广东省学校八年级上学期期末考试数学试卷有答案

合集下载

广东省学校八年级上学期期末考试数学试卷有答案

广东省学校八年级上学期期末考试数学试卷有答案

广东省广州八年级上学期期末考试数学试卷姓名: 班级: 学号: 得分:一、选择题(每题3分,共24分) 1、下列各数中无理数共有( )722,π-,••41.3 ,⋅⋅⋅⋅⋅⋅0131331(相邻二个1之间3的个数逐次加1),49-,39; A.4个 B.3个 C.2个 D.1个2、已知三组数据①2,3,4;②3,4,5③1,3,2;分别以每组数据中的三个数为三角形的三边长, 能构成直角三角形的有( )A. ②B. ①②C. ①③D. ②③3、下列各式中计算正确的是( )A.5)5(2-=- B. 39±= C. 22-33-=)( D.6322=)( 4、关于数据:85,88,80,95,88,86的叙述中,错误的是( )A.极差是15B.众数是88C.中位数是86D.平均数是87 5、关于函数x y 21-=,下列结论正确的是( ) A.函数图象必过点(-2,-1) B. 函数图象经过第1、3象限 C.y 随x 的增大而减小 D. y 随x 的增大而增大 6、下列命题中,是真命题的是( )A.过一点有且只有一条直线与已知直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同旁内角互补D.在同一平面内,垂直于同一直线的两条直线平行 7、长方形ABCD 的三个顶点的坐标是A (1,1)、B (3,1)、C (3,5),那么D 点坐标是( ) A.(1,3) B.(1,5) C.(5,3) D.(5,1)8、甲、乙两人练习跑步,如果乙在甲前面10m 处,则两人同时跑,甲5s 可追上乙;如果甲让乙先跑2s ,则甲4s 可追上乙.设甲的速度为x m/s ,乙的速度为y m/s.下列方程组正确的是( ) A.⎩⎨⎧+=+=y y x y x 2441055 B. ⎩⎨⎧=-=-yx x y x 4241055 C. ⎩⎨⎧=-=+2445105y x y x D. ⎩⎨⎧=-=-y x y x 4241055二、填空题(每题3分,共24分) 9、16的平方根是______________. 10、如果⎩⎨⎧==23y x 是方程3x-ay=-3的一个解,则a=_____________.11、已知a 、b 为两个连续的整数,且b a <<39,则a+b=___________.12、某公司欲招收职员一名,从学历、经验、和工作态度三个方面进行测试,小华测试成绩如下:学历9分,经验7分,工作态度8分.如果将学历、经验和工作态度三项得分按1:2:2的比例确定最终得分,那么小华最后的成绩是___________________.13、如右图,在ABC ∆中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长 线上,DE ∥BC ,︒=∠44A ,︒=∠571,则=∠2____________.E14、如果923b ay x +-与y x b a +232是同类项,则x+y=____________.15、如右图,有一块直角三角形纸片,︒=∠90C ,AC=12cm ,BC=5cm ,将 斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD , 则CE 的长为__________cm.16、某书定价25元,如果一次购买20本以上,超过20本的部分打八折, 试写出付款金额y (单价:元)与购买数量x (x>20)(单位:本)之间的 函数关系式_____________________________________. 三、解答题(共72 分) 17、计算:(每小题4分,共8分) (1)483319122-+ (2)818218、(5分)解方程组⎩⎨⎧-=-=-102304y x y x19、(5分)已知:23+=a ,23-=b .求代数式22b ab a ++的值.20、(6分)如图:网格中的每一个小正方形的边长是1,在这个网格中画一个钝角ABC ∆,使10=AB .(注:点C 必须在格点上)21、(6分)已知ABC ∆的顶点A (-4,5),B (-2,1),完成下列问题: (1)在如图所示的网格中建立直角坐标系;(2)作出ABC ∆关于y 轴对称的'''C B A ∆ (3)写出点'C 的坐标22、(6分)已知一次函数22--=x y ,完成下列问题: (1)画出函数图象.(2)直接写出图象与x 轴、y 轴的交点A 、B 的坐标.(3)观察图象,写出x 在什么范围内取值时,y>0.23、(8分)甲、乙两位运动员进行射击比赛,各射击了10次,每次命中环数如下: 甲:8,6,7,8,9,10,6,5,4,7 乙:7,9,8,5,6,7, 7,6,7,8(1)甲、乙运动员的平均成绩分别是多少? (2)这十次比赛成绩的方差分别是多少? (3)试分析这两名运动员的射击成绩. (注:方差公式()()[()]2222121x x x x x x ns n -+⋅⋅⋅+-+-=24、(8分)如图,已知:DE ⊥AO 于点E , BO ⊥AO 于点O ,∠CFB=∠EDO , 证明:CF ∥DO .25、(10分)某一天,文具经营户花360元从文具批发市场批发了自动铅笔和钢笔共80支,到文具店去卖,自动铅笔和钢笔当天的批发价与零售价如下表所示:品名 钢笔 自动铅笔批发价(元/支) 4.8 4 零售价(元/支)7.25.6问:他卖完这些自动铅笔和钢笔可赚多少钱?26、(10分)一次函数的应用(10分):如图,A l 和B l 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系。

广州市八年级(上)期末数学试卷含答案

广州市八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.-2的绝对值是( )A. 2B. -2C.D.2.在下列长度的各组线段中,能组成三角形的是( )A. 1,2,4B. 1,4,9C. 3,4,5D. 4,5,93.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为( )A. 0.277×107B. 0.277×108C. 2.77×107D. 2.77×1084.下列平面图形中,不是轴对称图形的是( )A. B. C. D.5.,,,,a+中,分式的个数有( )A. 2个B. 3个C. 4个D. 5个6.下列计算中正确的是( )A. (ab3)2=ab6B. a4÷a=a4C. a2•a4=a8D. (-a2)3=-a67.为参加“爱我校园”摄影赛,小明同学将参与植树活动的照片放大为长acm,宽acm的形状,又精心在四周加上了宽2cm的木框,则这幅摄影作品占的面积是( )cm2.A. a2-a+4B. a2-7a+16C. a2+a+4D. a2+7a+168.已知等腰三角形的两边长分别为4cm、8cm,则该等腰三角形的周长是( )A. 12cmB. 16cmC. 16cm或20cmD. 20cm9.下列条件中,不能判定两个直角三角形全等的是( )A. 两个锐角对应相等B. 一条边和一个锐角对应相等C. 两条直角边对应相等D. 一条直角边和一条斜边对应相等10.如图,△EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()A. 90°B. 75°C. 70°D. 60°二、填空题(本大题共6小题,共24.0分)11.已知点A(2,a)与点B(b,4)关于x轴对称,则a+b=______.12.如果一个正多边形的内角和是900°,则这个正多边形是正______ 边形.13.如图,在△ABC中,已知AD是角平分线,DE⊥AC于E,AC=4,S△ADC=6,则点D到AB的距离是______.14.二元一次方程组的解为______.15.如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=60°,∠ABC=80°,则∠CBE的度数为______.16.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是:______(写出一个即可).三、计算题(本大题共2小题,共13.0分)17.解方程:.18.计算:四、解答题(本大题共7小题,共53.0分)19.计算:2-1-|-3|-(2-)0+20.先化简,再求值:[(x-y)2+(x-y)(x+y)]÷x,其中x=-1,y=.21.如图所示,在△ABC,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E(不与点A、D重合),连结BE,CE,求证:EB=EC.22.已知:如图,点B、E、C、F在一条直线上,A、D两点在直线BF的同侧,BE=CF,∠A=∠D,AB∥DE.求证:AC=DF.23.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.问:甲、乙两队单独完成这项工程各需多少天?在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?24.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B、C、E在同一条直线上,连结DC.(1)请在图2中找出与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.25.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)若AE=1时,求AP的长;(2)当∠BQD=30°时,求AP的长;(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生变化,请说明理由.答案和解析1.【答案】A【解析】解:-2的绝对值是2,即|-2|=2.故选:A.根据负数的绝对值等于它的相反数解答.本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.【答案】C【解析】解:A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.【答案】C【解析】解:将27700000用科学记数法表示为2.77×107,故选C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.结合选项根据轴对称图形的概念求解即可.本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【答案】A【解析】解:这一组式子中,,a+中分母含有未知数,故是分式.故选A.根据分式的定义进行解答即可.本题考查的是分式的定义,解答此题的关键是熟知π是一个常数,这是此题的易错点.6.【答案】D【解析】解:A、(ab3)2=a2b6,故此选项错误;B、a4÷a=a3,故此选项错误;C、a2•a4=a6,故此选项错误;D、(-a2)3=-a6,正确.故选:D.直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.7.【答案】D【解析】解:根据题意可知,这幅摄影作品占的面积是a2+4(a+4)+4(a+4)-4×4=a2+7a+16.故选:D.此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.8.【答案】D【解析】解:当腰长为4cm时,4+4=8cm,不符合三角形三边关系,故舍去;当腰长为8cm时,符合三边关系,其周长为8+8+4=20cm.故该三角形的周长为20cm.故选:D.题中没有指明哪个是底哪个是腰,所以应该分两种情况进行分析.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.【答案】A【解析】解:A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定ASA,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选A.直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS 、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.【答案】D【解析】解:∵AB=BC=CD=DE=EF,∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°-(∠CBD+∠BDC)=180°-60°=120°,∴∠ECD=∠CED=180°-∠BCD-∠BCA=180°-120°-15°=45°,∴∠CDE=180°-(∠ECD+∠CED)=180°-90°=90°,∴∠EDF=∠EFD=180°-∠CDE-∠BDC=180°-90°-30°=60°,∴∠DEF=180°-(∠EDF+∠EFD)=180°-120°=60°.故选:D.根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.此题主要考查了等腰三角形的性质及三角形内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.11.【答案】-2【解析】解:∵点A(2,a)与点B(b,4)关于x轴对称,∴b=2,a=-4,则a+b=-4+2=-2,故答案为:-2.直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.12.【答案】七【解析】解:设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=7.则这个正多边形是正七边形.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数.此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解.13.【答案】3【解析】解:如图,过D作DF⊥AB于F,则DF的长是点D到AB的距离,∵AD是角平分线,DE⊥AC,∴DF=DE,∵AC=4,S△ADC=6,∴×4×DE=6,∴DE=3,∴DF=3,即点D到AB的距离是3,故答案为:3.过D作DF⊥AB于F,则DF的长是点D到AB的距离,根据角平分线性质求出DF=DE ,求出DE即可.本题主要考查平分线的性质,即角的平分线上的点到角的两边的距离相等.14.【答案】【解析】解:,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为,故答案为:方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.【答案】40°【解析】解:∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°-80°-60°=40°.故答案为:40°.根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.16.【答案】101030或103010或301010【解析】解:4x3-xy2=x(4x2-y2)=x(2x+y)(2x-y),当x=10,y=10时,x=10;2x+y=30;2x-y=10,用上述方法产生的密码是:101030或103010或301010.故答案为:101030或103010或301010.把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.17.【答案】解:方程两边同乘2(x-1),得2x=3-2(2x-2),2x=3-4x+4,6x=7,∴.检验:当时,2(x-1)≠0.∴是原分式方程的解.【解析】本题主要考察分式方程的解法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.观察可得方程最简公分母为2(x-1).方程两边乘最简公分母,可以把分式方程转化为整式方程求解.18.【答案】解:原式=-•=-=.【解析】根据分式的混合运算顺序和运算法则计算可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.19.【答案】解:原式=-3-1+3=-.【解析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:[(x-y)2+(x-y)(x+y)]÷x,=(x2-2xy+y2+x2-y2)÷x,=(2x2-2xy)÷x,=2x-2y,当x=-1,y=,原式=2×(-1)-2×=-3.【解析】利用完全平方公式和平方差公式计算,再利用多项式除单项式的法则计算化简,然后代入数据计算即可.本题主要考查完全平方公式,平方差公式,合并同类项法则的运用,熟练掌握运算法则是解题的关键.21.【答案】(1)解:如图,AD为所作;(2)证明:如图,∵∠ABC=∠ACB,∴△ABC为等腰三角形,∵AD平分∠BAC,∴AD⊥BC,BD=CD,即AD垂直平分BC,∴EB=EC.【解析】(1)利用基本作图(作已知角的平分线)作∠BAC的平分线交BC于D,则AD 为所求;(2)先证明△ABC为等腰三角形,再根据等腰三角形的性质,由AD平分∠BAC可判断AD垂直平分BC,然后根据线段垂直平分线的性质可得EB=EC.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和线段垂直平分线的性质.22.【答案】证明:∵AB∥DE,∴∠ABC=∠DEF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF.【解析】利用平行线的性质推知∠ABC=∠DEF,由AAS证得△ABC≌△DEF,即可得出结论.本题考查三角形全等的判定与性质以及平行线的性质;证明三角形全等是解题的关键.23.【答案】解:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.本题考查了分式方程的应用,关键知道完成工作的话工作量为1,根据工作量=工作时间×工作效率可列方程求解,求出做的天数再根据甲乙做每天的钱数求出总钱数.24.【答案】解:(1)图2中△ACD≌△ABE.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD.∵在△ABE与△ACD中,,∴△ABE≌△ACD(SAS);(2)证明:由(1)△ABE≌△ACD,可得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.【解析】(1)根据等腰直角三角形的性质,利用SAS判定△ABE≌△ACD;(2)根据全等三角形的对应角相等,可得∠ACD=∠ABE=45°,根据∠ACB=45°,可得到∠BCD=∠ACB+∠ACD=90°,进而得出DC⊥BE.此题主要考查了等腰三角形的性质及全等三角形的判定方法的理解及运用,解题时注意:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.25.【答案】解:(1)∵△ABC是等边三角形,∴∠A=60°,∵PE⊥AB,∴∠APE=30°,∵AE=1,∠APE=30°,PE⊥AB,∴AP=2AE=2;(2)解:过P作PF∥QC,则△AFP是等边三角形,∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在△DBQ和△DFP中,,∴△DBQ≌△DFP,∴BD=DF,∵∠BQD=∠BDQ=∠FDP=∠FPD=30°,∴BD=DF=FA=AB=2,∴AP=2;(3)解:由(2)知BD=DF,∵△AFP是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF=BF+FA=AB=3为定值,即DE的长不变.【解析】(1)根据等边三角形的性质得到∠A=60°,根据三角形内角和定理得到∠APE=30°,根据直角三角形的性质计算;(2)过P作PF∥QC,证明△DBQ≌△DFP,根据全等三角形的性质计算即可;(3)根据等边三角形的性质、直角三角形的性质解答.本题考查的是全等三角形的判定和性质、等边三角形的判定和性质以及平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。

广东省中山市2022-2022学年八年级上学期期末考试数学试题(解析版)

广东省中山市2022-2022学年八年级上学期期末考试数学试题(解析版)

广东省中山市2022-2022学年八年级上学期期末考试数学试题(解析版)2022-2022学年广东省中山市八年级(上)期末数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.下列图案中不是轴对称图形的是()A.B.C.D.2.三角形的三边长可以是()A.2,11,13B.5,12,7C.5,5,11D.5,12,133.已知一种植物种子的质量约为0.0000026千克,将数0.0000026用科学记数法表示为()A.2.6某10﹣6B.2.6某10﹣5C.26某10﹣8D.0.26某10﹣74.下列等式正确的是()A.a3•a4=a12B.a﹣3÷a4=a﹣7C.(﹣2)0=﹣1D.(2a4)3=8a75.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°6.若点P(a,1)关于y轴的对称点为Q(2,b),则a+b的值是()A.﹣1B.0C.1D.27.下列各式中的变形,错误的是(()A.=﹣B.=C.=D.=8.若整式(2某+m)(某﹣1)不含某的一次项,则m的值为()A.﹣3B.﹣2C.﹣1D.29.如图,已知△ABC≌△DEF.若AC=22,CF=4,则CD的长是()A.22B.18C.16D.410.如图所示,AB∥CD,O为∠BAC、∠ACD的平分线交点,OE⊥AC于E,若OE=2,则AB与CD之间的距离是()A.2B.4C.6D.8二、填空题(共6个小题,每小题4分,满分24分)11.当某=时,分式的值为零.12.一个正多边形的每个内角都是150°,则它是正边形.13.已知a+b=ab,则(a﹣1)(b﹣1)=.14.如图,在△ABC中,CD=DE,AC=AE,∠DEB=110°,则∠C=.15.已知m+2n+2=0,则2m•4n的值为.16.如图,在△ABC中,AB=AC=5,BC=6,AD是∠BAC的平分线,AD=4.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.三、解答题(一)(共3个小题,每小题6分,满分18分)17.因式分解:2m(2m﹣3)+6m﹣1.18.计算:(2a﹣3b)2﹣(12a3b﹣36a2b2)÷3ab.19.如图,GC=GE,BE=FC,∠B=∠F.求证:△ABC≌△DFE.四、解答题(二)(共3个小题,每小题7分,满分21分)20.先化简÷(1﹣),然后从﹣2,﹣1,0,1中选择一个适当的数代入求值.21.如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求法);(2)连接CE,如果△ABC的周长为27,DC的长为5,求△BCE的周长.22.如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.(1)求证:∠CAE=∠B;(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.五、解答题(三)(共3个小题,每小题9分,满分27分)23.某工厂需要在规定时间内生产1400个某种零件,该工厂按一定速度加工5天后,发现按此速度加工下去会延期10天完工,于是又抽调了一批工人投入这种零件的生产,使效率提高了50%,结果如期完成加工任务.(1)求该工厂前5天每天生产多少个这种零件;(2)求规定时间是多少天.24.如图,AD平分∠BAC,DG⊥BC于点G且平分BC,DF⊥AB于点F,DE⊥AC于点E.(1)求证:BF=CE;(2)求证:AB=AC+2CE.25.如图,等边△ABC的边长为12cm,点P、Q分别是边BC、CA上的动点,点P、Q分别从顶点B、C同时出发,且它们的速度都为3cm/.(1)如图1,连接PQ,求经过多少秒后,△PCQ是直角三角形;(2)如图2,连接AP、BQ交于点M,在点P、Q运动的过程中,∠AMQ的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.2022-2022学年广东省中山市八年级(上)期末数学试卷参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.下列图案中不是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.三角形的三边长可以是()A.2,11,13B.5,12,7C.5,5,11D.5,12,13【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边可得出答案.在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:A.2,11,13中,2+11=13,不合题意; B.5,12,7中,5+7=12,不合题意; C.5,5,11中,5+5<11,不合题意; D.5,12,13中,5+12>13,能组成三角形;故选:D.【点评】此题考查了三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.3.已知一种植物种子的质量约为0.0000026千克,将数0.0000026用科学记数法表示为()A.2.6某10﹣6B.2.6某10﹣5C.26某10﹣8D.0.26某10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a某10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000026=2.6某10﹣6.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a某10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列等式正确的是()A.a3•a4=a12B.a﹣3÷a4=a﹣7C.(﹣2)0=﹣1D.(2a4)3=8a7【分析】根据同底数幂的乘法和除法、幂的乘方和零整数幂进行判断即可.【解答】解:A、a3•a4=a7,错误;B、a﹣3÷a4=a﹣7,正确;C、(﹣2)0=1,错误;D、(2a4)3=8a12,错误;故选:B.【点评】此题考查同底数幂的乘法和除法等问题,关键是根据同底数幂的乘法和除法、幂的乘方和零整数幂的法则计算.5.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°【分析】已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【解答】解:当50°是等腰三角形的顶角时,则底角为(180°﹣50°)某=65°;当50°是底角时亦可.故选:C.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6.若点P(a,1)关于y轴的对称点为Q(2,b),则a+b的值是()A.﹣1B.0C.1D.2【分析】直接利用关于y轴对称点的性质得出a,b的值进而得出答案.【解答】解:∵点P(a,1)关于y轴的对称点为Q(2,b),∴a=﹣2,b=1,则a+b=﹣2+1=﹣1.故选:A.【点评】此题主要考查了关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(某,y)关于y轴的对称点P′的坐标是(﹣某,y).7.下列各式中的变形,错误的是(()A.=﹣B.=C.=D.=【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【解答】解:A、=﹣,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.8.若整式(2某+m)(某﹣1)不含某的一次项,则m的值为()A.﹣3B.﹣2C.﹣1D.2【分析】根据多项式乘多项式,可得整式,根据整式不含一次项,可得一次项的系数为零,根据解方程,可得答案.【解答】解:(2某+m)(某﹣1)=2某2+(m﹣2)某﹣m.由(2某+m)(某﹣1)不含某的一次项,得m﹣2=0.解得m=2,故选:D.【点评】本题考查了多项式乘多项式,利用整式不含一次项得出一次项的系数为零是解题关键.9.如图,已知△ABC≌△DEF.若AC=22,CF=4,则CD的长是()A.22B.18C.16D.4【分析】根据全等三角形的性质得AC=DF,则依据CF=4可得CD的长.【解答】解:△ABC≌△DEF,∠A与∠D是对应角,AB与DE是对应边,∴AC=DF=22,又∵CF=4,∴CD=DF﹣CF=22﹣4=18,故选:B.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.10.如图所示,AB∥CD,O为∠BAC、∠ACD的平分线交点,O E⊥AC于E,若OE=2,则AB与CD之间的距离是()A.2B.4C.6D.8【分析】过点O作MN,MN⊥AB于M,求出MN⊥CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度是多少,再把它们求和即可.【解答】解:如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC 的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB与CD之间的距离是4.故选:B.【点评】此题主要考查了角平分线的性质和平行线之间的距离;熟练掌握角平分线的性质定理是解决问题的关键.二、填空题(共6个小题,每小题4分,满分24分)11.当某= 2 时,分式的值为零.【分析】直接利用分式的值为零可得分子为零进而得出答案.【解答】解:∵分式的值为零,∴某﹣2=0,解得:某=2.故答案为:2.【点评】此题主要考查了分式的值为零的条件,正确把握分式的值为零的条件是解题关键.12.一个正多边形的每个内角都是150°,则它是正十二边形.【分析】首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.【解答】解:∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为:十二.【点评】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.13.已知a+b=ab,则(a﹣1)(b﹣1)= 1 .【分析】首先利用多项式的乘法法则化简所求的式子,然后把已知的式子代入即可求解.【解答】解:(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1,∵a+b=ab,∴原式=ab﹣ab+1=1.故答案是:1.【点评】本题考查了多项式的乘法法则,理解法则把所求的式子进行正确变形是关键.14.如图,在△ABC中,CD=DE,AC=AE,∠DEB=110°,则∠C=70°.【分析】只要证明△ADC≌△ADE(SSS),即可推出∠C=∠AED 解决问题;【解答】解:在△ADC和△ADE中,,∴△ADC≌△ADE (SSS),∴∠C=∠AED,∵∠DEB=110°,∴∠AED=70°,∴∠C=70°,故答案为70°【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.已知m+2n+2=0,则2m•4n的值为.【分析】直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.【解答】解:∵m+2n+2=0,∴m+2n=﹣2,∴2m•4n=2m•22n=2m+2n=2﹣2=.故答案为:.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键.16.如图,在△ABC中,AB=AC=5,BC=6,AD是∠BAC的平分线,AD=4.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥A C于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.如图,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,如图所示.∵S△ABC=BC•AD=AC•BQ,∴BQ==,即PC+PQ的最小值是.故答案为:.【点评】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(一)(共3个小题,每小题6分,满分18分)17.因式分解:2m(2m﹣3)+6m﹣1.【分析】直接利用单项式乘以多项式运算法则化简,再利用乘法公式分解因式即可.【解答】解:原式=4m2﹣6m+6m﹣1=4m2﹣1=(2m+1)(2m﹣1).【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.18.计算:(2a﹣3b)2﹣(12a3b﹣36a2b2)÷3ab.【分析】直接利用完全平方公式以及整式的除法运算法则计算得出答案.【解答】解:(2a﹣3b)2﹣(12a3b﹣36a2b2)÷3ab=4a2﹣12ab+9b2﹣(4a2﹣12ab)=4a2﹣12ab+9b2﹣4a2+12ab=9b2.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.19.如图,GC=GE,BE=FC,∠B=∠F.求证:△ABC≌△DFE.【分析】求出BC=EF,∠DEF=∠ACB,根据全等三角形的判定定理ASA推出即可.【解答】证明:∵GC=GE,∴∠ACB=∠DEF,∵BE=FC,∴BC=FE,在△ABC和△DFE中,,∴△ABC≌△DFE (ASA).【点评】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.四、解答题(二)(共3个小题,每小题7分,满分21分)20.先化简÷(1﹣),然后从﹣2,﹣1,0,1中选择一个适当的数代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用分式有意义的条件得出某的值,代入计算可得.【解答】解:原式=÷(﹣)=÷=•=,∵某≠0,某+1≠0,某+2≠0,∴某≠﹣2,﹣1,0,∴某=1,则原式==2.【点评】本题主要考分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.21.如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法);(2)连接CE,如果△ABC的周长为27,DC的长为5,求△BCE的周长.【分析】(1)利用基本作图作DE垂直平分AC;(2)根据线段垂直平分线的性质得到EA=EC,AD=CD=5,则利用△ABC的周长得到AB+BC=17,然后根据等线段代换可求出△AEC的周长.【解答】解:(1)如图,DE为所作;(2)∵DE垂直平分AC,∴EA=EC,AD=CD=5,∴AC=10,∵△ABC的周长=AB+BC+AC=27,∴AB+BC=27﹣10=17,∴△AEC的周长=BE+EC+BC=BE+AE+BC=AB+BC=17.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22.如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.(1)求证:∠CAE=∠B;(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.【分析】(1)根据等腰三角形的性质得到∠CAD=∠CDA,根据角平分线的定义得到∠EAD=∠BAD,于是得到结论;(2)设∠DAB=某,得到∠C=3某,根据角平分线的定义得到∠EAB=2∠DAB=2某,求得∠CAB=∠CAE+∠EAB=50°+2某,根据三角形的内角和即可得到结论.【解答】解:(1)∵CA=CD,∴∠CAD=∠CDA,∵AD平分∠BAE,∴∠EAD=∠BAD,∵∠B=∠CDA﹣∠BAD,∠CAE=∠CAD﹣∠DAE,∴∠CAE=∠B;(2)设∠DAB=某,∵∠C=∠3∠DAB,∴∠C=3某,∵∠CAE=∠B,∠B=50°,∴∠CAE=50°,∵AD平分∠BAE,∴∠EAB=2∠DAB=2某,∴∠CAB=∠CAE+∠EAB=50°+2某,∵∠CAB+∠B+∠C=180°,∴50°+2某+50°+3某=180°,∴某=16°,∴∠C=3某16°=48°.【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.五、解答题(三)(共3个小题,每小题9分,满分27分)23.某工厂需要在规定时间内生产1400个某种零件,该工厂按一定速度加工5天后,发现按此速度加工下去会延期10天完工,于是又抽调了一批工人投入这种零件的生产,使工作效率提高了50%,结果如期完成加工任务.(1)求该工厂前5天每天生产多少个这种零件;(2)求规定时间是多少天.【分析】(1)根据计划的天数可以列出相应的分式方程,从而可以解答本题;(2)根据(1)中的结果可以求得规定的天数,本题得以解决.【解答】解:(1)设该工厂前5天每天生产某个这种零件,,解得,某=40,经检验,某=40是原分式方程的解,答:该工厂前5天每天生产40个这种零件;(2)由(1)该工厂前5天每天生产40个这种零件,﹣10=25,答:规定的时间是25天.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要检验.24.如图,AD平分∠BAC,DG⊥BC于点G且平分BC,DF⊥AB于点F,DE⊥AC于点E.(1)求证:BF=CE;(2)求证:AB=AC+2CE.【分析】(1)连接DB,DC,利用全等三角形的判定和性质解答即可;(2)根据角平分线的性质和全等三角形的判定和性质解答即可.【解答】证明:(1)连接DB,DC,∵AD平分∠BAC,DF⊥AB,DE⊥AC,∴DF=DE,∠DFB=∠DEC=90°,∵DG⊥BC且平分BC,∴DB=DC,在Rt△DFB和Rt△DEC中,∴Rt△DFB≌Rt△DEC(HL),∴BF=CE;(2)∵DF⊥AB,DE⊥AC,∴∠DFA=∠DEA=90°,∵AD平分∠BAC,∴∠DAF=∠DAE,在△DAF和△DAE中,∴△DAF≌△DAE(AAS),∴AF=AE,∵BF=CE,∴AB=AF+BF=AE+CE=AC+CE+CE=AC+2CE.【点评】本题考查了全等三角形的性质与判定,解决本题的关键是利用全等三角形的判定和性质解答.25.如图,等边△ABC的边长为12cm,点P、Q分别是边BC、CA上的动点,点P、Q分别从顶点B、C同时出发,且它们的速度都为3cm/.(1)如图1,连接PQ,求经过多少秒后,△PCQ是直角三角形;(2)如图2,连接AP、BQ交于点M,在点P、Q运动的过程中,∠AMQ的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.【分析】(1)分两种情形分别求解即可解决问题;(2)由△AB≌△BCQ(SAS),推出∠BAP=∠CBQ,可得∠AMQ=∠PAB+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°即可.【解答】解:(1)设经过t秒后,△PCQ是直角三角形.由题意:PC=(12﹣3t)cm,CQ=3t,∵△ABC是等边三角形,∴∠C=60°,当∠PQC=90°时,∠QPC=30°,∴PC=2CQ,∴12﹣3t=6t,解得t=.当∠QPC=90°时,∠PQC=30°,∴CQ=2PC,∴3t=2(12﹣3t),解得t=,∴经过秒或秒,△PCQ是直角三角形.(2)结论:∠AMQ的大小不变.∵△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∵点P,Q的速度相等,∴BP=CQ,在△ABP和△BCQ 中,,∴△AB≌△BCQ(SAS),∴∠BAP=∠CBQ,∴∠AMQ=∠PAB+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°.【点评】本题考查等边三角形的性质,全等三角形的判定和性质等,解题的关键是学会用分类讨论的思考问题,属于中考常考题型.。

2022~2023学年广东省广州市天河区八年级(上)期末数学试卷+答案解析(附后)

2022~2023学年广东省广州市天河区八年级(上)期末数学试卷+答案解析(附后)

2022~2023学年广东省广州市天河区八年级(上)期末数学试卷1. 下列图形中,不是轴对称图形的是( )A. B. C. D.2. 下列运算正确的是( )A. B. C. D.3. 点关于x 轴对称的点B 的坐标为( )A. B.C. D.4. 已知一个多边形的内角和是,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形5. 科学家发现一种病毒直径为微米,则用科学记数法可以表示为( )A. B. C. D.6. 已知分式的值为0,则下列选项正确的是( )A. B.C. D.7. 若多项式因式分解的结果是,则m的值是( )A. B.C. 16D. 208. 若,则分式( )A. B. C. 2 D.9. 如图,在和中,,,添加一个条件后,仍然不能证明≌,这个条件可能是( )A. B.C. D.10. 如图,某小区规划在边长为xm的正方形场地上,修建两条宽为2 m的甬道,其余部分种草,以下各选项所列式子是计算甬道所占面积的为.( )A. B.C. D.11. 若分式有意义,则x 的取值范围是__________.12. 分解因式:__________.13. 如图,在中,,,,则__________.14. 计算:__________.15. 若,则的值为__________.16. 现有甲、乙、丙三种不同的矩形纸片边长如图小亮要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片__________块.17.已知:如图,点C为AB中点,,求证:≌18. 计算:;19. 如图的平面直角坐标系中,的三个顶点坐标分别为,,,作出关于y 轴对称的保留作图痕迹,并求的面积.20. 如图,在中,,求的度数;先作图后证明:用尺规作AB 的垂直平分线DE ,交AC 于点 D ,交AB 于点 E ,连接BD ,保留作图痕迹求证:21. 已知,,问:当x 为何值时,22. 随着国内快递业务量的迅速增长,通过无人机可打造短途航空物流网络,加速物流效率,刘峰和李朋对此非常感兴趣,相约周末去科技馆看展览了解情况,根据他们的谈话内容如图,请判断他们两人能同时到达吗?请说明理由.23. 如图,把正方形ABCD 和正方形MPNF 重叠得到长方形EFGD ,当它的长与宽的和正好是正方形MPNF 的边长时,,若设正方形ABCD 的边长为 a ,求长方形EFGD 的面积;用含 a 的式子表示若长方形EFGD 的面积是300,求正方形MPNF 的面积.24. 如图,在平面直角坐标系中,直线AB 与坐标轴的交点坐标分别为,,若点 C 在第一象限,且,填空:______;求点 C 的坐标;已知点P 在y 轴正半轴上,满足,连接AP ,设点 C 关于直线AB 的对称点为 D ,点 C 关于直线AP 的对称点为 E ,试问:点D,E关于坐标轴对称吗?请说明理由.答案和解析1.【答案】B【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念分析判断即可.【解答】解:是轴对称图形,该选项不符合题意;B. 不是轴对称图形,该选项符合题意;C. 是轴对称图形,该选项不符合题意;D. 是轴对称图形,该选项不符合题意.故选:2.【答案】B【解析】【分析】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.根据幂的乘方,同底数幂的乘法以及合并同类项计算法则进行解答.【解答】解:A、原式,故本选项错误;B、原式,故本选项正确;C、原式,故本选项错误;D、与不是同类项,不能合并,故本选项错误;故选:3.【答案】D【解析】【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点关于x轴对称的点B的坐标为 .故选:4.【答案】A【解析】【分析】利用n边形的内角和可以表示成,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:,解得: .则这个多边形是五边形.故选:5.【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与绝对值较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:微米用科学记数法可以表示为微米,故选:6.【答案】A【解析】【分析】根据分式值为零的条件可得,且,再解即可.【解答】解:由题意得:,且,解得:,故选:7.【答案】A【解析】【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.【解答】解:,可得,故选:8.【答案】C【解析】【分析】先化简式子得出,再将代入求解即可.【解答】解:,,,故选:9.【答案】D【解析】【分析】根据全等三角形的判定,利用ASA、AAS、SAS即可得出答案.【解答】解:,,当时,由ASA可得,故A不符合题意;当时,则,由AAS可得,故B不符合题意;当时,则,由SAS可得,故C不符合题意;当时,不能得出,故D符合题意;故选:10.【答案】B【解析】【分析】用正方形场地的面积减去正方形场地除去甬道部分的面积即可.【解答】解:由图可知边长为xm的正方形场地的面积为,除去甬道部分的面积为,甬道所占面积为:故选:11.【答案】【解析】【分析】根据分式有意义的条件得出,再求出即可.【解答】解:分式有意义,,解得:,故答案为: .12.【答案】【解析】【分析】观察原式,找到公因式a,提出即可得出答案.提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.【解答】解:故答案为:13.【答案】8【解析】【分析】根据含30度角的直角三角形的性质即可得出答案.【解答】解:,,,,,故答案为:14.【答案】【解析】【分析】根据同分母分式相减的运算法则计算即可.【解答】解:,故答案为: .15.【答案】8【解析】【分析】根据同底数幂的乘法进行计算,然后代入求值即可.【解答】解:,.故答案为:16.【答案】4【解析】【分析】根据即可得.【解答】解:,甲纸片1块,乙纸片4块,丙纸片4块,可以拼成一个边长为的正方形,故答案为:17.【答案】证明:,点C为AB中点,在和中,,≌【解析】根据中点定义推出,根据两直线平行,同位角相等,推出,然后利用SAS即可证明≌18.【答案】解:;.【解析】【分析】根据多项式除以单项式的运算法则计算即可;根据平方差公式,多项式乘以单项式计算即可.19.【答案】解:,,,关于y轴对称的点分别为:,,,再顺次连接即可,如图所示:,的高为:,【解析】【分析】根据网格结构找出点A、B、C关于y轴的对称点、、的位置,然后顺次连接即可;根据三角形的面积公式即可得到结论.20.【答案】解:,,;证明:的垂直平分线DE交AC于点D,交AB于点E,,.【解析】【分析】根据等边对等角和三角形内角和定理即可得出答案;根据线段垂直平分线的性质得出,得出,即可得出答案.21.【答案】解:根据题意可得:,,,,,当时,分式无意义,为除了之外的所有实数,故当时, .【解析】【分析】根据题意可得:,去分母得出,根据当时,分式无意义,得出x为除外的所有实数.22.【答案】解:他们两人能同时到达,理由如下:设刘峰骑自行车的速度为每小时x千米,则李明乘公交车的速度为每小时 3x千米,若两人同时到达,李明用时比刘峰少30分钟,即小时,根据题意,可得,解得,经检验,是原分式方程的解,且符合题意.所以,刘峰骑自行车的速度为每小时20千米,李明乘公交车的速度为每小时60千米,两人可同时到达.【解析】【分析】设刘峰骑自行车的速度为每小时x千米,则李明乘公交车的速度为每小时 3x千米,根据题意列出分式方程,求解并检验即可解决问题.23.【答案】解:设正方形ABCD的边长为a,,,,设正方形MPNF的边长为b,长方形EFGD的长与宽的和是正方形MPNF的边长,,,,,,,.【解析】【分析】正方形ABCD的边长为a,则,,根据即可得出答案;设正方形MPNF的边长为b,根据题意可得,求出,再根据,化简得,代入求解即可.24.【答案】解:如图,过点C作,,,,,,,,在和中,,≌,,,,;对称,理由:如图,过点C作,,,,,,,是直角三角形,连接CP并延长至E,使得,则点C关于直线AP对称点为E,设,,,,,,,,设,点,,,,,,点D,E关于x轴对称.【解析】解:,,故答案为:;见答案;见答案.【分析】根据,即可得出;过点C作,得出,,证明≌,得出,,,即可得出答案;过点C作,证明是直角三角形,连接CP并延长至E,使得,则点C关于直线AP的对称点为E,设,得出,,求出,设,得出,,求出,即可得出点D,E 关于x轴对称.。

广东省深圳市南山区2022-2023学年八年级上学期期末考试数学试卷(解析版)

广东省深圳市南山区2022-2023学年八年级上学期期末考试数学试卷(解析版)

2022—2023学年度第一学期期末教学质量监测八年级数学试题一、选择题1. 4的平方根是( )A. ±2B. 2C. ﹣2D. 16 【答案】A【解析】【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的一个平方根.【详解】∵(±2 )2=4,∴4的平方根是±2,故选A .【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.2. 下列运算错误的是( )A.2=B.1=C. 2=D. =【答案】D【解析】【分析】直接利用二次根式的性质,二次根式的乘法运算法则和平方差公式计算,进而得出答案.详解】解:A2=,故此选项正确,不符合题意; B、321−=−=,故此选项正确,不符合题意; C 2=,故此选项正确,不符合题意;D=故选:D .【点睛】本题主要考查了二次根式的性质以及二次根式的乘法运算,平方差公式,正确掌握相关运算法则是解题关键.3. 在一次校园歌曲演唱比赛中,小红对七位评委老师给自己打出的分数进行了分析,并制作如下表格: 平均数 众数 中位数 方差【9.15 9.2 9.1 0.2如果去掉一个最高分和一个最低分,那么表格中数据一定不会发生变化的是( )A. 中位数B. 众数C. 平均数D. 方差【答案】A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】解:去掉一个最高分和一个最低分对中位数没有影响,故选:A .【点睛】本题考查了统计量的选择,解题的关键是了解中位数、众数、平均数及方差的定义.4. 将一副直角三角尺如图放置,已知AE ∥BC ,则∠AFD 的度数是( )A. 45°B. 50°C. 60°D. 75°【答案】D【解析】 【分析】本题主要根据直角尺各角的度数及三角形内角和定理解答.【详解】解:∵∠C=30°,∠DAE=45°,AE ∥BC ,∴∠EAC=∠C=30°,∠FAD=45﹣30=15°,在△ADF 中根据三角形内角和定理得到:∠AFD=180﹣90﹣15=75°.故选D .5. 下列命题:①当n 取正整数时,231n n ++的值是质数;②22a b =,则a b =;③如果1∠和2∠是对顶角,那么12∠=∠;④以8,15,19为边长的三角形是直角三角形.是真命题的有( )A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】通过举反例即可判断①,由两个数的平方相等,那么这两个数相等或互为相反数可判断②,由对顶角相等可判断③,由勾股定理的逆定理可判断④,即可解答.【详解】当6n =时,2231636155n n +++×+而55511=×不是一个质数,则①不是真命题; 若22a b =,则a b =±,则②不是真命题;如果1∠和2∠是对顶角,那么12∠=∠,则③是真命题;∵22281519+≠,∴以8,15,19为边长的三角形不是直角三角形,则④不是真命题;综上所述,是真命题的有1个,故选:A .【点睛】本题考查了命题的真假,涉及质数、开平方、对顶角相等和勾股定理的逆定理,熟练掌握知识点是解题的关键.6. 在直角坐标系中,已知点3,2A m ,点B n是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A. m n <B. m n >C. m n ≥D. m n ≤【答案】A【解析】 【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<, ∴y 随着x 的增大而减小,∵32>2,∴32> ∴m <n ,故选:A .【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用. 7. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x 间,房客y 人,则列出关于x 、y 的二元一次方程组正确的是( )A. ()7791x y x y −= −=B. ()7791x y x y += −=C. 7791x y x y += −=D. 7791x y x y −= −=【答案】B【解析】 【分析】设该店有客房x 间,房客y 人;根据题意一房七客多七客,一房九客一房空得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:()7791x y x y +=−= , 故选:B .【点睛】本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.8. 如图,13AB AC ==,BP CP ⊥,8BP =,6CP =,则四边形ABPC 的面积为( )A. 48B. 60C. 36D. 72【答案】C【解析】 【分析】连接BC ,过点A 作AD BC ⊥于点D ,勾股定理求得BC ,根据等腰三角形的性质得出152CD DB BC ===,在Rt △ABD 中,勾股定理求得AD ,进而根据1122ABC PBC S S BC AD PC PB −=×−× ,即可求解. 详解】解:如图,连接BC ,过点A 作AD BC ⊥于点D ,∵BP CP ⊥,8BP =,6CP =,∴10BC ,【∵13AB AC ==,AD BC ⊥, ∴152CD DB BC ===,在Rt △ABD 中,12AD∴四边形ABPC 的面积为1122ABC PBC S S BC AD PC PB −=×−× 1110126860243622=××−××=−=, 故选:C .【点睛】本题考查了等腰三角形的性质,勾股定理,掌握勾股定理是解题的关键.9. 甲、乙两位同学放学后走路回家,他们走过的路程s (千米)与所用的时间t (分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A. 前10分钟,甲比乙的速度慢B. 经过20分钟,甲、乙都走了1.6千米C. 甲的平均速度为0.08千米/分钟D. 经过30分钟,甲比乙走过的路程少【答案】D【解析】【分析】结合函数关系图逐项判断即可. 【详解】A 项,前10分钟,甲走了0.8千米,乙走了1.2千米,则甲比乙的速度慢,故A 项正确,故不符合题意;B 项,前20分钟,根据函数关系图可知,甲、乙都走了1.6千米,故B 正确,故不符合题意;C 项,甲40分钟走了3.2千米,则其平均速度为:3.2÷40=0.08千米/分钟,故C 项正确,故不符合题意;D 项,经过30分钟,甲走了2.4千米,乙走了2.0千米,则甲比乙多走了0.4千米,故D 项错误,故符合题意;故选:D .【点睛】本题考查了一次函数的图像及其在行程问题中的应用,理解函数关系图是解答本题的关键. 10. 如图,A ABC CB =∠∠,BD 、CD 、AD 分别平分ABC 的内角ABC ∠、外角ACF ∠、外角EAC ∠,以下结论:①AD BC ∥;②ACBADB ??;③12BDC BAC ∠=∠;④90ADC ABD ∠+∠=°.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】 【分析】根据角平分线的定义得出,22ABC ABD DBC ∠=∠=∠,2EAC EAD ∠=∠,2ACF DCF ∠=∠,根据三角形的内角和定理得出,180BAC ABC ACB ∠+∠+∠=°,根据三角形外角性质得出EAC ABC ACB ACF ABC BAC ∠=∠+∠∠=∠+∠,,根据已知结论逐步推理,即可判断各项.【详解】解:①∵AD 平分EAC ∠,∴2EAC EAD ∠=∠,∵EAC ABC ACB ∠=∠+∠,A ABC CB =∠∠,∴2EAC ABC ∠=∠,∴EAD ABC ∠=∠,∴AD BC ∥,故①正确;②∵AD BC ∥,∴ADB DBC ∠=∠,∵BD 平分ABC ∠,A ABC CB =∠∠,∴22ABC ACB DBC ADB ∠=∠=∠=∠,故②错误;③∵180DCF ACD ACB ∠°+∠+∠=,ACD DCF ∠=∠,∴2180DCF ACB ∠+∠=°,∵BDC DBC DCF ∠+∠=∠,∴22180BDC DBC ACB °∠+∠+∠=,∴2180ABC BDC ACB ∠°+∠+∠=,∵180BAC ABC ACB ∠+∠+∠=°,∴2BAC BDC ∠=∠, ∴12BDC BAC ∠=∠,故③正确; ④∵BD 平分ABC ∠,∴ABD DBC ∠=∠,∵AD BC ∥,∴ADB DBC ∠=∠,∴ABD ADB ∠=∠,∵CD 平分ACF ∠,∴2ACF DCF ∠=∠,∵2180ADB CDB DCF DCF ACB ∠+∠=∠∠+∠=°,,∴222180DCF ABC DCF ABD °∠+∠=∠+∠=,∴90DCF ABD ∠+∠=°,∵AD BC ∥,∴ADC DCF ∠=∠,∴90ADC ABD ∠+∠=°,故④正确;综上,正确的有①③④,共3个,故选:C .【点睛】本题考查了三角形外角的性质、角平分线的定义、平行线的性质、三角形内角和定理的应用,主要考查学生的推理能力,有一定难度. 二、填空题11.在实数范围内有意义,则x 的取值范围为______.【答案】x ≥-3【解析】【分析】直接利用二次根式的定义分析得出答案.【详解】解:依题意有x +3≥0,解得:x ≥-3.故答案为:x ≥-3.【点睛】此题主要考查了二次根式有意义条件,正确掌握定义是解题关键.12. 如图是国庆阅兵时,战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为的y 轴,建立平面直角坐标系,若飞机E 的坐标为()40,35−,则飞机D 的坐标为________.【答案】()40,35−−【解析】【分析】根据轴对称的性质即可得到结论.【详解】解:∵飞机()40,35E −与飞机D 关于y 轴对称,∴飞机D 坐标为()40,35−−,故答案为:()40,35−−.【点睛】本题考查了轴对称的性质,准确理解题意,熟练掌握知识点是解题的关键.13. 一次函数y kx b =+的图像经过点()2,3A ,每当x 增加1个单位时,y 增加3个单位,则此函数图像向上平移2个单位长度的表达式是________.【答案】31y x =−. 【解析】【分析】根据平面直角坐标系中平移的性质求出函数经过的另一点,再根据待定系数法即可求出函数解析式.【详解】解:∵函数图像经过点()23A ,,每当x 增加1个单位时,y 增加3个单位, ∴函数图像经过点()36,, ∴根据题意可得方程:3263k b k b =+ =+∴解方程得:33k b = =− ∴一次函数的解析式为:33y x =−,的∴函数图像向上平移2个单位长度的表达式为:33231y x x −+−,故答案为:31y x =−. 【点睛】本题考查了确定一次函数解析式的方法待定系数法,函数图像平移的相关知识点,掌握一次函数平移规律是解题的关键.14. 若关于x ,y 的方程组111222a x b y c a x b y c += += 的解为56x y = = ,则方程组()()()()1112221111a x b y c a x b y c −++= −++= 的解为____________.【答案】65x y = =【解析】【分析】设x ﹣1=m ,y +1=n ,方程组变形后求出解得到m 与n 的值,进而求出x 与y 的值即可;【详解】解:设x ﹣1=m ,y +1=n ,则方程组可化为111222a m b n c a m b n c += += , ∵关于x ,y 的方程组111222a x b y c a x b y c += += 的解为56x y = = ∴解得:56m n = =, 即1516x y −= +=, 所以65x y = =, 故答案为:65x y = =. 【点睛】此题考查了解解二元一次方程组,以及二元一次方程组的解,熟练掌握方程组的解法是解本题的关键.15. 教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,若两点A (x 1,y 1)、B (x 2,y 2),所连线段AB 的中点是M ,则M 的坐标为(122x x +,122y y +),例如:点A (1,2)、点B (3,6),则线段AB 的中点M 的坐标为(132+,262+),即M (2,4)请利用以上结论解决问题:在平面直角坐标系中,若点E (a ﹣1,a ),F (b ,a ﹣b ),线段EF 的中点G 恰好位于x 轴上,且到y 轴的距离是2,则2a +b 的值等于_____. 【答案】203或﹣4 【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】解:∵点E (a ﹣1,a ),F (b ,a ﹣b ),∴中点G (a-1+b 2,2a-b 2), ∵中点G 恰好位于x 轴上,且到y 轴的距离是2, ∴a-1+b =222a-b =02, 解得:115a =310b =3,22a =-1b =-2 , ∴2a +b =203或﹣4; 故答案为:203或﹣4. 【点睛】此题考查坐标与图形性质,中点坐标公式,关键是根据线段的中点坐标公式解答.三、解答题16. 计算:(1(2; (3(101212− +−−+− . 【答案】(1;(2)1; (3)8.【解析】【分析】(1)根据二次根式的性质计算即可求解;(2)根据立方根,二次根式的乘除法法则计算即可;(3)根据负整数指数幂,零指数幂的法则计算即可求解.【小问1详解】; 【小问2详解】3=3=−32=−1=;【小问3详解】(101212− −−+− ()4121=+−−+4121=+++8=.【点睛】本题考查了二次根式的混合运算、负整数指数幂和零指数幂,掌握相关的运算法则是解题的关键.17. 解方程组:111,522x y x y +− −=− +=. 【答案】13x y =−= 【解析】【分析】原方程组化简后用代入消元法求解. 详解】解:原方程组化简,得25172x y x y −=− +=①②, 【②×5+①,得7x=-7,∴x=-1,把x=-1代入②,得-1+y=2,∴y=3,∴13xy=−=.【点睛】本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.18. 某单位计划从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记1分.测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68(1)请算出三人的民主评议得分,甲得_____分,乙得______分,丙得______分;(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?【答案】(1)50,80,70(2)丙将被录用【解析】【分析】(1)用200分别乘以扇形统计图中甲、乙、丙的百分比即可;(2)根据加权平均数的计算方法分别计算三人的个人成绩,进行比较即可.【小问1详解】甲:20025%50×=分,乙:20040%80×=分,丙:20035%70×=分.故答案为:50,80,70;【小问2详解】如果将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么, 甲的个人成绩为:47539335072.9433×+×+×=++(分) 乙的个人成绩为:48037038077433×+×+×=++(分). 丙的个人成绩为:49036837077.4433×+×+×=++(分) 由于丙的个人成绩最高,所以候选人丙将被录用.【点睛】本题考查加权平均数的计算和扇形统计图,要注意各部分的权重与相应的数据的关系,牢记加权平均数的计算公式是解题的关键.19. 如图,一个无盖长方体的小杯子放置在桌面上,6cm AB BC ==,10cm CD =;(1)一只蚂蚁从A 点出发,沿小杯子外表面爬到D 点,求蚂蚁怎样走最短,最短路程是多少?(2)为了怕杯子落入灰尘又方便使用,现在需要给杯子盖上盖子,并把一双筷子放进杯子里,请问,筷子的最大长度是多少?【答案】(1)如方法一的路线最短,最短路线为(2)筷子的最大长度是【解析】【分析】(1)分别讨论将面ABEF 和面BCDE 展开,将面ABEF 和上底面展开两种情况,再利用勾股定理计算,进而比较即可求解;(2)当筷子沿AD 倾斜放的时候,能够放的最长,利用勾股定理计算即可.【小问1详解】方法一:将面ABEF 和面BCDE 展开,如图,∵6cm AB BC ==,10cm CD =,∴12cm,90AC C =∠=°,由勾股定理得AD ;方法二:将面ABEF 和上底面展开,如图,∵6cm AB DE ==,10cm BE =,∴16cm,90DB B =∠=°,由勾股定理得AD ===;所以,如方法一的路线最短,最短路线为;【小问2详解】如图,当筷子沿AD 倾斜放的时候,能够放的最长,∵6cm AB BC ==,10cm CD =,∴由勾股定理得AC,∴AD =,所以,筷子的最大长度是.【点睛】本题考查了勾股定理的应用,准确理解题意,熟练掌握勾股定理是解题的关键.20. 某商场第1次用39万元购进A ,B 两种商品,销售完后获得利润6万元,它们的进价和售价如表(总利润=单价利润×销售量): 价格商品进价(元/件) 售价(元/件) A1200 1350 B 1000 1200(1)该商场第1次购进A ,B 两种商品各多少件?(2)商场第2次以原进价购进A ,B 两种商品,购进A 商品的件数不变,而购进B 商品的件数是第1次的2倍,A 商品按原售价销售,而B 商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于5.4万元,则B 种商品是按几折销售的?【答案】(1)商场第1次购进A 商品200件,B 商品150件(2)B 种商品打九折销售的【解析】【分析】(1)设第1次购进A 商品x 件,B 商品y 件,根据该商场第1次用39万元购进A 、B 两种商品且销售完后获得利润6万元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设B 商品打m 折出售,根据总利润=单件利润×销售数量,即可得出关于m 的一元一次方程,解之即可得出结论.【小问1详解】解:设第1次购进A 商品x 件,B 商品y 件.根据题意得:()()12001000390000135012001200100060000x y x y += −+−= , 解得:200150x y = =. 答:商场第1次购进A 商品200件,B 商品150件.【小问2详解】设B 商品打m 折出售.根据题意得:()200135012001502120010005400010m ×−+×××−=, 解得:9m =.答:B 种商品打九折销售的. 【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.21. 如图,在平面直角坐标系中,一次函数1210y x =−+的图象与x 轴交于点A ,与一次函数2223y x =+的图象交于点B .(1)求点B 的坐标;(2)C 为x 轴上点A 右侧一个动点,过点C 作y 轴的平行线,与一次函数1210y x =+的图象交于点D ,与一次函数2223y x =+的图象交于点E .当3CE CD =时,求DE 的长; (3)直线y kx k =−经过定点()1,0,当直线与线段AB (含端点)有交点时k 的正整数值是________. 【答案】(1)()3,4(2)8 (3)1或2【解析】【分析】(1)联立可直接得点B 的坐标;(2)设点C 的横坐标为m ,则(),210D m m −+,2,23E m m +,由3CE CD =求出m ,即可得DE 的长;(3)分别求解当直线y kx k =−也经过点()3,4B 时,当直线y kx k =−也经过点A 时k 的值即可求解. 【小问1详解】 解:令221023x x −++,解得3x =,4y ∴=,B ∴点坐标为()3,4.【小问2详解】解:设点C 的横坐标为m ,则(),210D m m −+,2,23E m m +, 223CE m ∴=+,210CD m =−, 3CE CD = , ∴()2232103m m +=−,解得6m =. ()6,2D ∴−,()6,6E ,8DE ∴=.【小问3详解】直线y kx k =−经过定点()1,0, 当直线y kx k =−经过点()3,4B 时,43k k =−,解得2k =;当直线y kx k =−经过点A 时, 解得0k =;∴直线y kx k =−经过定点()1,0,当直线与线段AB (含端点)有交点时k 的正整数值是1或2, 故答案为:1或2.【点睛】本题是一次函数综合题,考查了待定系数法求一次函数解析式,函数图象上点的坐标特征,两点的距离等知识,灵活运用这些知识解决问题是本题的关键.22. 如图,长方形ABCD (对边平行且相等,四个角都是直角)中,6,8AB AD ==,点P 在边BC 上,且不与点B 、C 重合,直线AP 与DC 的延长线交于点E .(1)当点P 是BC 的中点时,求证:ABP ECP △≌△;(2)将APB △沿直线AP 折叠得到APB ′ ,点B ′落在长方形ABCD 的内部,延长PB ′交直线AD 于点F .①证明FA FP =,并求出在(1)条件下AF 的值;②连接B C ′,求PCB ′△周长的最小值.【答案】(1)见解析 (2)①证明见解析,132AF =;②PCB ′△周长的最小值为12. 【解析】【分析】(1)根据长方形的性质得AB CD ∥,可得BAP E B BCE ∠=∠∠=∠,,利用AAS 即可得出结论; (2)①根据平行线的性质和折叠的性质得出FAP APF ∠=∠,等角对等边即可得FA FP =,设FA x =,在Rt AB F ′△中,由勾股定理求即可解;②可得PCB ′△的周长8CP P C CB C B B B B C ′′′=+++=+′=,当点B ′恰好位于对角线AC 上时,CB AB ′+′最小,在Rt ABC △中,由勾股定理得10AC =,据此求解即可得PCB ′△周长的最小值.【小问1详解】证明:∵长方形ABCD 中,∴AB CD ∥,∴BAP E B BCE ∠=∠∠=∠,,∵点P 是BC 的中点,∴BP CP =,∴(AAS)ABP ECP △≌△;【小问2详解】解:①∵长方形ABCD 中,∴AD BC ∥,∴APB FAP ∠=∠,由折叠得APB APF ∠=∠,∴FAP APF ∠=∠,∴FA FP =,长方形ABCD 中,68AB AD ==,,∴8BC AD ==,∵点P 是BC 的中点,∴4BP CP ==,由折叠得6A B B A ′==,4PB PB ′==,90B AB P AB F ∠=∠=∠=′′°,设FA x =,则FP x =,∴4FB x ′=−,在Rt AB F ′△中,222AF F B A B ′+′=,∴222(4)6x x =−+, 解得132x =,即132AF =; ②由折叠得6A B B A ′==,4PB PB ′==, ∴PCB ′△的周长8CP P C CB C B B B B C ′′′=+++=+′=,连接B C AC ′,,∵AB B C AC ′′+>,∴当点B ′B ′恰好位于对角线AC 上时,CB AB ′+′最小,在Rt ABC △中,68AB BC ==,,∴10AC =,∴CB ′的最小值4AC AB ′=−=,∴PCB ′△周长的最小值88412CB ′=+=+=.【点睛】本题属于四边形综合题,考查了折叠的性质,全等三角形的判定和性质,等腰三角形的判定和性质以及勾股定理等知识,掌握折叠是一种轴对称,折叠前后的图形对应角相等、对应边相等,灵活运用相关的性质是解题的关键.。

2022-2023学年广东省广州市越秀区八年级(上)期末数学试卷+答案解析(附后)

2022-2023学年广东省广州市越秀区八年级(上)期末数学试卷+答案解析(附后)

2022-2023学年广东省广州市越秀区八年级(上)期末数学试卷1. 在以下图形中,不是轴对称图形的是( )A.B.C.D.2. 可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为数字用科学记数法表示是( )A.B. C. D.3. 要使分式子有意义,x 的取值应满足( )A. B.C.D.4. 在中,若,,则的度数是( )A.B.C. D.5. 如图,在与中,,再添加一个下列条件,能判断≌的是( )A.B.C.D.6. 下列计算正确的是( )A.B.C. D.7. 如图,在中,,直线DE 是边AB 的垂直平分线,连接若,则( )A.B.C.D.8. 下列等式成立的是( )A. B.C. D.9. 如图,在平面直角坐标xOy中,,,OB平分,点关于x轴的对称点是( )A.B.C.D.10. 若的边a,b满足式子:,则第三边的长可能是( )A. 2B. 5C. 7D. 811. 计算:__________.12. 已知一个多边形的内角和为,则这个多边形是__________边形.13.若,,则__________ .14. 若边长为a,b的长方形周长为10,面积为5,则的值是__________ .15. 若等腰三角形其中两个外角的和为,则这个等腰三角形的顶角度数是__________ .16. 如图,为等边三角形,F,E分别是AB,BC上的一动点,且,连接CF,AE交于点H,连接给出下列四个结论:①;②若,则AE平分;③;④若,则其中正确的结论有__________ 填写所有正确结论的序号17. 解方程:18. 如图,D、C、F、B四点在一条直线上,,,,垂足分别为点C、点F,求证:19. 计算:;因式分解:20. 如图,的三个顶点坐标分别为,,画出关于y轴的对称图形;在第一象限的格点网格线的交点上找一点______ ,______ ,使得21. 设化简A;若是一个完全平方式,求A的值.22. 如图,是等腰直角三角形,尺规作图:作的角平分线,交AB于点保留作图痕迹,不写作法;在所作的图形中,延长CA至点E,使,连接求证:,且23. 为了增强体质,某学校组织徒步活动.两小组都走完了3千米的绿道,第一小组的速度是第二小组速度的倍,第一小组比第二小组提早小时到达目的地.求两个小组的速度分别是多少?假设绿道长为a千米,第一小组走完绿道需要小时,第二小组走完绿道的时间是第一小组时间的倍还要多小时,是否存在m,使得第一小组的速度是第二小组速度的2倍?请说明理由.24. 如图,OC平分,P为OC上的一点,的两边分别与OA、OB相交于点M、如图1,若,,过点P作于点E,作于点F,请判断PM与PN的数量关系,并说明理由;如图2,若,,求证:25. 如图,在中,,,射线于点如图1,求的度数;若点E,F分别是射线AD,边AC上的动点,,连接BE,①如图2,连接EF,当时,求的度数;②如图3,当最小时,求证:答案和解析1.【答案】D【解析】【分析】本题考查的是轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此解答即可.【解答】解:由分析可知,已知图形中不属于轴对称图形的是图形故选:2.【答案】D【解析】【分析】本题考查科学记数法的表示,解题的关键是掌握科学记数法表示的方法.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:故选:3.【答案】B【解析】【分析】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.根据分式有意义的条件是分母不为0列出不等式,解可得自变量x的取值范围,【解答】解:由题意得,,解得,故选:4.【答案】C【解析】解:,,故选:本题考查直角三角形中,两个锐角互余。

2022-2023学年广东省广州市荔湾区八年级上学期期末数学试卷及参考答案

2022-2023学年广东省广州市荔湾区八年级上学期期末数学试卷及参考答案

2022-2023学年广东省广州市荔湾区初二数学第一学期期末试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求的。

)1.下列几种著名的数学曲线中,不是轴对称图形的是( )A .笛卡尔爱心曲线B .蝴蝶曲线C .费马螺线曲线 D .科赫曲线 2.如果分式||339x x −−的值为0,那么x 的值为( ) A .3x ≠ B .3x =± C .3x = D .3x =−3.下列计算正确的是( )A .236()a a =B .236a a a ⋅=C .33(2)2a a =D .1025a a a ÷=4.“95KN ”表示此类型的口罩能过滤空气中95%的粒径约为0.0000003m 的非油性颗粒.其中,0.0000003用科学记数法表示为( )A .6310−⨯B .7310−⨯C .60.310−⨯D .70.310−⨯5.若a b ≠,则下列分式化简正确的是( )A .22a a b b +=+B .22a a b b −=−C .22a a b b =D .22a a b b= 6.下列等式中,从左到右的变形是因式分解的是( )A .2(2)2x x x x −=−B .22(1)21x x x +=++C .22(1)x x x +=+D .24(2)(2)x x x −=+−7.如图,AD BC =,AC BD =,则下列结论中,不正确的是( )A .OA OB = B .OC OD = C .C D ∠=∠ D .OAB DBA ∠=∠8.已知三条线段的长分别是4,4,m ,若它们能构成三角形,则整数m 的最大值是( )A .10B .8C .7D .49.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )A .6B .7C .8D .910.如图,Rt ABC ∆中,90ACB ∠=︒,6AC =,8BC =,10AB =,BD 平分ABC ∠,如果点M ,N 分别为BD ,BC 上的动点,那么CM MN +的最小值是( )A .6B .8C .10D .4.8二、填空题(本大题共6小题,每小题3分,共18分。

广东深圳实验学校2023-2024学年八年级上学期期末数学试题(原卷版+解析)

广东深圳实验学校2023-2024学年八年级上学期期末数学试题(原卷版+解析)

深圳实验学校2023-2024第一学期期末考试初二年级数学试卷考试时间:90分钟 试卷满分:100分一.选择题(每题3分,共30分)1. 下列几个数中,属于无理数的数是( ) A. 0.4583B.37C. 3.97D.π−2. 下列二次根式中,最简二次根式是( )A.B.C.D.3. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm ) 185 180 185180 方差 3.63.67.481根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A. 甲B. 乙C. 丙D. 丁4. 下列命题中,假命题的是( ) A. 面积相等的两个三角形全等 B. 等腰三角形的顶角平分线垂直于底边C. 在同一平面内,垂直于同一条直线的两条直线平行D. 三角形的一个外角大于任何一个与它不相邻的内角5. 如图,用10块形状、大小完全相同的小长方形墙砖拼成一个大长方形,设每个小长方形墙砖的长和宽分别为cm x 和cm y ,则依题意可列方程组为( ).A. 22253x y y x +==B. 2253x y x y +==C. 2253x y x y +==D. 2253x y y x +==6. 如图,台风过境后,一根垂直于地面的大树在离地面6m 处撕裂折断,大树顶部落在离大树底部8m 处,则大树折断之前的高度是( ).A 10mB. 14mC. 16mD. 18m7. 对于一次函数132y x =−+,下列结论正确的是( ) A. 函数图象不经过第四象限B. 函数图象与x 轴的交点坐标是()0,3C. 函数的图象向下平移3个单位长度得12y x =−的图象 D. 若1(A x ,1)y ,2(B x ,2)y 两点在该函数图象上,且12x x <,则12y y < 8. 若关于x 的不等式组21521x x a −≥ <−的整数解共有四个,则a 的取值范围是( )A. 3.54a <≤B. 3.54a ≤<C. 3.54a <<D. 3.54a ≤≤9. 如图,P 为ABC 内一点,过点P 线段MN 分别交AB 、BC 于点M 、N ,且M 、N 分别在PA 、PC 的中垂线上.若80ABC ∠=°,则APC ∠的度数为( )A. 120°B. 125°C. 130°D. 135°10. 如图,在ABC 中,90ACB ∠=°,30CAB ∠=°,=AC D 为AB 上一动点(不与点A 重合),AED △为等边三角形,过D 点作DE 的垂线,F 为垂线上任意一点,G 为EF 的中点,则线段BG 长的最小值是( ).的的的A. B. 6C. D. 9二.填空题(每题3分,共15分)11. 比较大小:3(填“>”“<”或“=”)12. 已知()115P a −,和()221P b −,关于x 轴对称,则()2022a b +的值为______.13. 如图,直线1l :1y x =+与直线2l :y kx b =+相交于点()1,P m ,则关于x ,y 的方程组1y x y kx b =+ =+的解为______.14. 如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若4FG =,8ED =,求EB DC +=______.15. 如图所示,点A 、B 分别是坐标轴上的点,且OA OB =,AC x ⊥轴,点D 在x 轴负半轴上,AC OD =,连接OC 、BD 相交于点E ,若四边形ACED 的面积为56,OE 长为1,则点A 的坐标为_______.三.解答题(共7大题,共55分)16. 计算: (1− (2)(25×−17. 解方程组和不等式组,并把不等式组的解集在数轴上表示出来: (1)321022x y x y −=+=(2)解不等式组()2142115x x x −≤−<+18. 如图,已知ABC 的顶点分别为()2,2A −,()4,5B −,()5,1C −.(1)作出ABC 关于x 轴对称的图形111A B C △.(2)点P 在x 轴上运动,当AP CP +的值最小时,直接写出点P 的坐标. (3)求ABC 的面积.19. 某校为了解八年级学生参加社会实践活动情况,随机调查了本校部分八年级学生在第一学期参加社会实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(1)本次接受随机抽样调查的学生人数为________,图①中的m 的值为_________; (2)求本次抽样调查获取的样本数据的中位数;(3)若该校八年级学生有480人,估计参加社会实践活动时间大于7天的学生人数.20. 某公司决定为优秀员工购买A ,B 两种奖品,已知购买3个A 种奖品比购买2个B 种奖品多花140元,购买4个A 种奖品与购买5个B 种奖品所需钱数相同. (1)求A ,B 两种奖品每个的价格;(2)商家推出了促销活动,A 种奖品打九折.若该公司打算购买A ,B 两种奖品共30个,且B 种奖品的个数不多于A 种奖品个数的一半,则该公司最少花费多少钱?21. 如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA ,如果梯子的底端P 不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB .(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B 处,若 1.6MA =米, 1.2AP =米,则甲房间的宽度AB =______米.(2)当他在乙房间时,测得 2.4MA =米, 2.5MP =米,且90MPN ∠=°,求乙房间的宽AB ; (3)当他在丙房间时,测得 2.8MA =米,且75MPA ∠=°,45NPB ∠=°.求丙房间的宽AB . 22. 如图1,已知函数132yx =+与x 轴交于点A ,与y 轴交于点B ,点C 与点A 关于y 轴对称. (1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线AB 于点P ,交直线BC 于点Q .①若PQB ∆的面积为72,求点Q 的坐标; ②点M 在线段AC 上,连接BM ,如图2,若BMP BAC ∠=∠,直接写出P 的坐标.深圳实验学校2023-2024第一学期期末考试初二年级数学试卷考试时间:90分钟试卷满分:100分一.选择题(每题3分,共30分)1. 下列几个数中,属于无理数的数是()A. 0.4583B. 37C. 3.97D. π−【答案】D【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选项.【详解】解:A.0.4583是有限小数,属于有理数,故本选项不合题意;B.37是分数,属于有理数,故本选项不合题意;C.3.97 是循环小数,属于有理数,故本选项不合题意;D. π−是无理数,故本选项符合题意,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002(…相邻两个2中间依次多1个0),等有这样规律的数.2. 下列二次根式中,最简二次根式是()A. B. C. D.【答案】A【解析】【分析】根据最简二次根式的两个条件逐项判定即可.【详解】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选:A.【点睛】本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.4 8.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A. 甲B. 乙C. 丙D. 丁【答案】A【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵x甲=x丙>x乙=x丁,∴从甲和丙中选择一人参加比赛,∵2S甲=2S乙<2S丙<2S丁,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.4. 下列命题中,假命题的是()A. 面积相等的两个三角形全等B. 等腰三角形的顶角平分线垂直于底边C. 在同一平面内,垂直于同一条直线的两条直线平行D. 三角形的一个外角大于任何一个与它不相邻的内角【答案】A【解析】【分析】分别根据全等三角形判定,等腰三角形的定义,平行线的判定,三角形外角的定义判断即可.【详解】A.面积相等的两个三角形不一定全等,故原选项错误;B.等腰三角形的顶角平分线垂直于底边,故原选项正确;的C .在同一平面内,垂直于同一条直线的两条直线平行,故原选项正确;D .三角形的一个外角大于任何一个与它不相邻的内角,故原选项正确; 故选A .【点睛】本题考查了全等三角形的判定,等腰三角形的定义,平行线的判定,三角形外角的定义,熟练掌握各知识点是解题的关键.5. 如图,用10块形状、大小完全相同小长方形墙砖拼成一个大长方形,设每个小长方形墙砖的长和宽分别为cm x 和cm y ,则依题意可列方程组为( )A. 22253x y y x +==B. 2253x y x y +==C. 2253x y x y +==D. 2253x y y x +==【答案】B 【解析】【分析】本题主要考查了由实际问题抽象出二元一次方程组,解题的关键是看懂图示,分别表示出长方形的长和宽.根据图示可得:长方形的左右的边可以表示为2x y +或25,故225x y +=,长方形的上下边可以表示为2x ,或3x y +,故23x y x =+,整理得3x y =,联立两个方程即可. 【详解】解:根据图示可得:2253x y x y+==故选:B .6. 如图,台风过境后,一根垂直于地面的大树在离地面6m 处撕裂折断,大树顶部落在离大树底部8m 处,则大树折断之前的高度是( ).A. 10mB. 14mC. 16mD. 18m【答案】C 【解析】的【分析】大树未折断部分,折断部分,和地面正好构成直角三角形,应用勾股定理求出线段AC 的长度,再加上未折断的AB 即可求出树的高度.【详解】解:如图:树的总高度为:+AB AC ,在Rt ABC ∆中,根据勾股定理得:222AB BC AC +=,∴22268AC +=,∴10AC =,∴61016AB AC +=+=.故选:C .【点睛】本题考查勾股定理的应用,解题的关键是求出折断部分的长度,注意一定要加上未折断部分的长度,这是易错点.7. 对于一次函数132y x =−+,下列结论正确的是( ) A. 函数的图象不经过第四象限B. 函数的图象与x 轴的交点坐标是()0,3C. 函数的图象向下平移3个单位长度得12y x =−的图象 D. 若1(A x ,1)y ,2(B x ,2)y 两点在该函数图象上,且12x x <,则12y y < 【答案】C 【解析】【分析】根据一次函数的性质,一次函数图象上点的坐标特征,平移的规律来判断即可.【详解】解:A 、由132y x =−+可知102k =−<,30=>b , ∴直线过一,二,四象限,故不合题意;B 、当0x =时,1332y x =−+=, ∴函数的图象与y 轴的交点坐标是(0,3),故不合题意;C 、直线132y x =−+向下平移3个单位长度得113322y x x =−+−=−,故符合题意; D 、102k =−< , y ∴随x 的增大而减小,∴若12x x <,则12y y >,故不合题意.故选:C .【点睛】本题考查的是一次函数的图象与性质,解题的关键是根据k 、b 的符号判断直线过第几象限,会求直线与坐标轴的交点.8. 若关于x 的不等式组21521x x a −≥ <−的整数解共有四个,则a 的取值范围是( ) A. 3.54a <≤B. 3.54a ≤<C. 3.54a <<D. 3.54a ≤≤ 【答案】A【解析】【分析】先求出不等式组的解集321x a ≤<−,再由不等式组的整数解共有四个,可得6217a <−≤,即可求解.熟练掌握一元一次不等式组的解法是解题的关键.【详解】解:21521x x a −≥ <− ①②,解不等式①得:3x ≥,∴不等式组的解集为321x a ≤<−,∵不等式组的整数解共有四个,∴6217a <−≤,解得:3.54a <≤.故选:A9. 如图,P 为ABC 内一点,过点P 的线段MN 分别交AB 、BC 于点M 、N ,且M 、N 分别在PA 、PC的中垂线上.若80ABC ∠=°,则APC ∠的度数为( )A. 120°B. 125°C. 130°D. 135°【答案】C【解析】 【分析】根据线段的垂直平分线的性质得到,MA MP NP NC ==,根据等腰三角形的性质、三角形内角和定理计算,得到答案.【详解】解:∵80ABC ∠=°, ∴100BMN BNM ∠∠=°+,∵M 、N 分别在PA 、PC 的中垂线上,∴,MA MPNP NC ==, ∴12MPA MAP BMN ∠=∠=∠,12NPC NCP BNM ∠=∠=∠, ∴1100502MPA NPC ∠+∠°=×=°, ∴18050130APC ∠=−=°°°,故选C . 【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10. 如图,在ABC 中,90ACB ∠=°,30CAB ∠=°,=AC D 为AB 上一动点(不与点A 重合),AED △为等边三角形,过D 点作DE 的垂线,F 为垂线上任意一点,G 为EF 的中点,则线段BG 长的最小值是( )A. B. 6C. D. 9【答案】B【解析】 【分析】连接DG ,AG ,设AG 交DE 于点H ,先判定AG 为线段DE 的垂直平分线,再判定()BAC BAG AAS ′≅ ,然后由全等三角形的性质可得答案.【详解】:如图,连接DG ,AG ,设AG 交DE 于点H ,DE DF ⊥ ,G 为EF 的中点,DG GE ∴=,∴点G 在线段DE 的垂直平分线上,AED 为等边三角形,AD AE ∴=,∴点A 在线段DEAG ∴为线段DE 的垂直平分线,AG DE ∴⊥,1302DAG DAE ∠=∠=°, ∴点G 在射线AH 上,当BG AH ⊥时,BG 的值最小,如图所示,设点G ′为垂足,90ACB ∠=° ,30CAB ∠=°,ACB AG B ′∴∠=∠,CAB BAG ′∠=∠,则在BAC 和BAG ′△中,ACB AG B CAB BAG AB AB ∠=∠ ∠=∠=′ ′, ()BAC BAG AAS ′∴≅ .BG BC ′∴=,∵90ACB ∠=°,30CAB ∠=°,=AC ,∴12BC AB =,222BC AB +=,∴222(2)BC BC +=,解得:6BC =,∴6BGBC ′== 故选:B .【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的判定与性质,数形结合并明确相关性质及定理是解题的关键.二.填空题(每题3分,共15分)11. 比较大小:3(填“>”“<”或“=”)【答案】<【解析】【分析】此题主要考查了实数的大小比较,将3,然后比较被开方数即可比较大小.【详解】解:3=<故答案为:<. 12. 已知()115P a −,和()221P b −,关于x 轴对称,则()2022a b +的值为______.【答案】1【解析】 【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,求得,a b 的值,进而代入代数式即可求解.【详解】解:∵()115P a −,和()221P b −,关于x 轴对称, ∴12,510a b −=+−=, 解得3,4a b ==−,∴()2022a b +()2022341=−=,故答案为:1.【点睛】本题考查了关于x 轴对称的两个点的坐标特征,掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.13. 如图,直线1l :1y x =+与直线2l :y kx b =+相交于点()1,P m ,则关于x ,y 的方程组1y x y kx b =+ =+的解为______.【答案】12x y == 【解析】 【分析】本题考查了二元一次方程组与一次函数的关系,首先利用待定系数法求出b 的值,进而得到P 点坐标即可,解题的关键是掌握两函数图象的交点就是两函数组成的二元一次方程组的解.【详解】解:∵直线1y x =+经过点()1,P m ,∴11m =+,解得2m =,∴()1,2P ,∴关于x 的方程组1y x y kx b =+ =+ 的解为12x y = = , 故答案为:12x y = =. 14. 如图,在ABC 中,ED BC ∥,ABC ∠和ACB ∠的平分线分别交ED 于点G 、F ,若4FG =,8ED =,求EB DC +=______.【答案】12【解析】【分析】根据角平分线和平行线的性质可得EBG EGB ∠=∠,DFC DCF ∠=∠,根据等腰三角形的性质可得EG BE =,DF DC =,即可求解.【详解】解:由题意可得:BG 平分ABC ∠,CF 平分ACB ∠∴ABG CBG ∠=∠,DCF BCF ∠=∠又∵ED BC ∥∴EGB CBG ∠=∠,DFC BCF ∠=∠ ∴EBG EGB ∠=∠,DFC DCF ∠=∠ ∴EG BE =,DF DC =∴12EB DC EG DF ED FG +=+=+=故答案为:12【点睛】此题考查了等腰三角形的性质,平行线的性质,解题的关键是熟练掌握相关基本性质. 15. 如图所示,点A 、B 分别是坐标轴上的点,且OA OB =,AC x ⊥轴,点D 在x 轴负半轴上,AC OD =,连接OC 、BD 相交于点E ,若四边形ACED 的面积为56,OE 长为1,则点A 的坐标为_______.【答案】【解析】【分析】首先根据全等三角形的判定定理SAS ,即可证得OAC BOD △≌△,可得C ODB ∠=∠,OA BO =,OAC BOD S S =△△,可证得56BOE ACED S S ==△四边形,再根据直角三角形的性质可证得90DEO BEO ∠=∠=°,根据三角形的面积公式,即可求得53BE =,最后根据勾股定理可求得OB ,据此即可解答.【详解】解:AC x ⊥ ,90OAC BOD ∴∠=∠=°在OAC 与BOD 中,OA OB OAC BOD AC OD = ∠=∠ =()SAS OAC BOD ∴△≌△,C ODB ∴∠=∠,OA BO =,OAC BOD S S =△△,OAC ODE BOD ODE S S S S ∴−=−△△△△,56BOE ACED S S ∴==△四边形, 90AOC C ∠+∠=° ,90ODB AOC ∴∠+∠=°,90DEO BEO ∴∠=∠=°,1151226BOE S OE BE BE ∴=⋅=××=△, 53BE ∴=,BO ∴===OA ∴ ∴点A的坐标为,故答案为:.【点睛】本题考查了全等三角形的判定及性质,直角三角形的性质,勾股定理,证得90BEO ∠=°是解决本题的关键.三.解答题(共7大题,共55分)16. 计算:(1− (2)(25×− 【答案】(1)(2)1【解析】【分析】(1)本题考查的是实数的运算,先根据实数的乘除法则进行计算,再进行实数的加减即可;各种运算律的灵活应用是解决此题的关键;(2)先利用完全平方公式计算,然利用平方差计算即可.小问1详解】−=−=【小问2详解】(25×−(225++×−((55=+×−(225=−2524=−1=.17. 解方程组和不等式组,并把不等式组的解集在数轴上表示出来:(1)321022x yx y−=+=(2)解不等式组()2142115xxx−≤−<+【【答案】(1)22x y = =−(2)23x −<≤【解析】【分析】本题主要考查二元一次方程组及一元一次不等式组的解法,熟练掌握二元一次方程组及一元一次不等式组的解法是解题的关键;(1)根据加减消元可进行求解方程组;(2)根据一元一次不等式组的解法可进行求解.【小问1详解】解:321022x y x y −= +=①②, 2×②得:424x y +=③, ①+③得:714x =,解得:2x =,把2x =代入②得:42y +=, 解得:=2y −,∴原方程组的解为:22x y = =−; 【小问2详解】解:()2142115x x x −≤ −<+①② 解不等式①,得,3x ≤解不等式②,得2x >−把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为23x −<≤.18. 如图,已知ABC 的顶点分别为()2,2A −,()4,5B −,()5,1C −.(1)作出ABC 关于x 轴对称的图形111A B C △.(2)点P 在x 轴上运动,当AP CP +的值最小时,直接写出点P 的坐标. (3)求ABC 的面积.【答案】(1)见解析 (2)()4,0P −(3) 5.5ABC S =【解析】【分析】(1)根据题意,先画出点A 、B 、C 关于x 轴的对称点,再一次连接即可; (2)连接1CA ,与x 轴相交于点P ,点P 即为所求,再用待定系数法求解直线1CA 的函数表达式,最后即可求出点P 的坐标;(3)用割补法即可求解.【小问1详解】解:如图,111A B C △即为所求.【小问2详解】根据轴对称的性质及两点之间线段最短可知连接1CA ,与x 轴相交于点P ,点P 即为所求;设直线1CA 的函数解析式为:()0y kx b k =+≠, 把()5,1C −,()12,2A −−代入得:1522k b k b =−+ −=−+,解得: 14k b =− =− , ∴直线1CA 的函数解析式为:4y x =−−, 把0y =代入得:04x =−−,解得:4x =−,∴()4,0P −.【小问3详解】11134132314 5.5222ABC S =×−××−××−××= . 【点睛】本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义与性质.19. 某校为了解八年级学生参加社会实践活动情况,随机调查了本校部分八年级学生在第一学期参加社会实践活动天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(1)本次接受随机抽样调查的学生人数为________,图①中的m 的值为_________;(2)求本次抽样调查获取的样本数据的中位数;(3)若该校八年级学生有480人,估计参加社会实践活动时间大于7天的学生人数.【答案】(1)40,20(2)6 (3)96人【解析】【分析】(1)根据5天的人数和所占的百分比求出抽样调查总人数,用6天的人数除以总人数即可求出m 的值;(2)根据中位数计算公式进行解答即可;(3)用八年级的人数乘以参加社会实践活动时间大于7天的学生人数所占的百分比即可.的【小问1详解】解:本次接受随机抽样调查学生人数为:14÷35%=40(人),m %=840×100%=20%,则m =20; 故答案为:40,20;【小问2详解】解:∵ 本次抽样调查了40个学生,∴ 中位数是第20、21个数的平均数,∴ 中位数是(6+6)÷2=6 ,【小问3详解】解:根据题意得:480×(10%+10%)=96(人).答:参加社会实践活动时间大于7天的学生人数约是96人.【点睛】本题考查了条形统计图的综合运用,用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20. 某公司决定为优秀员工购买A ,B 两种奖品,已知购买3个A 种奖品比购买2个B 种奖品多花140元,购买4个A 种奖品与购买5个B 种奖品所需钱数相同.(1)求A ,B 两种奖品每个的价格;(2)商家推出了促销活动,A .若该公司打算购买A ,B 两种奖品共30个,且B 种奖品的个数不多于A 种奖品个数的一半,则该公司最少花费多少钱?【答案】(1)每个A 种奖品的价格为100元,每个B 种奖品的价格为80元(2)2600元【解析】【分析】(1)设每个A 种奖品的价格为x 元,每个B 种奖品价格为y 元,根据购买3个A 种奖品比购买2个B 种奖品多花140元,购买4个A 种奖品与购买5个B 种奖品所需钱数相同列出方程组求解即可;(2)设购买A 种奖品a 个,则购买B 种奖品()30a −个,根据B 种奖品的个数不多于A 种奖品个数的一半,列出不等式求出a 的范围,设购买奖品的总花费为w 元,根据题意列出w 关于a 的一次函数,利用一次函数的性质求解即可.【小问1详解】解:设每个A 种奖品的价格为x 元,每个B 种奖品价格为y 元,的根据题意,得:3214045x y x y −= =, 解得:10080x y = =, 答:每个A 种奖品的价格为100元,每个B 种奖品的价格为80元;【小问2详解】解:设购买A 种奖品a 个,则购买B 种奖品()30a −个, 根据题意,得:1302a a −≤, 解得:20a ≥.设购买奖品的总花费为w 元,根据题意,得:()1000.98030102400w a a a ×+−+, 100> ,w ∴随着a 的增大而增大.∴当20a =时,w 取得最小值,102024002600min w =×+=.答:该公司最少花费2600元.【点睛】本题主要考查了一次函数的实际应用,二元一次方程组的实际应用,一元一次不等式的实际应21. 如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA ,如果梯子的底端P 不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB .(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B 处,若 1.6MA =米, 1.2AP =米,则甲房间的宽度AB =______米.(2)当他在乙房间时,测得 2.4MA =米, 2.5MP =米,且90MPN ∠=°,求乙房间的宽AB ; (3)当他在丙房间时,测得 2.8MA =米,且75MPA ∠=°,45NPB ∠=°.求丙房间的宽AB .【答案】(1)3.2;(2)3.1;(3)丙房间的宽AB 是2.8米.【解析】【分析】此题考查了勾股定理的应用,全等三角形的应用,解直角三角形的应用,根据PM PN =以及MPN ∠的度数得到PMN 为等边三角形是解题的关键.(1)根据勾股定理即可得到结论;(2)证明AMP BPN ≌ ,从而得到 2.4MA PB ==米,0.7PA NB ==米, 即可求出AB PA PB =+;(3) 根据PM PN =以及MPN ∠的度数得到PMN 为等边三角形利用相应的三角函数表示出MN ,MP 的长,可得到房间宽AB 和AM 长相等.【小问1详解】解:在Rt AMP 中,∵90A ∠=°, 1.6MA =米, 1.2AP =米,∴2PM ,∵2PB PM ==,∴甲房间的宽度 3.2AB AP PB =+=米,【小问2详解】解:∵90MPN ∠=°,∴90APM BPN ∠+∠=°,∵90APM AMP ∠+∠=°,∴AMP BPN ∠=∠,在 AMP 与BPN △中,90AMP BPN MAP PBN MP PN ∠=∠ ∠=∠=° =, ∴AMP BPN ≌ ,∴ 2.4MA PB ==,∴0.7PA ,∴.01.43.72AB PA PB =+=+=米.【小问3详解】解:过N 点作MA 垂线,垂足点D ,连接NM ,设AB x =,且AB ND x ==.∵梯子的倾斜角BPN ∠为45°,∴BNP △为等腰直角三角形,PNM △为等边三角形()180457560°−°−°=°,梯子长度相同,15MND ∠=°,∵75APM ∠=°,∴15AMP ∠=°,∴DNM AMP ∠=∠,∵PNM △为等边三角形,∴NM PM =,∴()AAS AMP DNM ≌,∴AM DN =,∴ 2.8AB DN AM ===AB 是2.8米.22. 如图1,已知函数132y x =+与x 轴交于点A ,与y 轴交于点B ,点C 与点A 关于y 轴对称. (1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线AB 于点P ,交直线BC 于点Q . ①若PQB ∆的面积为72,求点Q 的坐标; ②点M 在线段AC 上,连接BM ,如图2,若BMP BAC ∠=∠,直接写出P 的坐标.【答案】(1)直线BC 的函数解析式为132y x =−+;(2)①Q的坐标为3−或(,3+;②P 的坐标为3(2−,9)4或3(2,15)4 【解析】【分析】(1)先确定出点B 坐标和点A 坐标,进而求出点C 坐标,最后用待定系数法求出直线BC 解析式;(2)①先表示出PQ ,最后用三角形面积公式即可得出结论;②分点M 在y 轴左侧和右侧,由对称得出BAC ACB ∠=∠,90BMP BMC ∠+∠=°,所以,当90MBC ∠=°即可,利用勾股定理建立方程即可22945(6)x x ++=−,即可求解.【详解】解:(1)对于132y x =+, 由0x =得:3y =,∴B (0,3).由0y =得:1302x +=,解得6x =−, ∴A (-6,0),∵ 点C 与点A 关于y 轴对称.∴C (6,0),设直线BC 的函数解析式为y kx =+, ∴360b k b = += ,解得123k b =− = , ∴直线BC 的函数解析式为132y x =−+;(2)①设点(,0)M m ,则点1(3)2P m m +,,点1(3)2Q m m , , 过点B 作BD PQ ⊥与点D ,则113(3)22PQ m m m =−+−+=,||BD m =, 则PQB ∆的面积2117·222PQ BD m ==,解得m =,故点Q 的坐标为,3−或(,3; ②如图2,当点M 在y 轴的左侧时,点C 与点A 关于y 轴对称,AB BC ∴=,BAC BCA ∴∠=∠,BMP BAC ∠=∠ ,BMP BCA ∴∠=∠,90BMP BMC ∠+∠=° ,90BMC BCA ∴∠+∠=°,180()90MBC BMC BCA ∴∠=°−∠+∠=°, 222BM BC MC ∴+=,设(0)M x ,,则1(3)2P x x +,, 222223BM OM OB x =∴=++,MC 2=(6-x)2,222226345BC OC OB =+=+=, 22945(6)x x ∴++=−,解得32x =−, 3(2P ∴−,9)4, 当点M 在y 轴的右侧时, 同理可得3(2P ,15)4,综上,点P的坐标为3(2−,9)4或3(2,15)4.【点睛】本题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,直角三角形的判定,勾股定理,坐标轴上点的特点,分类讨论是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省广州八年级上学期期末考试数学试卷姓名: 班级: 学号: 得分:一、选择题(每题3分,共24分) 1、下列各数中无理数共有( )722,π-,••41.3 ,⋅⋅⋅⋅⋅⋅0131331(相邻二个1之间3的个数逐次加1),49-,39; A.4个 B.3个 C.2个 D.1个2、已知三组数据①2,3,4;②3,4,5③1,3,2;分别以每组数据中的三个数为三角形的三边长, 能构成直角三角形的有( )A. ②B. ①②C. ①③D. ②③3、下列各式中计算正确的是( )A.5)5(2-=- B. 39±= C. 22-33-=)( D.6322=)( 4、关于数据:85,88,80,95,88,86的叙述中,错误的是( )A.极差是15B.众数是88C.中位数是86D.平均数是87 5、关于函数x y 21-=,下列结论正确的是( ) A.函数图象必过点(-2,-1) B. 函数图象经过第1、3象限 C.y 随x 的增大而减小 D. y 随x 的增大而增大 6、下列命题中,是真命题的是( )A.过一点有且只有一条直线与已知直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同旁内角互补D.在同一平面内,垂直于同一直线的两条直线平行 7、长方形ABCD 的三个顶点的坐标是A (1,1)、B (3,1)、C (3,5),那么D 点坐标是( ) A.(1,3) B.(1,5) C.(5,3) D.(5,1)8、甲、乙两人练习跑步,如果乙在甲前面10m 处,则两人同时跑,甲5s 可追上乙;如果甲让乙先跑2s ,则甲4s 可追上乙.设甲的速度为x m/s ,乙的速度为y m/s.下列方程组正确的是( ) A.⎩⎨⎧+=+=y y x y x 2441055 B. ⎩⎨⎧=-=-yx x y x 4241055 C. ⎩⎨⎧=-=+2445105y x y x D. ⎩⎨⎧=-=-y x y x 4241055二、填空题(每题3分,共24分) 9、16的平方根是______________. 10、如果⎩⎨⎧==23y x 是方程3x-ay=-3的一个解,则a=_____________.11、已知a 、b 为两个连续的整数,且b a <<39,则a+b=___________.12、某公司欲招收职员一名,从学历、经验、和工作态度三个方面进行测试,小华测试成绩如下:学历9分,经验7分,工作态度8分.如果将学历、经验和工作态度三项得分按1:2:2的比例确定最终得分,那么小华最后的成绩是___________________.13、如右图,在ABC ∆中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长 线上,DE ∥BC ,︒=∠44A ,︒=∠571,则=∠2____________.E14、如果923b ay x +-与y x b a +232是同类项,则x+y=____________.15、如右图,有一块直角三角形纸片,︒=∠90C ,AC=12cm ,BC=5cm ,将 斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD , 则CE 的长为__________cm.16、某书定价25元,如果一次购买20本以上,超过20本的部分打八折, 试写出付款金额y (单价:元)与购买数量x (x>20)(单位:本)之间的 函数关系式_____________________________________. 三、解答题(共72 分) 17、计算:(每小题4分,共8分) (1)483319122-+ (2)818218、(5分)解方程组⎩⎨⎧-=-=-102304y x y x19、(5分)已知:23+=a ,23-=b .求代数式22b ab a ++的值.20、(6分)如图:网格中的每一个小正方形的边长是1,在这个网格中画一个钝角ABC ∆,使10=AB .(注:点C 必须在格点上)21、(6分)已知ABC ∆的顶点A (-4,5),B (-2,1),完成下列问题: (1)在如图所示的网格中建立直角坐标系;(2)作出ABC ∆关于y 轴对称的'''C B A ∆ (3)写出点'C 的坐标22、(6分)已知一次函数22--=x y ,完成下列问题: (1)画出函数图象.(2)直接写出图象与x 轴、y 轴的交点A 、B 的坐标.(3)观察图象,写出x 在什么范围内取值时,y>0.23、(8分)甲、乙两位运动员进行射击比赛,各射击了10次,每次命中环数如下: 甲:8,6,7,8,9,10,6,5,4,7 乙:7,9,8,5,6,7, 7,6,7,8(1)甲、乙运动员的平均成绩分别是多少? (2)这十次比赛成绩的方差分别是多少? (3)试分析这两名运动员的射击成绩. (注:方差公式()()[()]2222121x x x x x x ns n -+⋅⋅⋅+-+-=24、(8分)如图,已知:DE ⊥AO 于点E , BO ⊥AO 于点O ,∠CFB=∠EDO , 证明:CF ∥DO .25、(10分)某一天,文具经营户花360元从文具批发市场批发了自动铅笔和钢笔共80支,到文具店去卖,自动铅笔和钢笔当天的批发价与零售价如下表所示:品名 钢笔 自动铅笔批发价(元/支) 4.8 4 零售价(元/支)7.25.6问:他卖完这些自动铅笔和钢笔可赚多少钱?26、(10分)一次函数的应用(10分):如图,A l 和B l 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系。

(1)B 出发时与A 相距 千米;(2)B 走了一段路后,自行车发生故障,进行修理,所用的时间是 小时; (3)B 出发后 小时与A 相遇;(4)若B 的自行车不发生故障,保持出发时的速度前进,那么B 几小时后与A 相遇,相遇点离B 的出发点多少千米?在图中标出这个相遇点C.初二试卷答案二、填空题(每题3分,共24分)9、4或—4 10、6 11、13 12、7.8分(没加单位扣1分) 13、101°(没加单位扣1分) 14、4 15、116、y=20x+100 (x>20)(没写范围或者没有化简扣1分) 三、解答题(共72分)17、计算:(每小题4分,共8分) (1)483319122-+ (2)2188+ 解:原式312-3334+=——3分 解:原式 22322+=——2分 35-= ——4分 225=——3分 5= ——4分 18、(5分)解方程组⎩⎨⎧-=-=-102304y x y x 4x-y=30① x-2y=-10②解:①×2得:8x-2y=60③③-②得:7x=70x=10 ———————2分 把x=10代入①得:40-y=30y=10 ————4分 所以方程组的解是⎩⎨⎧==1010y x —————5分19、(5分)已知:23+=a ,23-=b .求代数式22b ab a ++的值.解:当23+=a ,23-=b 时 ——————1分22b ab a ++()()()()222-32-32323++++=6251625-+++= ————————4分 =11 ——————————————5分20、(6分)如图:网格中的每一个小正方形的边长是1,在这个网格中画一个钝角ABC ∆,使10=AB .(注:点C 必须在格点上) 解:图(略)————————5分 结论 —————————6分21、(6分)已知ABC ∆的顶点A (-4,5),B (-2,1),完成下列问题: (1)在如图所示的网格中建立直角坐标系;(2)作出ABC ∆关于y 轴对称的'''C B A ∆ (3)写出点'C 的坐标解:(1)如图所示————2分 (2)'''C B A ∆就是所画的三角形————5分 (3)'C 的坐标(1,3)———————6分22、(6分)已知一次函数22--=x y ,完成下列问题: (4)画出函数图象.(5)直接写出图象与x 轴、y 轴的交点A 、B 的坐标. (6)观察图象,写出x 在什么范围内取值时,y>0. 解:(1)x 0 1 y-24列表画图共 ——————3分(2)A(-1,0) B(0,-2) ————5分 (3)当x<-1时,y>0 ————6分 23、(8分)甲、乙两位运动员进行射击比赛,各射击了10次,每次命中环数如下: 甲:8,6,7,8,9,10,6,5,4,7 乙:7,9,8,5,6,7, 7,6,7,8(1)甲、乙运动员的平均成绩分别是多少?(2)这十次比赛成绩的方差分别是多少? (3)试分析这两名运动员的射击成绩. (注:方差公式()()[()]2222121x x x x x x ns n -+⋅⋅⋅+-+-=解:(1)分分乙甲77__==x x ——————————2分(2)32=甲s ——————————4分1.22=乙s ——————————6分(3)从平均成绩看,乙甲__x x =,甲乙成绩一样好 ——————7分从方差来看,22乙甲s s >,乙的成绩更稳定 ———————8分24、(8分)如图,已知:DE ⊥AO 于E , BO ⊥AO ,∠CFB=∠EDO , 证明:CF ∥DO . 证明:∵DE ⊥AO ,DO ⊥AO (已知)————1分 ∴︒=∠=∠90AOB AED (垂直定义) ————3分 ∴DE ∥BO (同位角相等,两条直线平行) —4分 ∴∠EDO=∠BOD (两直线平行,内错角相等)—5分又∵∠EDO=∠CFB (已知)————————6分 ∴∠BOD=∠CFB (等量代换)————————7分 ∴CF ∥DO (同位角相等,两条直线平行)—8分25、(10分)某一天,文具经营户花360元从文具批发市场批发了自动铅笔和钢笔共80支,到文具店去卖,自动铅笔和钢笔当天的批发价与零售价如下表所示:问:他卖完这些自动铅笔和钢笔可赚多少钱?解:设自动铅笔买了x 支,钢笔买了y 支. ————1分 则有⎩⎨⎧=+=+3608.4480y x y x ——————————————5分解得⎩⎨⎧==5030y x ———————————————8分这次赚得钱:7.2×50+5.6×30-360=168元 ————9分 答:他卖完这些笔可赚168元 ——————————10分26、(10分)一次函数的应用(10分):如图,A l 和B l 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系。

相关文档
最新文档