2 a 1(a 1, a 2)(a 1, d ) (a 1, b 2) a 2 (a 2, a 1)(a 2 , d )(a 2, b 2) bi (b 1, a 1) (bi , a 2)(b 1, b 2)b 2(b 2 , a 1)(b 2, a 2)(b 2 , d )所以该校七、八年级各班投稿平均6篇. ................... 5分(3)设七年级两个班级为 a 「a 2,八年级两个班级为b 1, b 2,可列表如下:可画树状图如下:一共12种情况,符合条件的有8种 ................... 7分 8 2••• P (所选两个班正好不在同一年级 ) .................................. 8分12 3 (第 22题图)则OF=1OA =3, CF= 0C・ sin/ F0O3.3 ,2 则点C的坐标为(3, 3-、3 ) .......... 6分•••C在反比例函数y -(k 0)的图象上,••• k 3 9、3 .10分x23. ( 1)证法一:• / A 与/ C对同弧BD,「. / A=/ C ........................ 1 分•/ CD丄AB于点E,A / CEB=90°.• / C+/ CBE=90°.•/ MN 丄BC, •• / ENB=90 ° .•/ NEB +/ CBE=90° .•• / C=/ NEB .................... 3 分•/ NEB=/AEM, •/ AEM=/ A.「. AM =ME. ........... 4 分•/ AEM=/ A, / MED+/ AEM=90°,/ EDA+/ A =90 °,•• / MED=/ EDA • ME=MD.「. AM =MD . ...... 6 分证法二:• / CDA与/ CBA对同弧AC,(第23题图)•• / CDA=/ CBA ............... 1 分•CD丄AB 于点E,A / AED=90° .•••/ MED+/ MEA=90° . .............. 2 分-MN 丄BC, • / ENB=90• / CBA +/ BEN =90° . ............................. 3 分•/ / MEA=/ BEN,「. / MED=/ CBA• / MED=/CDA • ME=MD. .............................. 4 分•/ / MED+/AEM=90°, / CDA+/ A =90 °,•••/AEM =/ A.「. AM=ME.「. AM =MD. ............................... 6 分(2)解:• BF与O O 相切于点B,「. AB丄BF.A / ABF=90° ............... 7 分• / C与/ A 对同弧BD, •/ C=/ A.「. cosA=cosC=4.............................. 8 分5AB 4 5 5…cosA . •- AF= AB 20 25 ........................... 9 分AF 5 4 4BF AF2AB225220215. ............................................................. 10 分B (0, 1),C ( 2, 2)代入yax2 bx c,c1得9a3b c04 a 2b c25a613b624. ( 1)解:把A (3, 0),数学试题第11页(共4页)5 13•••二次函数的解析式为y x2X 1 .……4分6 6(2)过点C作CM丄OA于点M , CN丄y轴于点N,•••A ( 3, 0), B ( 0, 1), C (2, 2),•CM= CN=2,CA=CB= (5)•Rt A NBC^ Rt A MAC ......................... 5 分•••/ CAF=Z CBE•••将/ ACB绕点C按顺时针方向旋转至/ FCE•/ FCE=/ ACB•/ FCE/ BCF玄ACB-/ BCF,即/ ACF=/ BCE又••• CB=CA, •△ACF^A BCE ...................... 6 分•AF=BE5 213•••二次函数的解析式为y 5x2 13 X 1 ,6 6当6叶12 6 12当x 时,m ,…D(—, ) ......... 7分5 5 5 56 12 设直线CD y kx b,把C (2, 2)、D(—, —)代入得5 52k b 21k—6,,12,解得2k b55b3直线CD y1 x 3 -2• E ( 0, 3) , BE=2 • AF=BE=2•FO=OA-AF=I ............................. 9 分•BE= 2FO. ............................... 10 分数学试题第13页(共4页)H ,使得点A 、D 、H 构成的△ ADH 是直角三角形.(3)存在4个12分25.( 1):公 AEF 和厶DEC 是等腰三角形,且/ • / EA 理 AEF2 180° DEC EDC DEC=/ AEF,2• / EAF=Z EDC •…• △ EDS A EAF.(2)由(1 )得厶 ED3A EAF,(第 25题图)2分3分 .... 4分数学试题第8页(共4页)ED ■EA ................................... 6 分DC AF •••/ DEA=180 ° -90° - / EDG / DAE=90° - / EDG / DAE,Z BAF=90 ° - Z EAF- Z DAE,.— BAF=Z DEA .................................. 8 ......................................................................................................... 分•••△ BAF ^A DEA, ............................... 9 分 (另法:记Z DEG=Z AEF=a, • BAF DEA ) (3) T Z DEC=Z AEF, DEA=Z CEF •/ DE=CE, AE=FE,.A ADE ^A FCE • AD=FC=BC- .......................... 12 分 •/△ BAF ^A DEA , • Z ABF=Z EDA , .Z FBC=Z CDE •••△ CBF 和△ EDC 是等腰三角形, • Z BCF=Z DEC ............................. 13 分 •/ CF 丄 AC,.Z ACF=90 ° vZ ACB=45°,.Z BCF=45° • Z DEC=45°. ............................... 14 分 EDC 180 2 EAF 180 ADE 90 180 180 2 DA E 180 ADE DEA - 2 DEA BAF BA D EA F DAE 90 180 2 (三 DEA) DEA , •/ DC=AB ,ED EAAB A F BF DA AB •即 DE - BF=DA • AB=4. DE 10分 11分 E (第 25题图)。

2017年福建南平市初中毕业班数学质量检测卷(附答案)

2017年福建南平市初中毕业班数学质量检测卷(附答案)

2017年福建南平市初中毕业班数学质量检测卷(附答案)D数学试题第2页(共4页)数学试题第3页(共4页)数学试题第4页(共4页)数学试题第5页(共4页)数学试题第6页(共4页)数学试题 第7页(共4页) 称这个函数是有上界函数;在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数()212y x =-++,y ≤2,因此是有上界函数,其上确界是2.如果函数21y x =-+(m ≤x ≤n ,m <n )的上确界是n ,且这个函数的最小值不超过2m ,则m 的取值范围是A .m ≤31B .31<mC .m <31≤21D .m ≤21 二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应 位置)11.若代数式x -1有意义,则实数x 的取值范围是 . 12.因式分解:3ax 2+6ax +3a = . 13.两组数据:3,5,2a ,b 与b ,6,a 的平均数都是6, 若将这两组数据合并为一组数据,则这组新数据的众数 为 . 14.如图,已知AD ∥BC ,要使四边形ABCD 为平行四边 形,需要增加的一个条件是: . (•只填一个你认为正确的条件即可,不添加任何线段与字母) 15.如图,已知菱形ABCD 的边长为4,∠B =60°,点O 为对角线AC 的中点,⊙O 半径为 1,点P 为CD 边上一动点,PE 与⊙O 相切于点E ,则PE 的最小值是 . 16.有A 、B 、C 三种不同型号 C (第15题图)(第14CB A D数学试题 第8页(共4页)的卡片,每种卡片各有7张.其中A 型卡片是边长为2的正方形,B 型卡片是长为2、宽为1的矩形,C 型卡片是边长为1的正方形.从其中取出若干张卡片,每种卡片至少......取一张...,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分).可以拼成_______种面积不同的正方形.三、解答题(本大题共9小题,共86分.在答题卡...的相应位置作答) 17.(8分)计算:3845tan 5--︒+-. 18.(8分)先化简,再求值:222()()()b a b a b a b ++---,其中3a =-,12b =. 19.(8分)解分式方程:xx 523=-. 20.(8分)如图是由24个边长为1的小正方形组成的6×4网格,此时小正方形的顶点称为格点,顶点在格点上的三角形称为格点三角形.已知△ABC 中,AB =2,AC =5,BC =13.(1)在图1所给的网格中画出格点△ABC ;(2)在图2所给的网格中共能画出个与△ABC 相似且面积最大的格点三角形,并画出其中一个(不需证明).21.(8分)某校在七、八年级开展以“百日攻坚战,再上新台阶,建设新南平”为主题的征文活动,校学生会对这两个年级所有班级的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)投稿2篇的班级个数在扇形统计图中所对应的扇形的圆心角等于°;(2)求该校七、八年级各班投稿的平均篇数;(3)投稿9篇的4个班级中,七、八年级各有两个班,学校准备从这四个中选出两个数学试题第9页(共4页)数学试题 第10页(共4页)6篇 25% 9篇 2篇 3篇 5篇 投稿班级个数扇形统计图 投稿班级个数条形统计图 (第21班代表学校参加上一级的比赛,请你用列表法或画树状图的方法求出所选两个班22.(10分)如图,已知点A (6,0),B (0,,O 为坐标原点,点O 关于直线AB 的对称点C恰好落在反比例函数)0(>=k xky 的图象上,求k的值. 23.(10分)如图,AB 为⊙O于点E ,过点B 作⊙O 的切线与AD F .(1)若EN ⊥BC 于点N ,延长NE 与AD 相交于点M .求证:AM =MD ;(2)若⊙O 的半径为10,且cos C =54,求切B F(第23题图)(第22线BF 的长.24.(12分)如图,已知二次函数cbx ax y ++=2的图象经过A (3,0),B (0,1),C (2,2)三点.(1)求二次函数cbx axy ++=2的解析式;(2)设点D (56,m )在二次函数的图象上,将∠ACB 绕点C 按顺时针方向旋转至∠FCE ,使得射线CE 与y 轴的正半轴交于点E ,且经过点D ,射线CF 与线段OA 交于点F .求证:BE =2FO ;(3)是否存在点H (n ,2),使得点A 、D 、H构成的△ADH 是直角三角形?若存在,有几(第24BCDA E个符合条件的点H?(直接回答,不必说明理由)25.(14分)如图,已知正方形ABCD的边长为2,以DC为底向正方形外作等腰△DEC,连接AE,以AE为腰作等腰△AEF,使得EA=EF,且∠DEC=∠AEF.(1)求证:△EDC∽△EAF;(2)求DE·BF的值;(3)连接CF、AC,当CF⊥AC时,求∠DEC 的度数.2017年南平市初中毕业班适应性检测数学试题参考答案及评分说明说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分.(2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分.(4)评分只给整数分.选择题和填空题不给中间分.一、选择题(本大题共10小题,每小题4分,共40分)1.A ; 2.C; 3.D; 4.D;5.A; 6.D ;7.C; 8.B; 9.C; 10.B.二、填空题(本大题共6小题,每小题4分,共24分)11.1≤x;12.2)1a; 13. 8; 14.x3+(AD=BC,AB∥DC, ∠A=∠C, ∠B=∠D等; 15.2;16. 5;三、解答题(本大题共9小题,共86分)17.解:原式-=…………………………………6分+15-)2(= (8)8分18.解:原式CP MN F )2(222222ab b a b a b -+--+=………………………4分 ab b a b a b 2222222+---+=…………………………………5分ab 2=…………………………………6分当21,3=-=b a 时,原式321)3(2-=⨯-⨯=………………………………8分19.解:)2(53-=x x ……………………………3分1053-=x x ……………………………4分 1053-=-x x ……………………………5分 102-=-x ………………………………6分 5=x …………………………………7分 经检验5=x 是原方程的解,所以原方程的解是5=x ……………………8分 20.(1)答案见图1;…………………………………3分(2)4个 …………………………………6分答案答案见图2.(△DEF ,△HGM ,△FNE ,△MPH ,只要画出其中的一个即可)…8分21.解:(1)30;………………………2分(2)班级总数=12%253=(个)………………………3分投稿5篇的班级为2个………………………4分6129463523221=⨯+⨯+⨯+⨯+⨯(篇) 所以该校七、八年级各班投稿平均6篇.………………………5分 (3)设七年级两个班级为21,a a ,八年级两个班级为21,b b ,可列表如下:可画树状图如下:一共12种情况,符合条件的有8种…………………………7分∴P (所选两个班正好不在同一年a 1b 1 b 2 开始a 1 a 1 a 1 a 2 a 2 a 2 a 2b 1 b 2 b 1b 2 b 1 b 2级)32128== . …………………………8分22.解:∵点A (6,0),B (0,,∴OA =6,OB=在Rt △AOB 中,tan ∠BAO 33==OA OB …………1分 ∴∠BAO=30°……………………………2分连接OC ,∵点O 关于直线AB 的对称点是C , ∴OC ⊥AB ,则∠AOC =60°…………………4分∴△AOC 为等边三角形,且AO = CO =6, 过点C 作CF ⊥AO 于F 点,则OF =21OA =3,CF = OC ·sin ∠FOC= 则点C 的坐标为(3,……………………6分∵C 在反比例函数)0(>=k xk y 的图象上,∴3k =⨯=.……………10分23.(1)证法一:∵∠A 与∠C 对同弧BD ,∴∠A=∠C ………………1分(第22∵CD ⊥AB 于点E ,∴∠CEB =90°.∴∠C+∠CBE =90°∵MN ⊥BC ,∴∠ENB=90°.∴∠NEB + ∠CBE =90°.∴∠C =∠NEB …………………3分 ∵∠NEB =∠AEM ,∴∠AEM =∠A .∴AM =ME . ………4分∵∠AEM =∠A ,∠MED+∠AEM =90°, ∠EDA+∠A =90°,∴∠MED=∠EDA .∴ME =MD .∴AM =MD .…………6分证法二:∵∠CDA 与∠CBA 对同弧AC , ∴∠CDA=∠CBA ………………1分 ∵CD ⊥AB 于点E ,∴∠AED =90°.∴∠MED+∠MEA =90°. …………………2分 ∵MN ⊥BC ,∴∠ENB=90°.∴∠CBA + ∠BEN =90°. …………………3分∵∠MEA=∠BEN ,∴∠MED =∠CBA . ∴∠MED=∠CDA .∴B F (第23题图)ME =MD . ……………………4分∵∠MED+∠AEM =90°,∠CDA+∠A =90°, ∴∠AEM =∠A .∴AM =ME .∴AM =MD .……………………6分(2)解:∵BF 与⊙O 相切于点B ,∴AB ⊥BF .∴∠ABF =90°.……………………7分∵∠C 与∠A 对同弧BD ,∴∠C=∠A .∴cos A=cos C=54.……………………8分∴54cos ==AF AB A . ∴AF =25204545=⨯=AB ……………………9分 ∴1520252222=-=-=AB AF BF .…………………………………10分24.(1)解:把A (3,0),B (0,1),C (2,2)代入c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=++=2240391c b a c b a c ∴⎪⎪⎩⎪⎪⎨⎧=-=61365b a (3)分∴二次函数的解析式为1613652++-=x x y .……4分 (2)过点C 作CM ⊥OA 于点M ,CN ⊥y 轴于点N ,∵A (3,0),B (0,1),C(2,2),∴CM = CN =2,CA =CB =5∴Rt △NBC ≌Rt △MAC …………………5分 ∴∠CAF=∠CBE∵将∠ACB 绕点C 按顺时针方向旋转至∠FCE ,∴∠FCE=∠ACB∴∠FCE-∠BCF=∠ACB-∠BCF , 即∠ACF=∠BCE ,又∵CB =CA ,∴△ACF ≌△BCE ……………………6分∴AF =BE∵二次函数的解析式为1613652++-=x x y , 当56=x 时,512=m ,∴)512,56(D ………7分 设直线CD :b kx y +=,把C (2,2)、)512,56(D 代入(第24题图)得⎪⎩⎪⎨⎧=+=+5125622b k b k , 解得⎪⎩⎪⎨⎧=-=321b k ,∴直线CD :321+-=x y ……………………8分 ∴E (0,3),BE =2 ∴AF =BE =2∴FO=OA-AF=1……………………9分 ∴BE =2FO .……………………10分 (3)存在4个符合条件的点H ,使得点A 、D 、H 构成的△ADH 是直角三角形. ………………12分25.(1)∵△AEF 和△DEC 是等腰三角形,且∠DEC =∠AEF ,∴∠EAF =1802AEF -∠…………………1分1802DECEDC -∠∠=…………………2分∴∠EAF =∠EDC …………………3分∴△EDC ∽△EAF .……………………4分 (2)由(1)得△EDC ∽△EAF ,∴AFEA DC ED =……………………6分 B C D A E F(第25∵DC =AB ,∴AFEAAB ED =………………7分 ∵∠DEA =180°-90°-∠EDC -∠DAE =90°-∠EDC -∠DAE ,∠BAF =90°-∠EAF -∠DAE ,∴∠BAF =∠DEA ……………………8分∴△BAF ∽△DEA ,……………………9分∴DEABDA BF =.即DE ·BF =DA ·AB=4.……………………10分(另法:记∠DEC =∠AEF =α,∴2180,2180αα-︒=∠-︒=∠EAF EDC ,2180218090αα-︒=-︒+︒=∠ADE ,DEADEA ADE DAE ∠-=∠-∠-︒=∠2180α∴DEA DEA DAE EAF BAD BAF ∠=∠----︒=∠-∠-∠=∠)2(218090αα,∴DEA BAF ∠=∠)(3)∵∠DEC =∠AEF ,∴∠DEA =∠CEF ……………………11分∵DE =CE ,AE =FE ,∴△ADE ≌△FCE∴AD =FC =BC ……………………12分 B C D AE F∵△BAF∽△DEA,∴∠ABF=∠EDA ,∴∠FBC=∠CDE∵△CBF和△EDC是等腰三角形,∴∠BCF=∠DEC……………………13分∵CF⊥AC,∴∠ACF=90°∵∠ACB=45°,∴∠BCF=45°∴∠DEC=45°.……………………14分。

福建省南平市九年级上学期期末数学试卷

福建省南平市九年级上学期期末数学试卷

福建省南平市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)如图,ABCD是一块长方形纸板.试画一条直线,将它的面积分成相等的两部分,那么这种直线能画()A . 2条B . 4条C . 8条D . 无数条2. (2分)小刚掷一枚均匀的硬币,一连99次都掷出正面朝上,当他第100次掷硬币时,出现正面朝上的概率是()A . 0B . 1C .D .3. (2分)在Rt△ABC中,∠C=90°,BC=4 ,AB=6,则cosA的值为()A .B . 2C .D .4. (2分) (2019九上·定州期中) 如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A . 70°B . 35°C . 45°D . 60°5. (2分)二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A . 先向左平移2个单位,再向上平移1个单位B . 先向左平移2个单位,再向下平移1个单位C . 先向右平移2个单位,再向上平移1个单位D . 先向右平移2个单位,再向下平移1个单位6. (2分)正比例函数y=kx与反比例函数y=在同一坐标系中的图象为()A .B .C .D .二、填空题 (共8题;共8分)7. (1分)分解因式:2a2+4a=________8. (1分)已知,那么 ________.9. (1分) (2015九上·宝安期末) 抛物线y=﹣2(x+1)2﹣2的顶点坐标是________.10. (1分)某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为4.8米,小明的影长为1.2米,已知小明的身高为1.5米,则树高为________ 米.11. (1分)(2017·达州) 如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3 ,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE= CE;④S阴影= .其中正确结论的序号是________.12. (1分)据调查,某市2012年商品房均价为7250元/m2 , 2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2 .问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:________.13. (1分) (2018九上·灵石期末) 双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是________.14. (1分) (2016九上·杭州期中) 如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④2a+b=0.其中判断正确的是________.(只填写正确结论的序号)三、解答题 (共12题;共125分)15. (10分) (2020九下·无锡月考) 计算(1) 2﹣1+|1﹣ |+(﹣2)0﹣cos60°(2)(2﹣)÷16. (5分)解方程:3x(x﹣2)=2(2﹣x);17. (5分)(2017·陵城模拟) 先化简,再求值:,其中a= +2.18. (5分)(2013·泰州) 从甲、乙、丙、丁4名选手中随机抽取两名选手参加乒乓球比赛,请用画树状图或列表的方法列出所有可能的结果,并求甲、乙两名选手恰好被抽到的概率.19. (15分) (2018九上·信阳月考) 如图,已知矩形OABC的一个顶点B的坐标是(8,4),反比例函数y=(x>0)的图象经过OB的中点E,且与边BC交于点D.(1)求反比例函数的解析式和点D的坐标;(2)求三角形DOE的面积;(3)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线解析式.20. (5分)如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,求路灯AD的高度是多少?21. (10分) (2020九上·鞍山期末) 如图,直线l的解析式为y= x,反比例函数y=(x>0)的图象与l交于点N,且点N的横坐标为6.(1)求k的值;(2)点A、点B分别是直线l、x轴上的两点,且OA=OB=10,线段AB与反比例函数图象交于点M,连接OM,求△BOM的面积.22. (10分)如图,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试写出∠BAD与∠CDE的数量关系,并说明理由.23. (15分)(2013·百色) 如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点动点E(不与点A、B重合),连结EB、ED.(1)如果∠CBD=∠E,求证:BC是⊙O的切线;(2)当点E运动到什么位置时,△EDB≌△ABD,并给予证明;(3)在(1)的条件下,若tanE= ,BC= ,求阴影部分的面积.(计算结果精确到0.1)(参考数值:π≈3.14,≈1.41,≈1.73)24. (15分)(2016·六盘水) 如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.25. (15分)(2017·新疆) 如图,抛物线y=﹣ x2+ x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.26. (15分)如图1所示,已知点P为线段AB上一点,△BCP、△PAD是等边三角形.(1)说明:AC=BD;(2)求∠DOA的度数.(3)若把原题中“△BCP和△PAD是两个等边三角形”换成两个正方形(如图2所示),AC与BD的数量和位置关系如何?请说明理由.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共8题;共8分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共12题;共125分)15-1、15-2、16-1、17-1、18-1、19-1、19-2、19-3、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。

2017-2018学年第一学期九年级数学期末试题参考答案

2017-2018学年第一学期九年级数学期末试题参考答案

2017—2018学年第一学期期末学业水平检测九年级数学试题参考答案各位老师:提前祝假期快乐,阅卷时请注意:评分标准仅做参考,只要学生作答正确,均可得分。

对于解答题目,答案错误原则上得分不超过分值的一半,有些题目有多种方法,只要做对,13. -3 14.-2 15. 516.2:3 17.24 18.(2,1) 19.解:(1)将x=1代入方程得:9-3a+a-1=0, 解得:a=4……………………………………………………………1分所以方程为:03x 4x 2=++,解得:3-x 1-x 21==,,所以方程的另一根为x=-3。

……………………………………3分(用根与系数的关系来解也可以)(2)证明:⊿=a 2-4×(a -1)= (a -2)2,∵(a -2)2≥0,⊿≥0. ∴不论a 取何实数,该方程都有两个不相等的实数根.………………8分20.解∶(1)21;………………………………………………2分 (2)乙家庭没有孩子,准备生两个孩子所有可能出现得结果有(男,男),(男,女),(女,男),(女,女),一共有4种结果,它们出现得可能性相同,所有结果种,满足“至少有一个是女孩”的结果有三种,所以至少有一个孩子是女孩的概率是43.………………7分 21.由题意得, 在直角ADC ∆中,∠APQ=45°,CD=60米,∴tan45°=ADCD ,即 ………2分 在直角BDC ∆中, ∠BPQ=60°,∴tan60°=CD BD ,即60BD =3, ∴BD=360………4分∴AB=BD-AD=60360-(米)。

答:海丰塔AB 的高为60360-米. ………8分22.(1)证明:连结OD .∵EF AC ⊥∴90DFA ∠=︒,∵AB AC =,∴1C ∠=∠……………………2分∵OB OD =,∴12∠=∠,∴2C ∠=∠ ,∴OD ∥AC …………3分∴90EDO DFA ∠=∠=︒,即OD EF ⊥.∴EF 是⊙O 的切线.…………………………5分(其他方法参照本题标准)(2)解: 连结AD .∵AB 是直径,∴AD BC ⊥.又AB AC =,∴CD=BD=5,在Rt CFD ∆中,DF=4, ∴CF=3…………………………………………6分在Rt CFD ∆中,DF AC ⊥∴CFD ∆∽ADC △ ………………………7分 ∴DC CF DA DF =,即534=DA ,∴320=DA ………………………9 根据勾股定理得:∴2222)320(5+=+=BD AD AB =325……………………10分 23. (1)∵ 四边形AMPN 是矩形,∴PN ∥AB ,PN =AM ,∴△DNP ∽△DAB . ∴ABNP DA DN =. ……………………………………………………2分 ∵AB =160,AD =100,AN =x ,AM =y ,∴160100100y x =-. ∴16058+-=x y . ………………………………………………4分 (2)设花坛AMPN 的面积为S ,则()40005058)16058(2+--=+-==x x x xy S …6分 ∵058<-,∴当50=x 时,S 有最大值, 4000=最大值S . ∴当AM =80,AN =50时,花坛AMPN 的最大面积为4000m 2 ………………8分24. 解:(1)∵直线y =ax +1与x 轴交于点A(-2,0),∴-2a +1=0,解得a =12,∴直线的解析式为y =12x +1,……2分 由PC ⊥x 轴,且PC =2,∴y =2=12x +1,解得x =2, ∴点P 的坐标为(2,2),………………………………3分∵点P 在反比例函数y =k x的图象上,∴k =2×2=4, ∴反比例函数解析式为y =4x.…………………………4分 (2)∵直线y =12x +1与y 轴交于点B ,∴点B 的坐标为(0,1),∴AO =2,OB = 1. ) 12如解图,过点Q 作QH ⊥x 轴于点H ,连接CQ ,则∠QHC =∠AOB =90°.∵点Q 在反比例函数y =4x 的图象上,∴设点Q 的坐标为(t ,4t),t >2, 则QH =4t,CH =t -2,……………………6分 若以点Q 、C 、H 为顶点的三角形S △AOB 相似时,则有两种可能,(ⅰ)当△QCH ∽△BAO 时,AO CH =OB QH ,即QH CH =OB AO =12,∴2×4t=t -2,解得t 1=4,t 2=-2(舍去), 则点Q 的坐标为(4,1);……………………………………7分(ⅱ)当△QCH ∽△ABO 时,AO QH =OB CH ,即QH CH =AO OB =2,∴4t=2(t -2),解得t 1=3+1,t 2=1-3(舍去),则点Q 的坐标为(3+1,23-2).……………………………………8分 综上所述,Q 点的坐标为(4,1)或(1+3,23-2).………………9分25.解:(1)设抛物线解析式为y=a (x+4)(x ﹣2),将B (0,﹣4)代入得:﹣4=﹣8a ,即a=,则抛物线解析式为y=(x+4)(x ﹣2)=x 2+x ﹣4;……………………4分(2)过M 作MN ⊥x 轴,将x=m 代入抛物线得:y=m 2+m ﹣4,即M (m , m 2+m ﹣4),∴MN=|m 2+m ﹣4|=﹣m 2﹣m+4,ON=﹣m ,………………………………6分∵A (﹣4,0),B (0,﹣4),∴OA=OB=4,∴△AMB 的面积为S=S △AMN +S 梯形MNOB ﹣S △AOB=×(4+m )×(﹣m 2﹣m+4)+×(﹣m )×(﹣m 2﹣m+4+4)﹣×4×4=2(﹣m 2﹣m+4)﹣2m ﹣8=﹣m 2﹣4m=﹣(m+2)2+4,当m=﹣2时,S 取得最大值,最大值为4.…………………………10分。

2017-2018学年福建省南平市九年级上期末质量检测数学试题及答案

2017-2018学年福建省南平市九年级上期末质量检测数学试题及答案

南平市2017-2018学年第一学期九年级期末质量检测数学试题(满分:150分;考试时间:120分钟)★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效; ② 试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.在平面直角坐标系中,点M (1,﹣2)与点N 关于原点对称,则点N 的坐标为A .(﹣2, 1)B .(1,﹣2)C .(2,-1)D .(-1,2) 2.用配方法解一元二次方程0122=-+x x ,可将方程配方为A .()212=+x B .()012=+x C .()212=-x D .()012=-x3.下列事件中,属于随机事件的有①任意画一个三角形,其内角和为360°; ②投一枚骰子得到的点数是奇数; ③经过有交通信号灯的路口,遇到红灯; ④从日历本上任选一天为星期天.A .①②③B .②③④C .①③④D .①②④ 4.下列抛物线的顶点坐标为(4,-3)的是A .()342-+=x y B .()342++=x y C .()342--=x y D .()342+-=x y5.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是A .()151=-n nB .()151=+n nC .()301=-n nD .()301=+n n 6.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是次数5000 4000 3000 2000 1000A .袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C .在“石头、剪刀、布”的游戏中,小宇随机出的是“剪刀”D .掷一枚质地均匀的硬币,落地时结果是“正面向上”7.如果一个正多边形的中心角为60°,那么这个正多边形的边数是A .4B .5C .6D .78.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xy 1-=的图象上的两点,若x 1<0<x 2,则下列结论正确的是 A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D , 且CO =CD ,则∠PCA =A .30°B .45°C .60°D .67.5° 10.如图,在Rt △ABC 和Rt △ABD 中,∠ADB =∠ACB =90°,∠BAC =30°,AB =4,AD =22,连接DC ,将Rt △ABC 绕点B 顺时针旋转一周,则线段DC 长的取值范围是 A .2≤DC ≤4 B .22≤DC ≤4 C .222-≤DC ≤22 D .222-≤DC ≤222+二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应位置) 11.如图,在平面直角坐标系xoy 中,矩形OABC ,OA =2,OC =1,(第11题图)DCB OA P(第9题图)CDA B(第10题图)写出一个函数()0≠=k xky ,使它的图象与矩形OABC 的边有两个公共点,这个函数的表达式可以为 (答案不唯一).12.已知关于x 的方程032=++a x x 有一个根为﹣2,a = .13.圆锥的底面半径为7cm ,母线长为14cm ,则该圆锥的侧面展开图的圆心角为 °.14.设O 为△ABC 的内心,若∠A =48°,则∠BOC = °.15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =4cm ,则球的半径为 cm . 16. 抛物线c bx ax y ++=2(a >0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,则a 的取值范围是 .三、解答题(本大题共9小题,共86分.在答题卡...的相应位置作答) 17.解方程(每小题4分,共8分)(1)022=+x x (2)01232=-+x x18.(8分)已知关于x 的方程 )0(03)3(2≠=+++k x k kx .(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,求正整数k 的值.19.(8分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x ,再从乙袋中随机取出1个小球,记录标有的数字为y ,这样确定了点M 的坐标(x ,y ).D(第15题图)(1)写出点M 所有可能的坐标; (2)求点M 在直线3+-=x y 上的概率.20.(8分)如图,直线y =x +2与y 轴交于点A ,与反比例函数()0≠=k xky 的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =2BO ,求反比例函数的解析式.21.(8分)如图,12×12的正方形网格中的每个小正方形的边长都是1,正方形的顶点叫做格点.矩形ABCD 的四个顶点A ,B ,C ,D 都在格点上,将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点.(1)在正方形网格中确定D ′的位置,并画出△AD ′C ′;(2)若边AB 交边C ′D ′于点E ,求AE 的长.22.(10分)在矩形ABCD 中,AB =8,BC =6,将矩形按图示方式进行分割,其中正方形AEFG 与正方形JKCI 全等,矩形GHID 与矩形EBKL 全等.(1)当矩形LJHF 的面积为43时,求AG 的长;(第21题图)LH I K JF DBCAG (第22题图)(2)当AG 为何值时,矩形LJHF 的面积最大.23.(10分)如图,点A ,C ,D ,B 在以O 点为圆心,OA 长为半径的圆弧上, AC=CD=DB ,AB 交OC 于点E .求证:AE =CD .24.(12分)如图,在等边△BCD 中,DF ⊥BC 于点F ,点A 为直线DF 上一动点,以B 为旋转中心,把BA 顺时针方向旋转60°至BE ,连接EC . (1)当点A 在线段DF 的延长线上时,①求证:DA =CE ;②判断∠DEC 和∠EDC 的数量关系,并说明理由;(2)当∠DEC =45°时,连接AC ,求∠BAC 的度数.E DF BCA(第24题图)OABCDE(第23题图)25.(14分)如图,在平面直角坐标系xoy 中,二次函数c bx ax y ++=2(0≠a )的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的解析式;(2)在x 轴上有一点D (-4,0),将二次函数图象沿DA 方向平移,使图象再次经过点B .①求平移后图象顶点E 的坐标; ②求图象 A ,B 两点间的部分扫过的面积.南平市2017-2018学年第一学期九年级期末质量检测数学试题参考答案及评分说明说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分.(2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未(第25题图)改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分.(4)评分只给整数分.选择题和填空题不给中间分. 一、选择题(本大题共10小题,每小题4分,共40分)1.D ; 2.A ; 3.B ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B ; 9.D ; 10.D .二、填空题(本大题共6小题,每小题4分,共24分)11.如:xy 1=(答案不唯一,0<k <2的任何一个数); 12.2; 13.180; 14.114;15.2.5; 16.0<a <3.三、解答题(本大题共9小题,共86分) 17.(每小题4分,共8分)(1) 解: 0)2(=+x x ……………………………………………………………2分∴2,021-==x x .……………………………………………………4分(2)解:1,2,3-===c b a∴ 161-34-22=⨯⨯=∆)( ∴64232162±-=⨯±-=x …………………………………………2分 ∴1,3121-==x x . (4)分18.(8分)(1)证明:9634)3(22+-=⋅⋅-+=∆k k k k0)32≥-=k (,……………………………………………………2分 ∴方程一定有两个实数根. …………………………………………3分(2)解:3,3,=+==c k b k a ,22)3(34)3-=⋅⋅-+=∆∴k k k (,kk k k k k x 2)3(32)3()3(2-±--=-±+-=∴, kx x 3,121-=-=∴ ,………………………………………………6分 ∵方程的两个实数根都是整数,∴正整数31或=k .…………………………………………………8分19.(8分)解:(1)方法一:列表:从表格中可知,点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 方法二:从树形图中可知,点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 (2)当x =0时,y=-0+3=3,当x =1时,y=-1+3=2,当x =2时,y=-2+3=1,……………………………………………………6分由(1)可得点M 坐标总共有九种可能情况,点M 落在直线y =-x +3上(记为事件A )有3种情况.∴P(A )3193==.…………………………………………8分20.(8分)解: 当x =0时,y =2,∴A (0,2),…………………………………2分∴A O=2,∵AO =2BO ,∴B O=1,………………………………………………4分 当x =1时,y =1+2=3,∴C (1,3), ……………………………………………6分把C (1,3)代入xky =,解得:3=k xy 3:=∴反比例函数的解析式为…………………………………………………8分21.(8分)解:(1)准确画出图形;…………………………………………………1 0 2321321321甲袋:乙袋:3分(2)∵将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点,∴△ADC ≌△AD ′C ′,∴AC =AC ′,AD ′=AD =5,CD ′=CD =10,∠AD ′C ′=∠ADC =90°,∠AC ′D ′=∠ACD ,∵AB ∥CD ,∴∠BAC =∠ACD ,∵AB ⊥C C ′,AC =AC ′,∴∠BAC =∠C ′AB , ∴∠AC ′D ′=∠C ′AB,∴C ′E=AE .…………………………………………………5分222R E C BE B C BE C t '=+''∆中,在,x AE AB BE x AE -10-,===则设,222)-105x x =+(,……………………………………………………………………7分425:=x 解得.425的长为答:AE ……………………………………………………………………8分(第21题答题图)22.(10分)解:(1) 正方形AEFG 和正方形JKCI 全等,矩形GHID 和矩形EBKL 全等,设AG =x ,DG =6-x ,BE =8-x ,FL=x -(6-x )=2x -6,LJ =8-2x , 方法1: LJ FL S LIH F ⋅=矩形 ,∴43)28)(62(=--x x ………………………………………………………………2分∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分 方法2:AEFG D G H I ABCD LIH F S S S S 正方形矩形矩形矩形22--=)6)(8(2248432x x x ----=∴,…………………………………………………2分∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分(2)设矩形LJHF 的面积为S ,)28)(62(x x S --=…………………………………………………………………6分482842-+-=x x1)27(42+--=x …………………………………………………………………8分04<-=a , ∴S 有最大值,∴当AG =27 时,矩形LJHF 的面积最大.………………………………………10分ACE CAE AEC ACE ∠∠=∠∆︒--180中,在)290(180AOCAOC ∠--∠-=︒︒ 2-90AOC∠=︒,……………………………………………………………………6分AEC ACE ∠=∠∴, (7)分AE AC =∴, ……………………………………………………………………8分CD AC = ,CD AE =∴. (10)分方法二:连接OC ,OD ,∵AC=CD=DB ,∴DB CD AC 弧弧弧==,∴BOD COD AOC ∠=∠=∠,……………………………………………………2分∴AOC COD DOB COD COB ∠=∠=∠+∠=∠22,(第23题答题图)∵CAE COB ∠=∠2,∴CAE AOC ∠=∠,………………………………………4分∵∠CAO =∠CAE +∠EAO ,∠AEC =∠AOC +∠EAO ,∴∠CAO =∠AEC ,…………………………………………………………………6分OC OA AOC =∆中,在,∴∠ACO =∠CAO ,∴∠ACO =∠AEC ,AE AC =∴, ………………………………………………8分CD AC = ,CD AE =∴…………………………………………………………10分方法三:连接AD ,OC ,OD , ∵AC=DB ,∴弧AC =弧BD ,∴∠ADC =∠DAB ,…………………………………………………………………2分 ∴CD ∥AB ,∴∠AEC =∠DCO ,…………………………………………………………………4分∵AC=CD ,AO=DO , ∴CO ⊥AD ,∴∠ACO =∠DCO ,…………………………………………………………………6分∴∠ACO =∠AEC ,∴AC =AE ,……………………………………………………8分∵AC=CD ,∴AE =CD .……………………………………………………………10分24.(12分)(1)①证明:∵把BA 顺时针方向旋转60°至BE ,∴=∠=ABE BE BA ,60°, ………………………………1分在等边△BCD 中,BC DB =∴,︒=∠60DBCFBA FBA DBC DBA ∠+︒=∠+∠=∠∴60,FBA CBE ∠+︒=∠60 ,CBE DBA ∠=∠∴,…………………………………………2分∴△BAD ≌△BEC ,∴DA =CE ;…………………………………………………3分 ②判断:∠DEC +∠EDC =90°.…………………………4分DC DB = ,BC DA ⊥,︒=∠=∠∴3021BDC BDA ,∵△BAD ≌△BEC , ∴∠BCE =∠BDA =30°,……………………………………………………………5分在等边△BCD 中,∠BCD =60°,∴∠ACE =∠BCE +∠BCD =90°,∴∠DEC +∠EDC =90°.……………………6分(2)分三种情况考虑:①当点A 在线段DF 的延长线上时(如图1), 由(1)可得, 为直角三角形DCE ∆,︒=∠∴90DCE ,︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当,DECEDC ∠=∠∴,CE CD =∴,EDF BCA(第24题答题图1)由(1)得DA =CE ,∴CD =DA ,CD BD DBC =∆中,在等边,CD DA BD ==∴︒=∠∴60BDC ,BC DA ⊥ ,︒=∠=∠=∠∴3021BDC CDA BDA , ……………………………………………7分DA DB BDA =∆中,在,︒︒=∠=∠∴752-180BDA BAD ,DC DA DAC =∆中,在,︒︒=∠=∠∴752-180ADC DAC ,︒︒︒=+=∠+∠=∠∴1507575DAC BAD BAC . (8)分②当点A 在线段DF 上时(如图2),BE BA B 至顺时针方向旋转为旋转中心,把以︒60 , 60=∠=∴ABE BE BA ,,60=∠=∆DBC BC BD BDC ,中,在等边,ABEDBC ∠=∠∴,ABC ABE ABC DBC ∠∠=∠∠--,EBC DBA ∠=∠即,DBA ∆∴≌CBE ∆,CE DA =∴, …………………………9分90R =∠∆DFC DFC t 中,在, DF ∴<DC ,∵DA <DF ,DA =CE , ∴CE <DC ,由②可知为直角三角形DCE ∆,DFBCA(第24题答题图2)∴∠DEC ≠45°. ……………………………10分 ③当点A 在线段FD 的延长线上时(如图3), 同第②种情况可得DBA ∆≌CBE ∆,ECB ADB CE DA ∠=∠=∴,,60=∠=∠∆BCD BDC BDC 中,在等边,BC DA ⊥ ,3021=∠=∠=∠∴BDC CDF BDF ,150180=∠-=∠∴︒BDF ADB ,150=∠=∠∴ADB ECB ,90=∠-∠=∠∴BCD ECB DCE ,︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当,DECEDC ∠=∠∴,CE CD =∴,∴AD =CD =BD ,……………………………………………11分 ∵ 150=∠=∠ADC ADB ,152-180=∠=∠∴︒ADB BAD , 152-180=∠=∠︒CDA CAD , 30=∠+∠=∠∴CAD BAD BAC ,.30150 或的度数为综上所述,BAC ∠ …………………12分EDFBCA(第24题答题图3)25.(14分)(1)得)代入()()(把c bx ax y C B A ++=20,2-,0,2,4,0,⎪⎩⎪⎨⎧=+-=++=0240244c b a c b a c ,…………………………2分 ⎪⎩⎪⎨⎧==-=401:c b a 解得,42+-=∴x y(2)设直线DA 得解析式为y =kx +d (k ≠0),把A (0,4),D (-4,0)代入得,⎩⎨⎧=+-=044d k d ,⎩⎨⎧==41:d k 解得, ∴y =x +4,…………………………………………………………………………6分设E (m ,m +4),平移后的抛物线的解析式为:4)(2++--=m m x y . 把B (2,0)代入得:04)-2-2=++m m ( 不符合题意,舍去),解得(0521==m m , ∴E (5,9). ……………………………………………………………………8分(3)如图,连接AB ,过点B 作BL ∥AD 交平移后的抛物线于点G ,连结EG ,∴四边形ABGE 的面积就是图象A ,B 两点间的部分扫过的面积.…………10分过点G 作GK ⊥x 轴于点K ,过点E 作EI ⊥y 轴于点I ,直线EI ,GK 交于点H .(第25题答题图)方法一:由点A (0,4)平移至点E (5,9),可知点B 先向右平移5个单位,再向上平移5个单位至点G .∵B (2,0),∴点G (7,5),…………………………………………………12分∴GK =5,OB =2,OK =7, ∴BK =OK -OB =7-2=5, ∵A (0,4),E (5,9), ∴AI =9-4=5,EI =5, ∴EH =7-5=2,HG =9-5=4,∴G BK EH G AEI AO B IO KH ABG H ∆∆∆∆=S -S -S -S -S S 矩形四边形3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分方法二:b x y BL '+=的解析式为设直线,02:0,2='+b B )代入得(把点,2-='b ,2-=∴x y ,⎩⎨⎧+--=-=9)5(22x y x y 联立,⎩⎨⎧==02:11y x 解得,⎩⎨⎧==5722y x , ∴点G (7,5), …………………………………………………………………12分∴GK =5,OB =2,OK =7, ∴BK =OK -OB =7-2=5, ∵A (0,4),E (5,9), ∴AI =9-4=5,EI =5,∴EH =7-5=2,HG =9-5=4,∴G BK EH G AEI AO B IO KH ABG H ∆∆∆∆=S -S -S -S -S S 矩形四边形3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分。

2017-2018学年福建省南平市九年级上期末质量检测数学试题及解析答案

2017-2018学年福建省南平市九年级上期末质量检测数学试题及解析答案

南平市2017-2018学年第一学期九年级期末质量检测数学试题(满分:150分;考试时间:120分钟)★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效; ② 试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.在平面直角坐标系中,点M (1,﹣2)与点N 关于原点对称,则点N 的坐标为A .(﹣2, 1)B .(1,﹣2)C .(2,-1)D .(-1,2) 2.用配方法解一元二次方程0122=-+x x ,可将方程配方为A .()212=+x B .()012=+x C .()212=-x D .()012=-x3.下列事件中,属于随机事件的有①任意画一个三角形,其内角和为360°; ②投一枚骰子得到的点数是奇数; ③经过有交通信号灯的路口,遇到红灯; ④从日历本上任选一天为星期天.A .①②③B .②③④C .①③④D .①②④ 4.下列抛物线的顶点坐标为(4,-3)的是A .()342-+=x y B .()342++=x y C .()342--=x yD .()342+-=x y5.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是A .()151=-n nB .()151=+n nC .()301=-n nD .()301=+n n 6.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如A .袋子中有1个红球和2从中随机地取出一个球是黄球B .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C .在“石头、剪刀、布”的游戏中,小宇随机出的是“剪刀”D .掷一枚质地均匀的硬币,落地时结果是“正面向上”7.如果一个正多边形的中心角为60°,那么这个正多边形的边数是A .4B .5C .6D .78.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xy 1-=的图象上的两点,若x 1<0<x 2,则下列结论正确的是 A .y 1<0<y 2 B .y 2<0<y 1 C .y 1<y 2<0 D .y 2<y 1<09.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D , 且CO =CD ,则∠PCA = A .30°B .45°C .60°次数5000 4000 3000 2000 1000 (第6题图)D CB OAP(第9题图)D .67.5°10.如图,在Rt △ABC 和Rt △ABD 中,∠ADB =∠ACB =90°,∠BAC =30°,AB =4,AD =22,连接DC ,将Rt △ABC 绕点B 顺时针旋转一周,则线段DC 长的取值范围是 A .2≤DC ≤4 B .22≤DC ≤4 C .222-≤DC ≤22 D .222-≤DC ≤222+二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应位置) 11.如图,在平面直角坐标系xoy 中,矩形OABC ,OA =2,OC =1,写出一个函数()0≠=k xky ,使它的图象与矩形OABC 的边有两个公共点,这个函数的表达式可以为 (答案不唯一). 12.已知关于x 的方程032=++a x x 有一个根为﹣2,a = .13.圆锥的底面半径为7cm ,母线长为14cm ,则该圆锥的侧面展开图的圆心角为 °.14.设O 为△ABC 的内心,若∠A =48°,则∠BOC = °. 15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =4cm ,则球的半(第11题图)CDAB(第10题图)D(第15题图)径为 cm .16. 抛物线c bx ax y ++=2(a >0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,则a 的取值范围是 .三、解答题(本大题共9小题,共86分.在答题卡...的相应位置作答) 17.解方程(每小题4分,共8分)(1)022=+x x (2)01232=-+x x18.(8分)已知关于x 的方程 )0(03)3(2≠=+++k x k kx .(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,求正整数k 的值.19.(8分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x ,再从乙袋中随机取出1个小球,记录标有的数字为y ,这样确定了点M 的坐标(x ,y ). (1)写出点M 所有可能的坐标; (2)求点M 在直线3+-=x y 上的概率.20.(8分)如图,直线y =x +2与y 轴交于点A ,与反比例函数()0≠=k xky 的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =2BO ,求反比例函数的解析式.21.(8分)如图,12×12的正方形网格中的每个小正方形的边长都是1,正方形的顶点叫做格点.矩形ABCD 的四个顶点A ,B ,C ,D 都在格点上,将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点. (1)在正方形网格中确定D ′的位置,并画出△AD ′C ′;(2)若边AB 交边C ′D ′于点E ,求AE 的长.22.(10分)在矩形ABCD 中,AB =8,BC =6,将矩形按图示方式进行分割,其中正方形AEFG 与正方形JKCI 全等,矩形GHID 与矩形EBKL 全等.(1)当矩形LJHF 的面积为43时,求AG 的长;(第21题图)LH I K JF DB CAG(第22题图)(2)当AG 为何值时,矩形LJHF 的面积最大.23.(10分)如图,点A ,C ,D ,B 在以O 点为圆心,OA 长为半径的圆弧上, AC=CD=DB ,AB 交OC 于点E .求证:AE =CD .24.(12分)如图,在等边△BCD 中,DF ⊥BC 于点F ,点A 为直线DF 上一动点,以B 为旋转中心,把BA 顺时针方向旋转60°至BE ,连接EC . (1)当点A 在线段DF 的延长线上时,①求证:DA =CE ;②判断∠DEC 和∠EDC 的数量关系,并说明理由; (2)当∠DEC =45°时,连接AC ,求∠BAC 的度数.EDF BCA(第24题图)OABCDE(第23题图)25.(14分)如图,在平面直角坐标系xoy 中,二次函数c bx ax y ++=2(0≠a )的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的解析式;(2)在x 轴上有一点D (-4,0),将二次函数图象沿DA 方向平移,使图象再次经过点B .①求平移后图象顶点E 的坐标;②求图象 A ,B 两点间的部分扫过的面积.(第25题图)南平市2017-2018学年第一学期九年级期末质量检测数学试题参考答案及评分说明说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分.(2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分.(4)评分只给整数分.选择题和填空题不给中间分.一、选择题(本大题共10小题,每小题4分,共40分)1.D;2.A;3.B;4.C;5.C;6.B;7.C;8.B;9.D;10.D.二、填空题(本大题共6小题,每小题4分,共24分)11.如:xy 1=(答案不唯一,0<k <2的任何一个数); 12.2; 13.180; 14.114; 15.2.5; 16.0<a <3. 三、解答题(本大题共9小题,共86分) 17.(每小题4分,共8分)(1) 解: 0)2(=+x x ……………………………………………………………2分∴2,021-==x x .……………………………………………………4分(2)解:1,2,3-===c b a∴ 161-34-22=⨯⨯=∆)( ∴64232162±-=⨯±-=x …………………………………………2分 ∴1,3121-==x x . …………………………………………………4分18.(8分)(1)证明:9634)3(22+-=⋅⋅-+=∆k k k k0)32≥-=k (,............................................................2分 ∴方程一定有两个实数根. (3)分(2)解:3,3,=+==c k b k a ,22)3(34)3-=⋅⋅-+=∆∴k k k (,kk k k k k x 2)3(32)3()3(2-±--=-±+-=∴, kx x 3,121-=-=∴ ,………………………………………………6分 ∵方程的两个实数根都是整数,∴正整数31或=k .…………………………………………………8分19.(8分)解:(1)方法一:列表:从表格中可知,点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 方法二:从树形图中可知,点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),1 0 2321321321甲袋:乙袋:(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 (2)当x =0时,y=-0+3=3,当x =1时,y=-1+3=2,当x =2时,y=-2+3=1,……………………………………………………6分由(1)可得点M 坐标总共有九种可能情况,点M 落在直线y =-x +3上(记为事件A )有3种情况.∴P(A )3193==.…………………………………………8分20.(8分)解: 当x =0时,y =2,∴A (0,2),…………………………………2分∴A O=2,∵AO =2BO ,∴B O=1,………………………………………………4分当x =1时,y =1+2=3,∴C (1,3), ……………………………………………6分把C (1,3)代入xky =,解得:3=k xy 3:=∴反比例函数的解析式为 (8)分21.(8分)解:(1)准确画出图形;…………………………………………………3分(第21题答题图)(2)∵将△ADC绕点A顺时针方向旋转得到△AD′C′,点C与点C′为对应点,∴△ADC≌△AD′C′,∴AC=AC′,AD′=AD=5,CD′=CD=10,∠AD′C′=∠ADC=90°,∠AC′D′=∠ACD,∵AB∥CD,∴∠BAC=∠ACD,∵AB⊥C C′,AC=AC′,∴∠BAC=∠C′AB,∴∠AC ′D ′=∠C ′AB ,∴C ′E =AE .…………………………………………………5分222R E C BE B C BE C t '=+''∆中,在,x AE AB BE x AE -10-,===则设,222)-105x x =+(,……………………………………………………………………7分425:=x 解得.425的长为答:AE ……………………………………………………………………8分22.(10分)解:(1) 正方形AEFG 和正方形JKCI 全等,矩形GHID 和矩形EBKL 全等,设AG =x ,DG =6-x ,BE =8-x ,FL=x -(6-x )=2x -6,LJ =8-2x , 方法1: LJ FL S LIH F ⋅=矩形 ,∴43)28)(62(=--x x ………………………………………………………………2分∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分方法2:AEFG D G H I ABCD LIH F S S S S 正方形矩形矩形矩形22--=)6)(8(2248432x x x ----=∴,…………………………………………………2分∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分(2)设矩形LJHF 的面积为S ,)28)(62(x x S --=…………………………………………………………………6分482842-+-=x x1)27(42+--=x …………………………………………………………………8分04<-=a , ∴S 有最大值,∴当AG =27 时,矩形LJHF 的面积最大.………………………………………10分(第23题答题图)OC OA AOC =∆中,在,2-902180AOC AOC -ACO ∠=∠=∠∴︒︒,…………5分ACE CAE AEC ACE ∠∠=∠∆︒--180中,在)290(180AOCAOC ∠--∠-=︒︒ 2-90AOC∠=︒,……………………………………………………………………6分AEC ACE ∠=∠∴, ………………………………………………………………7分AE AC =∴, ……………………………………………………………………8分CD AC = ,CD AE =∴. (10)分方法二:连接OC ,OD ,∵AC=CD=DB ,∴DB CD AC 弧弧弧==,∴BOD COD AOC ∠=∠=∠,……………………………………………………2分∴AOC COD DOB COD COB ∠=∠=∠+∠=∠22,∵CAE COB ∠=∠2,∴CAE AOC ∠=∠,………………………………………4分∵∠CAO =∠CAE +∠EAO ,∠AEC =∠AOC +∠EAO ,∴∠CAO =∠AEC ,…………………………………………………………………6分OC OA AOC =∆中,在,∴∠ACO =∠CAO ,∴∠ACO =∠AEC ,AE AC =∴, ………………………………………………8分CD AC = ,CD AE =∴…………………………………………………………10分方法三:连接AD ,OC ,OD , ∵AC=DB ,∴弧AC =弧BD ,∴∠ADC =∠DAB ,…………………………………………………………………2分 ∴CD ∥AB ,∴∠AEC =∠DCO ,…………………………………………………………………4分∵AC=CD ,AO=DO , ∴CO ⊥AD ,∴∠ACO =∠DCO ,…………………………………………………………………6分 ∴∠ACO =∠AEC ,∴AC =AE ,……………………………………………………8分∵AC=CD ,∴AE =CD .……………………………………………………………10分24.(12分)(1)①证明:∵把BA 顺时针方向旋转60°至BE ,∴=∠=ABE BE BA ,60°, ………………………………1分在等边△BCD 中,BC DB =∴,︒=∠60DBCFBA FBA DBC DBA ∠+︒=∠+∠=∠∴60,FBA CBE ∠+︒=∠60 ,CBE DBA ∠=∠∴,…………………………………………2分∴△BAD ≌△BEC ,∴DA =CE ;…………………………………………………3分 ②判断:∠DEC +∠EDC =90°.…………………………4分DC DB = ,BC DA ⊥,︒=∠=∠∴3021BDC BDA ,∵△BAD ≌△BEC , ∴∠BCE =∠EDFBCA(第24题答题图1)BDA =30°,……………………………………………………………5分在等边△BCD 中,∠BCD =60°,∴∠ACE =∠BCE +∠BCD =90°,∴∠DEC +∠EDC =90°.……………………6分(2)分三种情况考虑:①当点A 在线段DF 的延长线上时(如图1), 由(1)可得, 为直角三角形DCE ∆,︒=∠∴90DCE ,︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当,DECEDC ∠=∠∴,CE CD =∴,由(1)得DA =CE ,∴CD =DA ,CD BD DBC =∆中,在等边,CD DA BD ==∴︒=∠∴60BDC ,BC DA ⊥ ,︒=∠=∠=∠∴3021BDC CDA BDA , ……………………………………………7分DA DB BDA =∆中,在,︒︒=∠=∠∴752-180BDA BAD ,DC DA DAC =∆中,在,︒︒=∠=∠∴752-180ADC DAC ,︒︒︒=+=∠+∠=∠∴1507575DAC BAD BAC . (8)分②当点A 在线段DF 上时(如图2),BE BA B 至顺时针方向旋转为旋转中心,把以︒60 ,60=∠=∴ABE BE BA ,,60=∠=∆DBC BC BD BDC ,中,在等边,ABEDBC ∠=∠∴,ABC ABE ABC DBC ∠∠=∠∠--,EBC DBA ∠=∠即,DBA ∆∴≌CBE ∆,CE DA =∴, …………………………9分90R =∠∆DFC DFC t 中,在, DF ∴<DC ,∵DA <DF ,DA =CE , ∴CE <DC ,由②可知为直角三角形DCE ∆,∴∠DEC ≠45°. ……………………………10分 ③当点A 在线段FD 的延长线上时(如图3), 同第②种情况可得DBA ∆≌CBE ∆,ECB ADB CE DA ∠=∠=∴,,60=∠=∠∆BCD BDC BDC 中,在等边,BC DA ⊥ ,3021=∠=∠=∠∴BDC CDF BDF ,EDFBCA(第24题答题图3)DFBCA(第24题答题图2)150180=∠-=∠∴︒BDF ADB ,150=∠=∠∴ADB ECB ,90=∠-∠=∠∴BCD ECB DCE ,︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当,DECEDC ∠=∠∴,CE CD =∴,∴AD =CD =BD ,……………………………………………11分 ∵ 150=∠=∠ADC ADB ,152-180=∠=∠∴︒ADB BAD , 152-180=∠=∠︒CDA CAD , 30=∠+∠=∠∴CAD BAD BAC ,.30150 或的度数为综上所述,BAC ∠ …………………12分25.(14分)(1)得)代入()()(把c bx ax y C B A ++=20,2-,0,2,4,0,⎪⎩⎪⎨⎧=+-=++=0240244c b a c b a c ,…………………………2分⎪⎩⎪⎨⎧==-=401:c b a 解得,42+-=∴x y(2)设直线DA 得解析式为y =kx +d (k ≠0),把A (0,4),D (-4,0)代入得,⎩⎨⎧=+-=044d k d ,⎩⎨⎧==41:d k 解得, ∴y =x +4,…………………………………………………………………………6分设E (m ,m +4),平移后的抛物线的解析式为:4)(2++--=m m x y .把B (2,0)代入得:04)-2-2=++m m (不符合题意,舍去),解得(0521==m m , ∴E (5,9). ……………………………………………………………………8分(3)如图,连接AB ,过点B 作BL ∥AD 交平移后的抛物线于点G ,连结EG ,∴四边形ABGE 的面积就是图象A ,B 两点间的部分扫过的面积.…………10分过点G 作GK ⊥x 轴于点K ,过点E 作EI ⊥y 轴于点I ,直线EI ,GK 交于点(第25题答题图)H .方法一:由点A (0,4)平移至点E (5,9),可知点B 先向右平移5个单位,再向上平移5个单位至点G .∵B (2,0),∴点G (7,5),…………………………………………………12分∴GK =5,OB =2,OK =7,∴BK =OK -OB =7-2=5,∵A (0,4),E (5,9),∴AI =9-4=5,EI =5,∴EH =7-5=2,HG =9-5=4,∴G BK EH G AEI AO B IO KH ABG H ∆∆∆∆=S -S -S -S -S S 矩形四边形3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分方法二:b x y BL '+=的解析式为设直线,02:0,2='+b B )代入得(把点,2-='b ,2-=∴x y ,⎩⎨⎧+--=-=9)5(22x y x y 联立,⎩⎨⎧==02:11y x 解得,⎩⎨⎧==5722y x , ∴点G (7,5), …………………………………………………………………12分∴GK =5,OB =2,OK =7,∴BK =OK -OB =7-2=5,∵A (0,4),E (5,9),∴AI =9-4=5,EI =5,∴EH =7-5=2,HG =9-5=4,∴G BK EH G AEI AO B IO KH ABG H ∆∆∆∆=S -S -S -S -S S 矩形四边形3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分。

南平市2018第一学期九年级期末质量检测数学试卷

南平市2018第一学期九年级期末质量检测数学试卷

南平市2018-2019学年第一学期九年级期末质量检测数学试题(满分:150分;考试时间:120分钟)★友情提示:①所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;②试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1. 下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.2. 用配方法解方程2210x x--=,配方结果正确的是A. ()222x-= B. ()212x-=C. ()2+12x= D.()210x-=3. 同时抛掷两枚质地均匀的正方体骰子,每个骰子的六个面分别标有1,2,3,4,5,6这六个点数,下列事件为必然事件的是A. 朝上一面点数之和为12B. 朝上一面点数之和等于6C. 朝上一面点数之和小于13D. 朝上一面点数之和小于等于64. 如图,点A、B、C在⊙O上,过点C作⊙O的切线与OA的延长线交于点D,若32D∠=,则B∠的大小为A. 58B. 34C.32D.295. 关于二次函数()212y x=+-的图象,下列说法正确的是A. 对称轴是1x= B. 开口向下C. 顶点坐标是(1,-2)D. 与x轴有两个交点6. 1275年我国南宋数学家杨辉提出一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步. 设阔(宽)为x 步,则所列方程正确的是A. 864)12(=+xx B. 864)12(=-xxC. 864)12)(12(=+-xx D. 86412=x第4题图7. 已知⊙O 的半径为5,直线l 与⊙O 相交,点O 到直线l 的距离为3,则⊙O 上到直线l 的距离为2的点共有 A. 1个B. 2个C. 3个D. 4个8. 如果点A ),3(1y -,B ),2(2y -,C ),2(3y 都在反比例函数)0(>=k xky 的图象上,那么 1y ,2y ,3y 的大小关系正确的是A. 3y <2y <1yB. 2y <1y <3yC. 1y <2y <3y D .1y <3y <2y9. 若正方形的边长为4,则其外接圆半径与内切圆半径的大小分别为A. ,2B. 4,2C. 4,D.,10.已知k 为非零的实数,则抛物线kk kx x y 1222++-=的顶点 A. 在一条直线上 B. 在某双曲线上C. 在一条抛物线上D. 无法确定二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应位置)11. 一元二次方程22=x 的根是 .12. 在一个不透明的口袋内只装有一些除颜色外完全相同的红球、白球和黑球,从中任意摸出一个球,摸到红球的概率是0.3,摸到白球的概率是0.4,那么摸到黑球的概率 是 .13. 若点P (m ,-3)与点Q (2,n )关于原点对称,则m n += .14. 一个扇形的圆心角为80,面积是2cm 2π,则此扇形的半径是 cm .15.已知反比例函数xky =(0≠k ),当1≤x ≤2时,函数的 最大值与最小值之差是1,则k 的值为 . 16. 如图,四边形ABCD 中,AB =AC =AD ,若∠BAC =39°,则∠BDC= °.ADC第16题图三、解答题(本大题共9小题,共86分.在答题卡...的相应位置作答) 17.解方程(每小题4分,共8分)(1)x x 22=; (2)2550x x --=.18.(8分)已知关于x 的一元二次方程032=++m x x 有两个不相等的实数根,且m 为正整数,求m 的值.19.(8分)某中学食堂开设了两个窗口,窗口一提供四种食品:肉包、馒头、鸡蛋、油饼;窗口二提供两种食品:牛奶、豆浆. 约定:学生在一个窗口领一种食品后,再到另一个窗口领一种食品.(1)问:学生早餐领到的食品一共有几种不同的可能?(2)如果某天食堂师傅在两个窗口随机发放食品,请用列表或画树状图的方法,求出小王同学该天早餐刚好得到牛奶和馒头的概率.20.(8分)如图,△APB 内接于⊙O .(1)作∠APB 的平分线PC ,交⊙O 于点C (尺规作图,保留作图痕迹,不写作法); (2)在(1)的条件下,若∠APB =120º,连接AC ,BC ,求证:△ABC 是等边三角形.第20题图21.(8分)如图,用48米篱笆围成一个外形为矩形的花园,花园一面利用院墙,中间用一道篱笆间隔成两个小矩形,院墙的长度为20米,平行于院墙的一边长为x 米,花园的面积为S 平方米.(1)求S 与x 之间的函数关系式;(2)问花园面积可以达到180平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.22.(10分)如图,AB 是半圆O 的直径,点D 是半圆上一点,连接OD ,AE ⊥OD 于点E ,设∠AOE =α,将△AEO 绕点O 顺时针旋转α角,得到△DHO ,若点D ,H ,B 在一条直线上,求α的值.23.(10分)如图,直线(0)y kxk =<与反比例函数(0,0)my m x x=<<的图象交于点A ,直线与y 轴正半轴的夹角为60,OA =2. (1)求反比例函数的解析式;(2)根据图象直接写出mkx x>的自变量的取值范围.xDCBA第21题图AOBHED第22题图第23题图24.(12分)如图,在边长为8的等边△ABC 中,点D 是AB 的中点,点E 是平面上一点,且线段DE =2,将线段EB 绕点E 顺时针旋转60º得到线段EF ,连接AF . (1)如图1,当BE =2时,求线段AF 的长; (2)如图2,① 求证:AF =CE ;② 求线段AF 的取值范围.25.(14分)我们把(a ,b ,c )称为抛物线c bx ax y ++=2的三维特征值.已知抛物线1y 所对应的三维特征值为)031(,,b -,且顶点在直线2=x 上. (1)求抛物线1y 的解析式;(2)若直线t y =与抛物线1y 交于P 、Q 两点,当PQ <1≤2时,求t 的取值范围;(3)已知直线2=x 与x 轴交于点A ,将抛物线1y向右平移1)个单位得到抛物线2y ,且抛物线2y 与直线1=y 分别相交于M 、N 两点(M 点在N 点的左侧),与x轴交于C 、D 两点(C 点在D 点的左侧),求证:射线AN 平分∠MAD .第24题图1第24题图2南平市2018-2019学年第一学期九年级期末质量检测数学试题参考答案及评分说明说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分. (2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分. (3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4)评分只给整数分.选择题和填空题不给中间分. 一、选择题(本大题共10小题,每小题4分,共40分)1.C ; 2.B ; 3.C ; 4.D ; 5.D ; 6.A ; 7.C ; 8.B ; 9.A ; 10.B . 二、填空题(本大题共6小题,每小题4分,共24分)11.x = 12.0.3; 13.1; 14.3; 15.2±; 16.19.5°. 三、解答题(本大题共9小题,共86分) 17.(1)解:2-20x x =…………………………………………………………………1分()2=0x x -…………………………………………………………………2分12=0=2x x ,…………………………………………………………………4分(2)解:∵5,5,1-=-==c b a , ……………………………………………………1分()254552⨯+-±=x ……………………………………………………2分2535±=x , .2535,253521-=+=x x …………………………………………………4分 18.解:∵一元二次方程032=++m x x 有两个不相等的实数根,2=3-40m ∆>, …………………………………………………………4分∴94m < ,………………………………………………………………6分∵m 为正整数,∴=12m m =或.……………………………………………………………………8分19.(1)解:食堂早餐的食品一共有8种不同的可能.……………………………………2分(2) 方法一:肉包 馒头 鸡蛋 油饼牛奶豆浆 牛奶豆浆 牛奶豆浆牛奶豆浆………………………………………………6分∴(肉包,牛奶)(肉包,豆浆)(馒头,牛奶)(馒头,豆浆)(鸡蛋,牛奶)(鸡蛋,豆浆)(油饼,牛奶)(油饼,豆浆),………………7分∴()1=8P 得到牛奶和馒头. ………………………………………………………8分方法二:7分∴()1=8P 得到牛奶和馒头. ………………………………………………………8分 20. (1)作图………………………………………………………………………………3分(2)证明:∵PC 平分∠APB ,∠APB =120º,∴∠APC=∠CPB =60º , ……………………………………………………4分 ∵∠ABC 与∠APC 同对弧AC , ∴∠ABC=∠APC =60º , ………………………………………………………5分 ∵∠CAB 与∠CPB 同对弧BCACP BO第20题答题图2第20题答题图1∴∠CAB=∠CPB =60º ,…………………………………………………………6分 ∴∠ACB=180º-∠ABC-∠CAB =60º,∴∠ACB=∠ABC=∠CAB ,……………………………………………………7分 ∴△ABC 是等边三角形. ………………………………………………………8分21.解:(1)∵()4803x x s -=,…………………………………………………………2分 ∴()21-160203s x x x =+<≤. ……………………………………………………3分 (2)花园面积可以达到180平方米, ……………………………………………4分 ∵ 21-161803x x +=, …………………………………………………………5分∴1218,30x x ==, ………………………………………………………………6分∵院墙的最大长度为m 20 ∴()230x =不符合题意舍去∴18x =. ……………………………………………………………………………7分 答:当18x =时,花园面积可以达到2180m . …………………………………………8分 22. 解:连接HB ,∵AE ⊥EO , ∴∠AEO=90º,∵△AEO 绕点O 顺时针旋转得到△DHO , ∴△AEO ≌△DHO , ∴∠A=∠D ,∠DHO=∠AEO=90º , ∠DOH=∠AOE , …………………………………………………………………3分∵D 、H 、B 在一条直线上, ∴OH ⊥DB ,证法一:∵OD =OB ,∴∠B=∠D ,………………………………………………………………………4分 ∴∠A=∠B ,………………………………………………………………………5分 ∵∠AOE 与∠B 同对弧AD ,∴∠AOE =2∠B ,∴∠AOE =2∠A , …………………………………………………………………7分 在Rt △AOE 中, ∠AOE +∠A=90º, ∴2∠A+∠A=90º,……………………………………………………………………8分 ∴∠A=30º, ……………………………………………………………………9分 ∴∠AOE=60º 即α=60º. ………………………………………………………10分 证法二:∵OD =OB ,OH ⊥DB ,O 第22题答题图∴OH平分∠BOD即∠BOH =∠DOH∵∠DOH=∠AOE ,∴∠DOH=∠AOE=∠BOH=60º………9分∴α=60º.………………………………10分23.解:(1)过A作AB⊥x轴垂足为B, (1)∵直线与y轴正半轴的夹角为60,∴∠AOB=30°,…………………………2分∴112AB OA==,……………………3分∴在Rt△AOB中,2O B=…………………4分∴()A, (5)∴m=, (6)∴y= (7)(2) 0x<< (10)24.解:(1)作AG⊥BC于G点,延长FE交AG于H∵AB=AC,∴∠BAG=30º,……………………1分∵EB绕点E顺时针旋转60º得到线段EF,∴∠BEF=60º,∴∠BEF=∠B,∴EF∥BC,…………………………2分∵AG⊥BC,∴AG⊥FH,…………………………3分在Rt△AEH中,∵AE=6,∠EAH=30º,∴132EH AE==,AH=在Rt△AFH中,AF===.……………………4分方法二:(1)连接FB,作FP⊥AB于P点,∵EB绕点E顺时针旋转60º得到线段EF,∴△EBF是等边三角形,…………………………1分又∵FP⊥AB,∴∠EFP=30º,(第24题答题图1)GFACAC第23题图xAOB∴112EP EF == ,……………………………2分 ∴AP =7,在Rt △EFP 中, PF ==………3分 在Rt △APF 中,AF ===…………………4分(2) ①连接FB , ∵EB 绕点E 顺时针旋转60º得到线段EF , ∴△EBF 是等边三角形,∴FB =EB , ∴∠FBE=∠ABC=60º…………………………………………………………6分 ∴∠FBE+∠EBA=∠ABC+∠EBA即∠FBA=∠EBC ,…………………………………………………………………………7分 又∵AB =BC ,∴△FBA ≌△EBC ,.................................................................................8分 ∴AF =CE , (9)分②22AF ≤≤. ………………………………………………………12分 ∵DE =2,∴E 点在以D 为圆心,2为半径的圆上,且2342-34+≤≤CE ∵AF =CE∴22AF ≤≤.(回答合理均得分)25.解:(1)依题意可得211=-3y x bx +,………………………………………………1分 ∵1y 顶点在直线2=x 上, ∴-2123b=⎛⎫⨯- ⎪⎝⎭, FC∴43b =, ………………………………2分 ∴2114=-33y x x +.……………………3分 (2) 设直线PQ 与直线2=x 相交与E 点, ∴2PQ PE =, ………………………………………………………………………………4分 ∵PQ <1≤2,∴112PE <≤, …………………………………………………………5分 ∴当12PE =时,1352,224p p x y =-==,………………………………………………6分 当 1PE =时 ,211,1p p x y =-==, …………………………………………………7分 ∴ 514t ≤<. ………………………………………………………………………………9分 方法2:设214-=33x x t +, ∴ ()22=-34x t -+,∴122,2x x ==,…………………………………………………5分 ∴12PQ x x =-=6分 ∴ 1PQ =时,14-34t =,54t =, 2PQ =时,4-31t =,1t =,……………………………………………………………8分 ∴ 514t ≤<.…………………………………………………………………………………9分(3)设直线1=y 与1y 依次相交11,M N 于两点,由(2)可得11M N ,1M x ,∴()11,1M ,………………………………………………………………………10分由平移的性质可得11=2MN M N =,()2M ,…………………………11分∴2MA ==根据勾股定理可得………………………12分 证法一:∴=2MA MN =,∴∠MAN=∠MNA ,………………………………………………………………13分 ∵MN ∥CD ,∴∠MNA=∠NAD ,∴∠MAN=∠NAD ,∴射线AN 平分∠MAD . …………………………………………………………14分 证法二:过N 点作NP ⊥AM 于P 点, NQ ⊥CD 于Q 点, ∴NQ=1,∵.11=122AMN S AM NP MN ∆⋅=⋅, ∴NP =1 , ………………………………………………………………13分 ∴NP = NQ ,∵NP ⊥AM 于P 点, NQ ⊥CD ,∴射线AN 平分∠MAD . ………………………………………………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南平市2017-2018学年第一学期九年级期末质量检测数学试题(满分:150分;考试时间:120分钟)★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效; ② 试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.在平面直角坐标系中,点M (1,﹣2)与点N 关于原点对称,则点N 的坐标为 A .(﹣2, 1)B .(1,﹣2)C .(2,-1)D .(-1,2)2.用配方法解一元二次方程0122=-+x x ,可将方程配方为A .()212=+x B .()012=+x C .()212=-x D .()012=-x3.下列事件中,属于随机事件的有①任意画一个三角形,其内角和为360°; ②投一枚骰子得到的点数是奇数; ③经过有交通信号灯的路口,遇到红灯; ④从日历本上任选一天为星期天. A .①②③B .②③④C .①③④D .①②④4.下列抛物线的顶点坐标为(4,-3)的是A .()342-+=x y B .()342++=x y C .()342--=x y D .()342+-=x y5.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是A .()151=-n nB .()151=+n nC .()301=-n nD .()301=+n n6.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是 A .袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C .在“石头、剪刀、布”的游戏中,小宇随机出的是“剪刀”D .掷一枚质地均匀的硬币,落地时结果是“正面向上”7.如果一个正多边形的中心角为60°,那么这个正多边形的边数是次数5000 4000 3000 2000 1000 (第6题图)A .4B .5C .6D .78.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xy 1-=的图象上的两点,若x 1<0<x 2,则下列结论正确的是A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D , 且CO =CD ,则∠PCA =A .30°B .45°C .60°D .67.5° 10.如图,在Rt △ABC 和Rt △ABD 中,∠ADB =∠ACB =90°,∠BAC =30°,AB =4,AD =22,连接DC ,将Rt △ABC 绕点B 顺时针旋转一周,则线段DC 长的取值范围是 A .2≤DC ≤4 B .22≤DC ≤4C .222-≤DC ≤22D .222-≤DC ≤222+二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应位置) 11.如图,在平面直角坐标系xoy 中,矩形OABC ,OA =2, OC =1, 写出一个函数()0≠=k xky ,使它的图象与矩形OABC 的边有两个公共点,这个函数的表达式可以为 (答案不唯一). 12.已知关于x 的方程032=++a x x 有一个根为﹣2,a = .13.圆锥的底面半径为7cm ,母线长为14cm ,则该圆锥的侧面展开图的圆心角为 °. 14.设O 为△ABC 的内心,若∠A =48°,则∠BOC = °.15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =4cm ,则球的半径为 cm .16. 抛物线c bx ax y ++=2(a >0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,则a 的取值范围是 .三、解答题(本大题共9小题,共86分.在答题卡...的(第11题图)DCB OAP(第9题图)CDAB(第10题图)D(第15题图)相应位置作答)17.解方程(每小题4分,共8分)(1)022=+x x (2)01232=-+x x18.(8分)已知关于x 的方程 )0(03)3(2≠=+++k x k kx .(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,求正整数k 的值. 19.(8分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x ,再从乙袋中随机取出1个小球,记录标有的数字为y ,这样确定了点M 的坐标(x ,y ). (1)写出点M 所有可能的坐标; (2)求点M 在直线3+-=x y 上的概率. 20.(8分)如图,直线y =x +2与y 轴交于点A ,与反比例函数()0≠=k xky 的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =2BO ,求反比例函数的解析式. 21.(8分)如图,12×12的正方形网格中的每个小正方形的边长都是1,正方形的顶点叫做格点.矩形ABCD 的四个顶点A ,B ,C ,D 都在格点上,将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点. (1)在正方形网格中确定D ′的位置,并画出△AD ′C ′;(2)若边AB 交边C ′D ′于点E ,求AE 的长.22.(10分)在矩形ABCD 中,AB =8,BC =6,将矩形按图示方式进行分割,其中正方形AEFG 与正方形JKCI 全等,矩形GHID 与矩形EBKL 全等.(1)当矩形LJHF 的面积为43时,求AG 的长;(2)当AG 为何值时,矩形LJHF 的面积最大. 23.(10分)如图,点A ,C ,D ,B 在以O点为圆心,(第21题图)LH IK JFE DBCAG(第22题图)C DOA 长为半径的圆弧上, AC=CD=DB ,AB 交OC 于点E .求证:AE =CD . 24.(12分)如图,在等边△BCD 中,DF ⊥BC 于点F ,点A 为直线DF 上一动点,以B 为旋转中心,把BA 顺时针方向旋转60°至BE ,连接EC .(1)当点A 在线段DF 的延长线上时,①求证:DA =CE ;②判断∠DEC 和∠EDC 的数量关系,并说明理由; (2)当∠DEC =45°时,连接AC ,求∠BAC 的度数.25.(14分)如图,在平面直角坐标系xoy 中,二次函数c bx ax y ++=2(0≠a )的图象经过A (0,4),B (2,0),C (-2,0)三点. (1)求二次函数的解析式;(2)在x 轴上有一点D (-4,0),将二次函数图象沿DA 方向平移,使图象再次经过点B . ①求平移后图象顶点E 的坐标;②求图象 A ,B 两点间的部分扫过的面积.南平市2017-2018学年第一学期九年级期末质量检测数学试题参考答案及评分说明(第25题图)E DFB CA (第24题图)说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分. (2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分. (3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4)评分只给整数分.选择题和填空题不给中间分. 一、选择题(本大题共10小题,每小题4分,共40分)1.D ; 2.A ; 3.B ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B ; 9.D ; 10.D . 二、填空题(本大题共6小题,每小题4分,共24分) 11.如:xy 1=(答案不唯一,0<k <2的任何一个数); 12.2; 13.180; 14.114; 15.2.5; 16.0<a <3.三、解答题(本大题共9小题,共86分) 17.(每小题4分,共8分)(1) 解: 0)2(=+x x ……………………………………………………………2分∴2,021-==x x .……………………………………………………4分(2)解:1,2,3-===c b a Θ∴ 161-34-22=⨯⨯=∆)(∴64232162±-=⨯±-=x …………………………………………2分∴1,3121-==x x . …………………………………………………4分 18.(8分)(1)证明:9634)3(22+-=⋅⋅-+=∆k k k k Θ0)32≥-=k (,……………………………………………………2分∴方程一定有两个实数根. …………………………………………3分(2)解:3,3,=+==c k b k a Θ,22)3(34)3-=⋅⋅-+=∆∴k k k (,kk k k k k x 2)3(32)3()3(2-±--=-±+-=∴, kx x 3,121-=-=∴ ,………………………………………………6分∵方程的两个实数根都是整数,∴正整数31或=k .…………………………………………………8分19.(8分)解:(1)方法一:列表:从表格中可知,点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 方法二:从树形图中可知,点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 (2)当x =0时,y=-0+3=3,当x =1时,y=-1+3=2,当x =2时,y=-2+3=1,……………………………………………………6分 由(1)可得点M 坐标总共有九种可能情况,点M 落在直线y =-x +3上(记为事 件A )有3种情况.∴P(A )3193==.…………………………………………8分12321321321甲袋:乙袋:20.(8分)解: 当x =0时,y =2,∴A (0,2),…………………………………2分∴A O=2,∵AO =2BO ,∴B O=1,………………………………………………4分 当x =1时,y =1+2=3,∴C (1,3), ……………………………………………6分 把C (1,3)代入xky =,解得:3=k xy 3:=∴反比例函数的解析式为…………………………………………………8分 21.(8分)解:(1)准确画出图形;…………………………………………………3分(2)∵将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点, ∴△ADC ≌△AD ′C ′,∴AC =AC ′,AD ′=AD =5,CD ′=CD =10,∠AD ′C ′=∠ADC =90°,∠AC ′D ′=∠ACD , ∵AB ∥CD ,∴∠BAC =∠ACD ,∵AB ⊥C C ′,AC =AC ′,∴∠BAC =∠C ′AB ,∴∠AC ′D ′=∠C ′AB ,∴C ′E =AE .…………………………………………………5分 222R E C BE B C BE C t '=+''∆中,在,x AE AB BE x AE -10-,===则设, 222)-105x x =+(,……………………………………………………………………7分425:=x 解得.425的长为答:AE ……………………………………………………………………8分 22.(10分)解:(1)Θ正方形AEFG 和正方形JKCI 全等,矩形GHID 和矩形EBKL 全等,设AG =x ,DG =6-x ,BE =8-x ,FL=x -(6-x )=2x -6,LJ =8-2x ,方法1: ΘLJ FL S LIHF ⋅=矩形 ,∴43)28)(62(=--x x ………………………………………………………………2分 ∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分(第21题答题图)方法2:AEFG DGHI ABCD LIHF S S S S 正方形矩形矩形矩形22--=Θ)6)(8(2248432x x x ----=∴,…………………………………………………2分 ∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分(2)设矩形LJHF 的面积为S ,)28)(62(x x S --=…………………………………………………………………6分482842-+-=x x1)27(42+--=x …………………………………………………………………8分Θ04<-=a , ∴S 有最大值,∴当AG =27 时,矩形LJHF 的面积最大.………………………………………10分23.(10分)证明:方法一:连接OC ,OD ,∵AC=CD=DB ,∴DB CD AC 弧弧弧==,∴BOD COD AOC ∠=∠=∠,……………………………………………………2分 ∴AOC COD DOB COD COB ∠=∠=∠+∠=∠22,∵CAE COB ∠=∠2,∴CAE AOC ∠=∠,………………………………………4分 OC OA AOC =∆中,在,2-902180AOC AOC -ACO ∠=∠=∠∴︒︒,…………5分ACE CAE AEC ACE ∠∠=∠∆︒--180中,在 )290(180AOC AOC ∠--∠-=︒︒2-90AOC ∠=︒,……………………………………………………………………6分 AEC ACE ∠=∠∴, ………………………………………………………………7分AE AC =∴, ……………………………………………………………………8分 CD AC =Θ,CD AE =∴.………………………………………………………10分 方法二:连接OC ,OD ,∵AC=CD=DB ,∴DB CD AC 弧弧弧==,∴BOD COD AOC ∠=∠=∠,……………………………………………………2分 ∴AOC COD DOB COD COB ∠=∠=∠+∠=∠22,∵CAE COB ∠=∠2,∴CAE AOC ∠=∠,………………………………………4分 ∵∠CAO =∠CAE +∠EAO ,∠AEC =∠AOC +∠EAO ,∴∠CAO =∠AEC ,…………………………………………………………………6分OA BC D E (第23题答题图)OC OA AOC =∆中,在, ∴∠ACO =∠CAO ,∴∠ACO =∠AEC ,AE AC =∴, ………………………………………………8分 CD AC =Θ,CD AE =∴…………………………………………………………10分 方法三:连接AD ,OC ,OD , ∵AC=DB ,∴弧AC =弧BD ,∴∠ADC =∠DAB ,…………………………………………………………………2分 ∴CD ∥AB ,∴∠AEC =∠DCO ,…………………………………………………………………4分 ∵AC=CD ,AO=DO , ∴CO ⊥AD ,∴∠ACO =∠DCO ,…………………………………………………………………6分 ∴∠ACO =∠AEC ,∴AC =AE ,……………………………………………………8分 ∵AC=CD ,∴AE =CD .……………………………………………………………10分 24.(12分)(1)①证明:∵把BA 顺时针方向旋转60°至BE ,∴=∠=ABE BE BA ,60°, ………………………………1分 Θ在等边△BCD 中, BC DB =∴,︒=∠60DBCFBA FBA DBC DBA ∠+︒=∠+∠=∠∴60, FBA CBE ∠+︒=∠60Θ,CBE DBA ∠=∠∴,…………………………………………2分 ∴△BAD ≌△BEC ,∴DA =CE ;…………………………………………………3分②判断:∠DEC +∠EDC =90°.…………………………4分DC DB =Θ,BC DA ⊥,︒=∠=∠∴3021BDC BDA ,∵△BAD ≌△BEC ,∴∠BCE =∠BDA =30°,……………………………………………………………5分 Θ在等边△BCD 中,∠BCD =60°, ∴∠ACE =∠BCE +∠BCD =90°,∴∠DEC +∠EDC =90°.……………………6分 (2)分三种情况考虑:①当点A 在线段DF 的延长线上时(如图1),由(1)可得, 为直角三角形DCE ∆,︒=∠∴90DCE , ︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当,DEC EDC ∠=∠∴,CE CD =∴,由(1)得DA =CE ,∴CD =DA ,CD BD DBC =∆中,在等边,CD DA BD ==∴ ︒=∠∴60BDC ,BC DA ⊥Θ,E D FB CA (第24题答题图1)︒=∠=∠=∠∴3021BDC CDA BDA , ……………………………………………7分DA DB BDA =∆中,在,︒︒=∠=∠∴752-180BDA BAD ,DC DA DAC =∆中,在,︒︒=∠=∠∴752-180ADC DAC ,︒︒︒=+=∠+∠=∠∴1507575DAC BAD BAC . …………………………………8分②当点A 在线段DF 上时(如图2),BE BA B 至顺时针方向旋转为旋转中心,把以︒60Θ, ο60=∠=∴ABE BE BA ,,ο60=∠=∆DBC BC BD BDC ,中,在等边, ABE DBC ∠=∠∴,ABC ABE ABC DBC ∠∠=∠∠--, EBC DBA ∠=∠即, DBA ∆∴≌CBE ∆,CE DA =∴, …………………………9分 ο90R =∠∆DFC DFC t 中,在, DF ∴<DC ,∵DA <DF ,DA =CE , ∴CE <DC ,由②可知为直角三角形DCE ∆, ∴∠DEC ≠45°. ……………………………10分 ③当点A 在线段FD 的延长线上时(如图3), 同第②种情况可得DBA ∆≌CBE ∆, ECB ADB CE DA ∠=∠=∴,,ο60=∠=∠∆BCD BDC BDC 中,在等边, BC DA ⊥Θ,ο3021=∠=∠=∠∴BDC CDF BDF ,ο150180=∠-=∠∴︒BDF ADB ,ο150=∠=∠∴ADB ECB ,ο90=∠-∠=∠∴BCD ECB DCE ,︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当, DEC EDC ∠=∠∴,CE CD =∴,∴AD =CD =BD ,……………………………………………11分 ∵ο150=∠=∠ADC ADB ,EDF B CA(第24题答题图3) EDFBCA(第24题答题图2)ο152-180=∠=∠∴︒ADB BAD ,ο152-180=∠=∠︒CDA CAD , ο30=∠+∠=∠∴CAD BAD BAC ,.30150οο或的度数为综上所述,BAC ∠ …………………12分25.(14分)(1)得)代入()()(把c bx ax y C B A ++=20,2-,0,2,4,0,⎪⎩⎪⎨⎧=+-=++=0240244c b a c b a c ,…………………………2分⎪⎩⎪⎨⎧==-=401:c b a 解得,42+-=∴x y .………………………………4分(2)设直线DA 得解析式为y =kx +d (k ≠0),把A (0,4),D (-4,0)代入得,⎩⎨⎧=+-=044d k d ,⎩⎨⎧==41:d k 解得, ∴y =x +4设E (m ,m +4), 平移后的抛物线的解析式为:4)(2++--=m m x y .把B (2,0)代入得:04)-2-2=++m m (不符合题意,舍去),解得(0521==m m ,∴E (5,9). ……………………………………………………………………8分(3)如图,连接AB ,过点B 作BL ∥AD 交平移后的抛物线于点G ,连结EG ,∴四边形ABGE 的面积就是图象A ,B 两点间的部分扫过的面积.…………10分 过点G 作GK ⊥x 轴于点K ,过点E 作EI ⊥y 轴于点I ,直线EI ,GK 交于点H . 方法一:由点A (0,4)平移至点E (5,9),可知点B 先向右平移5个单位,再向上平移5个单位至点G .∵B (2,0),∴点G (7,5),…………………………………………………12分 ∴GK =5,OB =2,OK =7,∴BK =OK -OB =7-2=5,∵A (0,4),E (5,9),∴AI =9-4=5,EI =5,∴EH =7-5=2,HG =9-5=4,∴GBK EHG AEI AOB IOKH ABGH ∆∆∆∆=S -S -S -S -S S 矩形四边形(第25题答题图)3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分 方法二:b x y BL '+=的解析式为设直线,02:0,2='+b B )代入得(把点,2-='b ,2-=∴x y ,⎩⎨⎧+--=-=9)5(22x y x y 联立,⎩⎨⎧==02:11y x 解得,⎩⎨⎧==5722y x , ∴点G (7,5), …………………………………………………………………12分 ∴GK =5,OB =2,OK =7,∴BK =OK -OB =7-2=5,∵A (0,4),E (5,9),∴AI =9-4=5,EI =5,∴EH =7-5=2,HG =9-5=4,∴GBK EHG AEI AOB IOKH ABGH ∆∆∆∆=S -S -S -S -S S 矩形四边形3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分。

相关文档
最新文档