天津大学图像处理实验报告

合集下载

图像处理实习报告

图像处理实习报告

图像处理实习报告篇一:数字图像处理实习报告目录1、图像直方图实验 (1)2、图像的傅立叶变换实验 .......................................... 23、直方图均衡化实验 .................................................. 5 4.图像空间平滑实验 .................................................. 6 5.图像空间锐化实验.................................................. 8 6、图像分割实验-.................................................... 12 7、图像分割实验二 (17)1、图像直方图实验一、实验目的1.在ENVI软件中观察图像的灰度直方图,结合图像掌握直方图的性质和应运。

2.学有余力的同学可采用自己熟悉的开发语言如matlab,IDL等自己制作图像的灰度直方图。

二、实验素材ENVI软件,图像三、实验原理灰度直方图反映的是灰度级函数,描述的是图像中该灰度级的像素个数,它是图像的重要特征之一,反映了图像灰度分布情况。

任何一张图像都对应着唯一的灰度直方图,但不同的图像可以对应相应的直方图,可以用实验来验证。

四、实验过程下图为实验步骤截图:1五、实验心得:通过本次试验学会在Envi软件中查看图像的灰度直方图,在灰度直方图上,准确的反映了图像灰度分布的情况。

2、图像的傅立叶变换实验一、实验目的理解傅立叶变换的原理和傅里叶变换的使用,掌握运用ENVI进行傅立叶变换及频率域平滑和锐化的步骤和方法。

二、实验素材2Envi 软件,图像三、实验原理傅立叶变换原理:连续:反变换:F{f(x)}?F(u)??f(x)e?j2?uxdxj?1f(x)?F?1{F(u)}??F(u))ej2?uxdu1F(u)?N离散:f(x)?反变换:x?0N?1f(x)e?j2?ux/Nj2?ux/NN?1x?0F(u)e四、实验过程:利用傅立叶变换方法进行图像异常(高频)信息提取:1、打开ENVI4.7,单击FILE菜单,在下拉菜单中选择open image file 选项,单击打开自己的图像文件。

图像处理实验报告

图像处理实验报告

图像处理实验报告图像处理实验报告一、引言图像处理是计算机科学与工程领域的一个重要研究方向,它涉及到对数字图像进行获取、处理、分析和显示等一系列操作。

本实验旨在通过使用图像处理技术,对一幅给定的数字图像进行处理和分析,以探索图像处理的原理和应用。

二、实验目的本实验有以下几个目的:1. 理解图像处理的基本概念和原理;2. 掌握图像处理的常用技术和方法;3. 熟悉图像处理软件的使用。

三、实验步骤1. 图像获取在本实验中,我们选择了一张风景图作为实验对象。

该图像是通过数码相机拍摄得到的,保存在计算机中的文件格式为JPEG。

我们使用图像处理软件将该图像导入到程序中,以便进行后续的处理和分析。

2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理。

预处理的目的是去除图像中的噪声、平滑图像的边缘等。

我们使用了均值滤波和中值滤波两种常用的图像平滑方法。

通过对比两种方法的效果,我们可以选择合适的方法来进行图像预处理。

3. 图像增强图像增强是指通过一系列的操作,使得图像在视觉上更加鲜明、清晰、易于观察。

在本实验中,我们使用了直方图均衡化和灰度拉伸两种图像增强方法。

直方图均衡化通过对图像的像素值进行变换,使得图像的直方图更加均匀,从而增强图像的对比度。

灰度拉伸则是通过对图像的像素值进行线性变换,将图像的灰度范围拉伸到更广的范围内,从而增强图像的细节。

4. 图像分割图像分割是将图像分成若干个互不重叠的区域,每个区域具有一定的意义和特征。

在本实验中,我们使用了阈值分割和边缘检测两种图像分割方法。

阈值分割是指通过设置一个合适的阈值,将图像中的像素分为两个类别。

边缘检测则是通过检测图像中的边缘信息,将图像分割为不同的区域。

5. 图像特征提取图像特征提取是指从图像中提取出具有一定意义和特征的信息。

在本实验中,我们选择了纹理特征和颜色特征两种常用的图像特征提取方法。

纹理特征提取通过对图像的纹理进行分析,提取出图像的纹理特征。

图片处理实训报告总结

图片处理实训报告总结

图片处理实训报告总结
本次图片处理实训主要围绕图像采集、预处理、特征提取和图像分割等方面展开。

通过本次实训,我对图像处理的基本原理和常用技术有了更深入的了解,并且掌握了相关的工具和方法。

在图像采集方面,我们学习了如何使用相机或者手机进行图像的拍摄,以及如何处理不同光照和角度下的图像。

我们使用了不同的拍摄方式和参数设置,以获得更好的图像质量。

同时,我们还学习了如何使用图像处理软件对已有的图像进行采集和处理,包括调整亮度、对比度和色彩平衡等。

在图像预处理方面,我们学习了如何去除噪声和不必要的细节,以提高图像的质量。

我们使用了滤波器对图像进行平滑和锐化处理,同时还学习了如何使用图像算法对图像进行增强处理。

通过预处理,我们能够更好地凸显出图像的目标信息和特征。

在特征提取方面,我们学习了常用的特征提取方法,包括边缘检测、角点检测和纹理特征提取等。

我们使用了不同的算法和工具对图像进行特征提取,并利用提取到的特征进行目标检测和识别。

通过特征提取,我们能够更好地分析和理解图像中的信息内容。

最后,在图像分割方面,我们学习了如何将图像分割成不同的区域或者对象。

我们使用了不同的图像分割算法,包括阈值分割、边缘检测和聚类等方法。

通过图像分割,我们能够更好地提取出图像中的目标区域,为后续的图像处理和分析提供基础。

综上所述,本次图片处理实训使我对图像处理的原理和技术有了更深入的了解,并且通过实际操作和实验,掌握了相关的工具和方法。

这对我的专业发展和实际工作都具有重要的意义,我将更加努力地学习和实践,不断提升自己在图像处理领域的能力。

《图形图像处理》实验报告书

《图形图像处理》实验报告书

《图形图像处理》(2014 - 2015 学年第一学期)实验报告书学生姓名:班级:学号:院系:计算机系指导教师:2014年12月目录一、目的 (2)二、要求 (2)三、操作环境与时间 (1)四、项目名称与记录 (3)任务一(名称) (x)任务二(名称) (x)任务三(名称) (x)任务四(名称) (x)任务五(名称) (x)任务六(名称) (x)任务七(名称) (x)任务八(名称) (x)任务九(名称) (x)任务十(名称) (x)五、总结 (x)一、目的1、加深、巩固学生所学课程的基本理论知识,理论联系实际,进一步培养学生综合分析问题和解决问题的能力。

2、培养学生调查研究、查阅技术文献、资料、手册以及编写技术文献的能力。

使学生得到收集资料、整理相关素材、处理图片、制作动画等实践训练,更好地掌握基本理论知识及其实际操作能力,从而达到提高学生素质的最终目的。

3、利用所学知识,调研查阅相关信息,发挥创造力,掌握运用专业动画设计与制作软件,与其它相关设计工具的综合应用的技能及独立设计的综合能力。

二、要求1、在规定时间完成期末大作业的项目任务。

2、通过这次大作业,要求学生在指导教师的指导下,独立完成作品设计的全部内容。

3、通过调查研究,学会收集资料、整理相关素材、确定主题等。

4、用所学的知识学会处理图像,掌握课程设计的基本步骤和方法。

5、报告书要做到文字通畅、论点正确、论述有据。

6、报告书以书面打印形式的报告交给指导教师,作品刻成光盘存档。

7、在教师指导下,发挥学生的主观能动性、独立动手进行工作。

8、增强学生理论与实践的结合能力,为毕业设计打好基础。

三、操作环境与时间操作地点:计算机系软件实验室S603系统要求:Windows XP以上操作系统软件要求:使用Flash CS6、Photoshop CS6等专业软件四、项目名称与记录:任务一(一)主题内容:1、设计作品名称:梦幻海报设计2、设计思想:画面唯美,有强烈的视觉效果3、设计元素:滤镜、色彩平衡、亮度/饱和度、图层蒙板、剪贴蒙板等。

数字图像处理实习报告

数字图像处理实习报告

数字图像处理实习报告
本次实习主要任务是进行数字图像处理相关工作,包括图像的预处理、特征提取、图像分割和图像识别等方面的工作。

实习过程中,我主要负责了图像处理算法的编写与优化,以及实验数据的收集与分析。

通过这次实习,我对数字图像处理技术有了更深入的了解,并且提升了自己的编程能力和团队协作能力。

在图像处理算法的编写与优化过程中,我主要使用了Python
语言和常用的图像处理库,如OpenCV和PIL等。

我研究了不同的图像处理算法,并对其进行了实验验证,优化了算法的性能和效果。

通过这些工作,我深入了解了图像处理算法的实现原理和优化方法,提升了自己在图像处理领域的技术水平。

在实验数据的收集与分析过程中,我主要负责了实验数据的采集和整理工作。

我使用了各种图像采集设备,包括相机、摄像头等,对不同场景下的图像进行了采集和整理。

然后我利用Python和Matlab等工具对实验数据进行了分析和结果展示,
为后续的图像处理算法提供了重要的支持和参考。

总的来说,这次实习让我对数字图像处理有了更深入的了解,提升了自己的技术能力和实践能力。

我在实习过程中遇到了不少困难和挑战,但通过团队合作和自我努力,最终都得以克服,取得了一定的成果。

通过这次实习,我深刻地感受到了数字图像处理技术的重要性和广阔的应用前景,也对自己未来的发展方向有了更清晰的认识。

希望通过这次实习的经历,我能够为将来的学习和工作打下坚实的基础。

图像处理与分析实验报告

图像处理与分析实验报告

hghu学院实验预习报告
Huh 学院实验报告
四、实验数据
1. 灰度变换增强
A) 线段上像素灰度分布
读入灰度图像‘debye1.tif’,采用交互式操作,用improfile绘制一条线段的灰度值。

读入RGB图像‘flowers.tif’,显示所选线段上红、绿、蓝颜色分量的分布
B)直方图变换
<i>直方图显示
<ii>直方图灰度调节
<iii>直方图均衡化
2. 空域滤波增强
A) 噪声模拟
B) 空域滤波
<i> 对上述噪声图像进行均值滤波和中值滤波,比较滤波效果。

<ii> 总结均值滤波和中值滤波的特点及使用场合。

<iii> *对图像'saturn.tif'采用'laplacian'高通滤波器进行锐化滤波。

3. 图像复原
A) 模糊与噪声
<i> 运动PSF
均值滤波PSF
<ii> 在上述模糊图像上再添加噪声
B) 维纳滤波复原
<i> 使用维纳滤波复原函数deconvwnr复原无噪声模糊图像。

%非真实PSF
%非真实PSF
<ii> *使用维纳滤波复原函数deconvwnr复原模糊噪声图像。

<iii> *设置信噪比和相关函数的维纳滤波复原。

五、思考题。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。

在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。

首先,我们进行了图像的读取和显示实验。

通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。

这为我们后续的实验奠定了基础。

同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。

这使我们能够更好地理解后续实验中的算法和操作。

接下来,我们进行了图像的灰度化实验。

灰度化是将彩色图像转换为灰度图像的过程。

在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。

通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。

随后,我们进行了图像的直方图均衡化实验。

直方图均衡化是一种用于增强图像对比度的方法。

在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。

通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。

在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。

滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。

在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。

通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。

此外,我们还进行了图像的边缘检测实验。

边缘检测是一种用于提取图像边缘信息的方法。

在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。

通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。

最后,我们进行了图像的压缩实验。

图像压缩是一种将图像数据进行压缩以减小文件大小的方法。

图像处理实验报告实验报告

图像处理实验报告实验报告

一、实验目的1、熟悉位图文件的文件格式,掌握位图数据读取并在屏幕上显示的方法。

2、掌握在计算机上进行直方图均衡化以及线性增强的方法。

3、通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响。

4、熟练掌握应用MATLAB软件编程进行图像处理。

二、实验环境一台pc机,MATLAB软件编程环境。

三、实验内容1、图像的现实和读取:运用MATLAB软件编程,读取指定的256色灰度图像的数据,显示该文件的文件头和信息头数据的值,并在屏幕上显示该图象。

2、直方图的显示和均衡化:运用MATLAB软件编程,实现内容1中图像直方图的显示和均衡化。

3、图像分割:使用Prewitt 算子、Sobel 算子对图像进行边缘检测处理,完成图像分割实验。

4、图像增强:编写线性增强的程序及相应的显示程序,对指定图象进行线性增强,将原始图象及增强后的图象都显示于屏幕上,比较增强的效果。

四、实验步骤1、打开计算机,启动MATLAB程序。

2、图像读取与显示。

MATLAB中从图像文件中读取数据用函数imread(),这个函数的作用就是将图像文件的数据读入矩阵中,用imshow()函数显示出来。

imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');imshow('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg');title('原图像')3、直方图的显示A=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); figure;imhist(A),title('对应直方图')4、直方图均衡化MATLAB提供了histeq函数(自动直方图均衡化)I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); K=histeq(I);figure;imshow(K),title('经直方图均衡化后的图')figure;imhist(K),title('直方图均衡化后的直方图')5、图像的边缘检测用Sobel算子做边缘检测[A,map]=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); image=double(A);u=zeros(1,9);k=zeros(1,9);for i=2:255,for j=2:255,u(1)=0*image(i,j);u(2)=2*image(i,j+1);u(3)=1*image(i-1,j+1);u(4)=0*image(i-1,j);u(5)=-1*image(i-1,j-1);u(6)=-2*image(i,j-1);u(7)=-1*image(i+1,j-1);u(8)=0*image(i+1,j);u(9)=1*image(i+1,j+1);rimage1(i,j)=abs(sum(u));k(1)=0*image(i,j);k(2)=0*image(i,j+1);k(3)=1*image(i-1,j+1);k(4)=2*image(i-1,j);k(5)=1*image(i-1,j-1);k(6)=0*image(i,j-1);k(7)=-1*image(i+1,j-1);k(8)=-2*image(i+1,j);k(9)=-1*image(i+1,j+1);rimage2(i,j)=abs(sum(k));xiaoqiu(i,j)=rimage1(i,j)+rimage2(i,j);end,end,figure,imshow(xiaoqiu,map),title('Sobel锐化');用prewitt算子做边缘检测[A,map]=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); image=double(A);u=zeros(1,9);k=zeros(1,9);for i=2:255,for j=2:255,u(1)=0*image(i,j);u(2)=1*image(i,j+1);u(3)=1*image(i-1,j+1);u(4)=0*image(i-1,j);u(5)=-1*image(i-1,j-1);u(6)=-1*image(i,j-1);u(7)=-1*image(i+1,j-1);u(8)=0*image(i+1,j);u(9)=1*image(i+1,j+1);rimage1(i,j)=abs(sum(u));k(1)=0*image(i,j);k(2)=0*image(i,j+1);k(3)=-1*image(i-1,j+1);k(4)=1*image(i-1,j);k(5)=1*image(i-1,j-1);k(6)=0*image(i,j-1);k(7)=-1*image(i+1,j-1);k(8)=-1*image(i+1,j);k(9)=-1*image(i+1,j+1); rimage2(i,j)=abs(sum(k));xiaoqiu(i,j)=rimage1(i,j)+rimage2(i,j);end,end,figure,imshow(xiaoqiu,map),title('prewitt边缘检测');7、图像的处理均值滤波I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');h=fspecial('average',3);I2=uint8(round(filter2(h,I)));imshow(I2),title('均值滤波')中值滤波I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');I3=medfilt2(I,[3,3]);imshow(I3),title('中值滤波')五、实验总结通过本次试验基本掌握了应用MATLAB软件编程进行图像处理的方法,熟悉了位图文件的文件格式,掌握了位图数据读取显示,直方图均衡化以及线性增强的方法,并学会了运用分割算子对图像进行边缘检测和图像分割处理的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电图像处理实验报告
精仪学院测控四班王经纬 3010202114
实验1 离散图像的傅立叶变换。

1. 实验内容及步骤:
(1)利用Matlab图像处理软件进行离散图像傅立叶变换,
如给出一幅图像(w01.tif),其傅立叶变换程序如下:
>>i=imread('D:\w01.tif');
>>figure(1);
>>imshow(i);
>>colorbar;
>>j=fft2(i);
>>k=fftshift(j);
>>figure(2);
>>l=log(abs(k));
>>imshow( l , [ ] );
>>colorbar
结果显示如下图所示:
(2)分析图像的傅立叶频谱图;
由上图可以看出,频谱图低频部分较多,高频也有能量,说明图像中存在明显的明亮变化。

(3)自行设计一幅图像,验证离散傅立叶变换的性质,如:频谱图中高频分量迅速衰减,可分离性,平移,周期性与共轭对称性,旋转、线性和比例性,平均值。

1)傅里叶变换:
2)平移:
X轴平移图像 X轴平移图像的傅立叶谱
Y轴平移图像 Y轴平移图像的傅立叶谱3)旋转特性:
4)尺度变换:
2. 思考题: 描述空间频率的概念。

空间频率是单位长度内亮度作周期性变化的次数,即现对/mm 。

对于FT 基函数)(2sin )(2cos 2ux j ux e ux j πππ-=-。

)(2cos ux π的最大值直线在坐标轴上的截距是u /1,则u /1表示空间周期。

实验2 修改直方图图像增强
1. 实验内容及步骤: (1) 读入一幅图像,
使用imhist( )函数产生图像的直方图,分析它的直方图分布及反映图像的特点;
i=imread('D:\w01.tif'); imshow(i); imhist(i);
原图的直方图,表示了不同灰度的出现频率,该图的暗色比较多一些。

(2) 读入一幅图像,使用imadjust( )函数产生图像的对比度图,并使用imhist( )函数产生两个图像的直方图,分析图像对比度变化后的效果;
>> figure(1);
>> i=imread('D:\w01.tif');
>> imshow(i)
>> imhist(i)
>> figure(2);
>>
j=imadjust(i,[0.3,0.7],[]);
>> imshow(j)
>> imhist(j)
经过对比度拉伸的图,它的直方图显示每一种灰度的像素出现的频率基本一致。

(3) 读入一幅图像,使用histeq ( )函数均衡化图像,分析变化后图像的效果。

>>
i=imread('D:\w01.tif');
>> j=histeq(i);
>> imshow(j)
经过直方图均衡后的图像,灰度更均匀,辨识度高,图像亮度适中,改善了视觉
效果。

2. 思考题:如何对图像进行对数变换。

Matlab程序如下:
>>
i=imread('D:\w01.tif');
>> i1=double(i)+1;
>> c=log(i1);
>> t=uint8(c)-1;
>>
N=im2uint8(mat2gray(t));
>> imshow(N)
输出结果如下:
实验3 图像的平滑处理
1. 实验内容及步骤:
(1) 读入一幅图像,产生直方图
使用imnoise( )函数产生图像噪声;如:
j= imnoise(i,’gaussian’,0,0.02),产生高斯噪声;
>> i=imread('D:\w01.tif');
>>
j=imnoise(i,'gaussian',0,0.02);
>> imshow(j)
>> imhist(j)
引入高斯噪声后,图片噪点加强,不在平滑,变得很粗糙。

改变了图像的直方图分布,使得直方图呈现高斯函数的形状。

(2) 对加入噪声的图像使用均值滤波,分析图像前后变化;
>>i=imread('D:\w01.tif');
>>j=imnoise(i,'gaussian',0,0.02);
>>k=filter2(fspecial('average',7),j)/255;
>>imshow(k)
>> imhist(k)
经过均值滤波的,效果不错,直方图已经很接近原图的直方图。

(3)
>> i=imread('D:\w01.tif');
>>j=imnoise(i,'gaussian',0,0.02);
>> p=medfilt2(j);
>> imshow(p)
>>imhist(p)
经过中值滤波的,噪声点还是比较明显,直方图较接近原图。

实验4 图像的锐化处理
1. 实验内容及步骤:
(1) 读入一幅图像:
产生sobel算子,利用filter2( )函数产生锐化图像:
>>
i=imread('D:\w01.tif');
>> h=fspecial('sobel');
>> j=filter2(h,i);
>> imshow(j)
分析锐化后图像;
该算子中引入了类似局部平均的运算,因此对噪声具有平滑作用能很好的消除噪声的影响。

单独使用Sobel算子做边缘检测边缘定位精度不高,有时还可能对非边缘像素的响应大于某些边缘处的响应或者响应差别不是很大,造成漏检或误检
(2) 读入一幅图像,产生拉普拉斯算子,产生锐化图像:
>> i=imread('D:\w01.tif');
>>j =
im2uint8(mat2gray(log(1+double(i))));
>>imshow(j)
分析锐化后图像:
拉普拉斯锐化模板在边缘检测中很有用。

一般增强技术对于陡峭的边缘和缓慢变化的边缘很难确定其边缘线的位置。

但此算子却可用二次微分正峰和负峰之间的过零点来确定对孤立点或端点更为敏感因此特别适用于以突出图像中的孤立点、孤立线或线端点为目的的场合。

相关文档
最新文档