高2021届高2018级河南省名校联盟高三9月质量检测数学(理)试题解析版

合集下载

2020年11月河南省九师联盟高2021届高2018级高三11月联考理科数学试题参考答案

2020年11月河南省九师联盟高2021届高2018级高三11月联考理科数学试题参考答案

23 ,!!
'!(!RSTUV7WXYWX"# Z[&B # \])S^_A:WXYWX"# `W&a_A:WXbYUX "# R
S7cd`W&1*_A+eDfg*hi+&B 4\])UX"# YjR S7cdklmnop&qopY`W&B (
rs)tgUX"# Y Z[&TUX"# 7opmuY Z[&B ,\]&23 (!
槡 5&&$8+7,0!23 4!~ ,t$#+)!$$&&J$$+&)!&B&$8+$+')!8#+)!$8!+& +')!"#+)!$
8!$0&44&$$+)!&$$!&+$*5&&$8+7,0!23 4! 1!,!~m,4$+%5&,-#$$$#$8!$9$&B,-#!$$&9&,#!$$9&./X+$,#$$R#!&,#!$$7X,+)9
$)*+,-./0!"#$
河南省九师联盟 %&'(1234567
!!#!+,"$'%&!&&(&#$'$"$#!-$$'(&./%#$'$"!&$&'(&01"'#%#$$'!&&(!23 #!

河南博爱英才学校2021届高三9月月考数学(理)试卷 Word版含答案

河南博爱英才学校2021届高三9月月考数学(理)试卷 Word版含答案

高考资源网()理科数学您身边的高考专家一、选择题(每小题 5 分,共 12 小题 60 分)1、集合的真子集个数为( )A. 2、已知函数B. 的定义域为,则函数C. 的定义域是(D. )A.B.C.D.3、已知函数,则A.B.4、(2018 天津理)设,则“A.充分而不必要条件 C.充要条件()C.D.”是“”的( )B.必要而不充分条件 D.既不充分也不必要条件5、已知函数是定义域上的单调增函数,则 的取值范围是( )A.B.C.D.6、已知函数的最小值为 ,则实数 的取值范围是( )A.B.C.7、已知函数 的解集为( ) A.8、函数D.是定义在 上的偶函数,且在上单调递减,B.C.的图象的大致形状是( )C.A.B.,则不等式 D.D.-1-版权所有@高考资源网高考资源网()您身边的高考专家9、设为正数,且,则( )A.B.C.D.10、已知均为正实数,若A.B.11、已知函数, C.恰有两个极值点 , (,,则( )D.),则 的取值范围是( )A.12、设 A.B.C.,则下列不等式成立的是( )B.C.D. D.二、填空题(每小题 5 分,共 4 小题 20 分)13、若函数是定义在上的偶函数,则该函数的最大值为__________.14、已知 15、关于 的方程,则曲线在点处的切线方程为__________.有两个不等实根,则实数 的取值范围是__________.16、已知函数若的两个零点分别为 , ,则__________.三、解答题(每小题 10 分,共 6 小题 60 分)17、已知函数.(Ⅰ)求 的最小正周期;(Ⅱ)若 在区间上的最大值与最小值的和为 ,求 的值.18、己知在等差数列 中,,. -2-版权所有@高考资源网高考资源网()(1)求数列 的通项公式;(2)设,求数列 的前 项和 .您身边的高考专家19、已知四棱锥中,底面,底面为菱形,,为 的中点. (1)证明:平面平面;(2)若,求 到平面的距离.20、已知函数在处取得极值.(1)求的值;(2)若有极大值 ,求在上的最小值.21、设函数(1)若曲线(2)若在.在点处的切线与 轴平行,求 ;处取得极小值,求 的取值范围.22、已知函数(1)若曲线在(2)若,求证:第 1 题答案 C处切线为坐标轴围成的三角形面积为 ,求实数 的值;.答案-3-版权所有@高考资源网高考资源网()第 1 题解析中有 个元素,则真子集个数为.您身边的高考专家第 2 题答案 A 第 2 题解析 依题意有第 3 题答案 B 第 3 题解析令,则,解得 ,所以. .故选 B.第 4 题答案 A 第 4 题解析命题等价于,命题等价于,故 是 的充分不必要条件.第 5 题答案 A 第 5 题解析单增,且; ,解得单增, ,所以, .第 6 题答案 B 第 6 题解析函数的最小值为 ,可知:时,由,解得,因为可,第 7 题答案 B 在上递增,所以只需当时,恒成立即,所以,可得.-4-版权所有@高考资源网高考资源网()第 7 题解析根据题意,函数 是定义在 上的偶函数,且在 ,又由,则解可得:,即不等式的解集为.上单调递减,第 8 题答案 A 第 8 题解析令可得,则排除 C,D.,当时,,当时,,故排除 B.第 9 题答案 A 第 9 题解析令,则,∴.同理,∴,故答案选 A.第 10 题答案 D 第 10 题解析,,利用函数,,如图所示,由图象可得.,∴.,,,您身边的高考专家 ,,-5-版权所有@高考资源网高考资源网()您身边的高考专家第 11 题答案 A 第 11 题解析 ∵函数, 是方程,设,∴,由于函数的两个极值点为 , ,即的两个不等实根,即方程有两个不等式实根,且,∴,,在同一坐标系内画出这两个函数的图象,如图所示:要使这两个函数有 个不同的交点,应满足如图所示的位置关系,临界状态为图中虚线所示切线,恒过,设与曲线切于点,则,∴,∴,∴,若有 个不同的交点,则,解得:,所以 的取值范围是.或:方程有两个不等式实根,且,∴,设,-6-版权所有@高考资源网高考资源网()您身边的高考专家,则函数在上递增,在上递减,且,,,所以,即.第 12 题答案 D 第 12 题解析令,则,令则,当 ∴函数时, 的增区间为, ,减区间为,当 ,又时,,,∴当时,,即,即而时,,即,故不正确,令,同理可知函数的增区间为,减区间为∴当时,,即,即;故选 .第 13 题答案 第 13 题解析 由函数 所以函数是定义在上的偶函数,可得,且,,故该函数的最大值为 .,解得,第 14 题答案第 14 题解析 ,.第 15 题答案,所以即切线斜率,所以所求切线方程为第 15 题解析 关于 的方程,显然,-7-成立;则方程的另一个根为且版权所有@高考资源网高考资源网(),若,则方程为,由可得为极小值点也为最小值点,则,由(),您身边的高考专家,导数为只有一个解.当, 时,方程可化为,令,可得则在递减,且有递减,即有在且.,显然在递减,即有,,即有在递减;同样当时,恒成立,则当且时,原方程有两个不等实根,故答案为:第 16 题答案第 16 题解析由,所以令得:,,所以直线和曲线的交点 横坐标 ;直线和曲线对称,直线和关于对称;所以的交点 横坐标为 .如图,两曲线关于,;所以.第 17 题答案(1);(2).第 17 题解析 (Ⅰ)-8-, 版权所有@高考资源网高考资源网()您身边的高考专家(Ⅱ)因为 ,所以当,即当,即又因为,,因此.第 18 题答案 见解析. 第 18 题解析(1)设等差数列 的公差为 ,由的通项公式为.(2).时,单调递增时,单调递减,所以,所以, ,故可得 ,所以,解得,,所以.第 19 题答案 (1)见推证过程;(2)。

高2021届高2018级高三数学一轮专题训练试题及考试参考答案 (5)

高2021届高2018级高三数学一轮专题训练试题及考试参考答案 (5)

[考案5]第五章 综合过关规范限时检测(时间:120分钟 满分150分)一、单选题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.数列32,-54,78,-916,…的一个通项公式为( D )A.a n =(-1)n·2n +12nB.a n =(-1)n ·2n +12nC.a n =(-1)n +1·2n +12n D.a n =(-1)n +1·2n +12n【试题解答】 该数列是分数形式,分子为奇数2n +1,分母是指数2n ,各项的符号由(-1)n+1来确定,所以D 选项正确.2.(2020·湖北八校联考)已知数列{a n }满足a n =5n -1(n ∈N *),将数列{a n }中的整数项按原来的顺序组成新数列{b n },则b 2 019的末位数字为( D )A.8B.2C.3D.7【试题解答】 由a n =5n -1(n ∈N *),可得此数列为4,9,14,19,24,29,34,39,44,49,54,59,64,…,整数项为4,9,49,64,144,169,…,所以数列{b n }的各项依次为2,3,7,8,12,13,17,18,…,末位数字分别是2,3,7,8,2,3,7,8,…,因为2 019=4×504+3,所以b 2 019的末位数字为7.故选D.3.(2020·贵州贵阳监测)如果在等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=( C ) A.14 B.21 C.28D.35【试题解答】 由题意得3a 4=12,则a 4=4,所以a 1+a 2+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.故选C.4.(2020·山东潍坊期末)已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =28,a 2m a m =2m +21m -2,则数列{a n }的公比为( B )A.2B.3C.12D.13【试题解答】 设数列{a n }的公比为q ,由题意知q ≠1,因为S 2m S m =28,a 2m a m =2m +21m -2,所以1+q m =28,q m =2m +21m -2,所以m =3,q =3.故选B.5.设等差数列{a n }的前n 项和为S n ,若S 13>0,S 14<0,则S n 取最大值时n 的值为( B ) A.6 B.7 C.8D.13【试题解答】 根据S 13>0,S 14<0,可以确定a 1+a 13=2a 7>0,a 1+a 14=a 7+a 8<0.所以a 7>0,a 8<0,则S n 取最大值时n 的值为7.故选B.6.(2020·江西南昌三中模拟)在等比数列{a n }中,已知对任意的正整数n ,a 1+a 2+a 3+…+a n =2n +m ,则a 21+a 22+…+a 2n =( A )A.13(4n -1) B.2n -1 C.13(2n -1) D.4n -1【试题解答】 通解:设{a n }的公比为q ,∵a 1+a 2+a 3+…+a n =2n +m 对任意的正整数n 均成立,∴a 1=2+m ,a 2=2,a 3=4.∵{a n }是等比数列,∴m =-1,a 1=1,q =2,∴a 21+a 22+…+a 2n=1+4+42+…+4n -1=1-4n 1-4=13(4n-1).故选A. 优解:∵a 1+a 2+a 3+…+a n =2n +m ,∴当n ≥2时,a n =2n -1,又a 1=2+m ,满足上式,∴m =-1,即等比数列{a n }的首项为1,公比为2,∴a n =2n -1,∴a 21+a 22+…+a 2n =1+4+42+…+4n -1=1-4n 1-4=13(4n-1).故选A.7. (2020·河北六校第三次联考)“泥居壳屋细莫详,红螺行沙夜生光.”是宋代诗人欧阳修对鹦鹉螺的描述.假设一条螺旋线是用以下方法画成(如图):△ABC 是边长为1的正三角形,曲线CA 1,A 1A 2,A 2A 3分别是以A ,B ,C 为圆心,AC ,BA 1,CA 2为半径画的弧,曲线CA 1A 2A 3称为螺旋线,再以A 为圆心,AA 3为半径画弧,……如此画下去,则所得弧CA 1,A 1A 2,A 2A 3,…,A 28A 29,A 29A 30的总长度为( A )A.310πB.1103πC.58πD.110π【试题解答】 根据弧长公式知,弧CA 1,A 1A 2,A 2A 3,…,A n -2A n -1,A n -1A n 的长度分别为23π,2×23π,3×23π,…,(n -1)×23π,n ×23π,该数列是首项为23π,公差为23π的等差数列,所以该数列的前n 项和S n =π3n (n +1),所以所得弧CA 1,A 1A 2,A 2A 3,…,A 28A 29,A 29A 30的总长度为S 30=π3×30×(30+1)=310π.故选A.8.(2020·河北衡水中学调研)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n为数列{a n }的前n 项和,则2S n +16a n +3的最小值为( B ) A.3 B.4 C.23-2D.92【试题解答】 由已知有a 23=a 1a 13,所以有(a 1+2d )2=a 1(a 1+12d ),d =2(d ≠0),数列{a n }通项公式a n =1+2(n -1)=2n -1,S n =n (1+2n -1)2=n 2,所以2S n +16a n +3=n 2+8n +1=(n +1)+9n +1-2≥4,当且仅当n +1=9n +1,即n =2时等号成立.故选B. 二、多选题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分)9.等比数列{a n }的前三项和S 3=14,若a 1,a 2+1,a 3成等差数列,则公比q =( AD ) A.2 B.13 C.3D.12【试题解答】 由a 1,a 2+1,a 3成等差数列, 得2(a 2+1)=a 1+a 3,即2(1+a 1q )=a 1+a 1q 2, 即a 1(q 2-2q +1)=2,①又S 3=a 1+a 2+a 3=a 1(1+q +q 2)=14,② ①÷②得:q 2-2q +11+q +q 2=214,解得q =2或q =12.另解:由2(a 2+1)=a 1+a 3,得3a 2+2=a 1+a 2+a 3=S 3=14,解得a 2=4, 则S 3=4q +4+4q =14,解得q =2或q =12.故选A 、D.10.若数列{a n }满足对任意n ≥2(n ∈N )都有(a n -a n -1-2)·(a n -2a n -1)=0,则下面选项中正确的是( ABD )A.{a n }可以是等差数列B.{a n }可以是等比数列C.{a n }可以既是等差数列又是等比数列D.{a n }可以既不是等差数列又不是等比数列 【试题解答】 因为(a n -a n -1-2)(a n -2a n -1)=0, 所以a n -a n -1-2=0或a n -2a n -1=0, 即a n -a n -1=2或a n =2a n -1,当a n ≠0,a n -1≠0时,{a n }是等差数列或等比数列;当a n =0或a n -1=0时,{a n }可以不是等差数列,也可以不是等比数列,比如数列,2,0,0,0,…….故选A 、B 、D.11.已知等比数列{x n }的公比为q ,若恒有|x n |>|x n +1|,且x 11+q =12,则首项x 1的取值范围可以是( AC ) A.(12,1) B.(0,1) C.(0,12)D.(1,2)【试题解答】 由|x n |>|x n +1|,得1>|x n +1x n|=|q |,故-1<q <0或0<q <1.0<1+q <1或1<1+q <2,又x 11+q =12,所以x 1=1+q 2,所以x 1∈(0,12)∪(12,1).故选A 、C.12.(2020·山东十校联考)设数列{a n }和{b n }分别是等差数列与等比数列,且a 1=b 1=4,a 4=b 4=1,则以下结论不正确的是( BCD )A.a 2>b 2B.a 3<b 3C.a 5>b 5D.a 6>b 6【试题解答】 设等差数列的公差、等比数列的公比分别为d ,q ,则由题设得⎩⎪⎨⎪⎧4+3d =1,4q 3=1,解得⎩⎨⎧d =-1,q =314,则a 2-b 2=3-316>3-327=0;故A 正确.同理,其余都错,故选B 、C 、D.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2020·云南师大附中月考)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n +1,则S 4=__85__. 【试题解答】 a n +1=3S n +1①,a n =3S n -1+1(n ≥2)②,①-②得:a n +1=4a n (n ≥2),又a 1=1,a 2=3a 1+1=4,∴{a n }是首项为1,公比为4的等比数列,∴S 4=1-441-4=85.或S 4=a 1+a 2+a 3+a 4=1+4+16+64=85.14.(2020·福建莆田月考)设S n 为等差数列{a n }的前n 项和,已知a 1+a 3+a 11=6,则S 9=__18__. 【试题解答】 设等差数列{a n }的公差为d .∵a 1+a 3+a 11=6,∴3a 1+12d =6,即a 1+4d =2,∴a 5=2,∴S 9=(a 1+a 9)×92=2a 5×92=18.15.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =__2n-1__.【试题解答】 因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n , 两式相减得,a n +1=2a n +1, 所以a n +1+1=2(a n +1),即a n +1+1a n +1=2. 又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n ,所以a n =2n -1.故填2n -1.16.已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意的n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为 [23,+∞) .【试题解答】 因为数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),所以当n ≥2时,a 1a 2a 3…a n -1=2(n -1)2,则a n =22n -1,a 1=2也适合,所以1a n =122n -1,数列{1a n }是首项为12,公比为14的等比数列,则1a 1+1a 2+…+1a n =12(1-14n )1-14=23(1-14n )<23,则实数t 的取值范围为[23,+∞).故填[23,+∞). 四、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明:数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .【试题解答】 (1)证明:∵a 1=-2,∴a 1+4=2. ∵a n +1=2a n +4,∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2,∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1)可知a n +4=2n ,∴a n =2n -4. 当n =1时,a 1=-2<0,∴S 1=|a 1|=2; 当n ≥2时,a n ≥0.∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n -4)=2+22+…+2n -4(n -1)=2(1-2n )1-2-4(n -1)=2n+1-4n +2.又当n =1时,上式也满足. ∴当n ∈N *时,S n =2n +1-4n +2.18.(本小题满分12分)(2020·山东省济南第一中学期中考试)已知正项等差数列{a n }的前n 项和为S n ,若S 3=12,且2a 1,a 2,a 3+1成等比数列.(1)求{a n }的通项公式;(2)设b n =a n3n ,记数列{b n }的前n 项和为T n ,求T n .【试题解答】 (1)∵S 3=12,即a 1+a 2+a 3=12, ∴3a 2=12,所以a 2=4, 又∵2a 1,a 2,a 3+1成等比数列,∴a 22=2a 1·(a 3+1),即a 22=2(a 2-d )·(a 2+d +1), 解得,d =3或d =-4(舍去),∴a 1=a 2-d =1,故a n =3n -2. (2)b n =a n 3n =3n -23n =(3n -2)·13n ,∴T n =1×13+4×132+7×133+…+(3n -2)×13n ,①①×13得13T n =1×132+4×133+7×134+…+(3n -5)×13n +(3n -2)×13n +1.②①-②得23T n =13+3×132+3×133+3×134+…+3×13n -(3n -2)×13n +1=13+3×132(1-13n -1)1-13-(3n -2)×13n +1=56-12×13n -1-(3n -2)×13n +1,∴T n =54-14×13n -2-3n -22×13n =54-6n +54×13n .19.(本小题满分12分)(2020·河南洛阳孟津二中月考)在数列{a n }中,设f (n )=a n ,且f (n )满足f (n +1)-2f (n )=2n (n ∈N *),a 1=1.(1)设b n =a n2n -1,证明:数列{b n }为等差数列;(2)求数列{3a n -1}的前n 项和S n .【试题解答】 (1)由已知得a n +1=2a n +2n ,得 b n +1=a n +12n =2a n +2n 2n =a n2n -1+1=b n +1,∴b n +1-b n =1,又a 1=1,∴b 1=1, ∴{b n }是首项为1,公差为1的等差数列. (2)由(1)知,b n =a n2n -1=n ,∴a n =n ·2n-1,3a n -1=3n ·2n -1-1.∴S n =3×1×20+3×2×21+3×3×22+…+3(n -1)×2n -2+3n ×2n -1-n , 两边同时乘以2,得2S n =3×1×21+3×2×22+…+3(n -1)×2n -1+3n ×2n -2n ,两式相减,得-S n =3×(1+21+22+…+2n -1-n ×2n )+n =3×(2n -1-n ×2n )+n =3(1-n )2n -3+n , ∴S n =3(n -1)2n +3-n .20.(本小题满分12分)(2020·河北衡水模拟)数列{a n }的前n 项和为S n ,且S n =n (n +1)(n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足a n =b 13+1+b 232+1+b 333+1+…+b n 3n +1,求数列b n 的通项公式.【试题解答】 (1)当n =1时,a 1=S 1=2; 当n ≥2时,a n =S n -S n -1=n (n +1)-(n -1)n =2n , 易知a 1=2满足上式,所以数列{a n }的通项公式为a n =2n . (2)a n =b 13+1+b 232+1+b 333+1+…+b n3n +1(n ≥1),①a n +1=b 13+1+b 232+1+b 333+1+…+b n3n +1+b n +13n +1+1,②②-①得,b n +13n +1+1=a n +1-a n =2,b n +1=2(3n +1+1),故b n =2(3n +1)(n ≥2).又a 1=b 13+1=2,即b 1=8,也满足上式,所以b n =2(3n +1)(n ∈N *).21.(本小题满分12分)(2020·广东广州一测)已知数列{a n }的前n 项和为S n ,数列{S nn }是首项为1,公差为2的等差数列.(1)求数列{a n }的通项公式;(2)设数列{b n }满足a 1b 1+a 2b 2+…+a n b n =5-(4n +5)(12)n ,求数列{b n }的前n 项和T n .【试题解答】 (1)因为数列{S nn }是首项为1,公差为2的等差数列,所以S nn =1+2(n -1)=2n -1,所以S n =2n 2-n .当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(2n 2-2)-[2(n -1)2-(n -1)]=4n -3. 当n =1时,a 1=1也符合上式,所以数列{a n }的通项公式为a n =4n -3. (2)当n =1时,a 1b 1=12,所以b 1=2a 1=2.当n ≥2时,由a 1b 1+a 2b 2+…+a n b n =5-(4n +5)(12)n ,①得a 1b 1+a 2b 2+…+a n -1b n -1=5-(4n +1)(12)n -1.② ①-②,得a n b n =(4n -3)(12)n .因为a n =4n -3,所以b n =4n -3(4n -3)(12)n=2n (当n =1时也符合),所以b n +1b n =2n +12n =2,所以数列{b n }是首项为2,公比为2的等比数列,所以T n =2(1-2n )1-2=2n +1-2.22.(本小题满分12分)已知正项数列{a n }的前n 项和S n 满足4S n =a 2n +2a n+1(n ∈N *). (1)求数列{a n }的通项公式;(2)若b n =a n3n ,求数列{b n }的前n 项和T n ;(3)在(2)的条件下,若b n1-T n≤λ(n +4)-1对任意n ∈N *恒成立,求实数λ的取值范围.【试题解答】 (1)由已知得4S n =(a n +1)2,① 当n =1时,4S 1=(a 1+1)2=4a 1,解得a 1=1. 当n ≥2时,4S n -1=(a n -1+1)2.② ①-②得,4a n =(a n +1)2-(a n -1+1)2, 则(a n +a n -1)(a n -a n -1-2)=0. 因为a n >0,所以a n -a n -1=2,即数列{a n }是首项为1,公差为2的等差数列. 所以a n =2n -1. (2)由(1)知b n =2n -13n ,则T n =1·13+3·(13)2+5·(13)3+…+(2n -3)·(13)n -1+(2n -1)·(13)n .13T n =1·(13)2+3·(13)3+5·(13)4+…+(2n -3)·(13)n +(2n -1)·(13)n +1, 两式相减得23T n =13+2[(13)2+(13)3+…+(13)n ]-(2n -1)(13)n +1=23-2n +23·(13)n ,所以T n =1-n +13n .(3)由b n1-T n≤λ(n +4)-1得, 则λ≥3n (n +1)(n +4)=3n +4n +5,因为n +4n≥2n ·4n=4, 所以当且仅当n =2时,3n +4n +5有最大值13,即λ≥13.。

河南省八市重点高中联盟2021届高三数学9月领军考试试题 理(含解析).doc

河南省八市重点高中联盟2021届高三数学9月领军考试试题 理(含解析).doc

河南省八市重点高中联盟2021届高三数学9月领军考试试题 理(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}2|2A x x x =,{|14}B x x =<<,则A B =( )A. (,4)-∞B. [0,4)C. (1,2]D. (1,2)【答案】C 【解析】 【分析】可以求出集合A ,然后进行交集的运算即可.【详解】解:∵A {x |0x 2}=≤≤,B {x |1x 4}=<<,∴A B 12]⋂=(,. 故选:C .【点睛】考查描述法、区间表示集合的定义,一元二次不等式的解法,以及交集的运算.2.已知复数z 的共轭复数为z ,若11z z i-=+,则z 在复平面内对应的点为( ) A. (2,1)-- B. (2,1)-C. (2,1)-D. (2,1)【答案】A 【解析】 【分析】设R z x yi x y =+∈(,),代入11z z i-=+,整理后利用复数相等的条件列式求得x y ,的值,则答案可求.【详解】解:设R z x yi x y =+∈(,),由11z z i-=+,得()()11x yi i x yi -+=+-, 即()()1x y x y i x yi ++-=-+,则1x y x x y y+=-⎧⎨-=⎩,解得2,1x y =-=-.∴z 在复平面内对应的点为()2,1--, 故选:A【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题.3.已知命题:p x y ∃<,使得x x y y ,则p ⌝为( )A. x y ∃≥,使得x xy yB. x y ∀,x x y y <C. x y ∃<,使得x x y y <D. x y ∀<,总有x x y y <【答案】D 【解析】 【分析】利用特称命题的否定性质即可得到. 【详解】因为命题:p x y ∃<,使得x xy y所以命题p ⌝:x y ∀<,总有x x y y < 故答案为D【点睛】本题主要考查了特称命题否定的形式,属于基础题.4.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2021中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A. 134 B. 135 C. 136 D. 137【答案】B 【解析】 【分析】由题意得出1514n a n =-,求出15142019n a n =-≤,即可得出数列的项数.【详解】因为能被3除余1且被5除余1的数就是能被15整除余1的数,故1514n a n =-.由15142019n a n =-≤得135n ≤,故此数列的项数为135,故答案为B.【点睛】本题主要考查阅读能力及建模能力、转化与化归思想及等差数列的通项公式及数学的转化与化归思想.属于中等题.5.函数2ln x x y x=的图象大致是( )A. B.C. D.【答案】D 【解析】 【分析】根据奇偶性可排除B ,结合导数对函数2ln x x y x=在(0,)+∞的单调性即可得出答案。

河南博爱英才学校高2021届高2018级高三9月月考数学文试卷参考答案

河南博爱英才学校高2021届高2018级高三9月月考数学文试卷参考答案

答案1A 2B 3D 4D 5A 6C 7C8.【参考答案】C设AB x=,0.618a≈,因为矩形ABCD,EBCF,FGHC,FGJI,LGJK,MNJK均为黄金矩形,所以有BC ax=,2CF a x=,3FG a x=,4GJ a x=,5JK a x=,6KM a x=, 由题设得621.712a xa x⎧>⎨<⎩,解得30.35731.414x<<,故选C.9D10.【参考答案】D【试题解析】不妨设双曲线的方程是22221(0,0)x ya ba b-=>>,由||||2211BABA=及双曲线的对称性知12,A A与12,B B关于坐标轴对称,如图,又满足条件的直线只有一对,当直线与x轴夹角为45︒时,双曲线的渐近线与x轴夹角大于45︒,双曲线与直线才能有交点1212,,,A AB B,且满足条件的直线只有一对,可得tan451ba>︒=,即有2212c bea a==+>,则双曲线的离心率的范围是(2,)+∞.故选D.11C 12A13.【参考答案】14或112-14.【参考答案】491215.【参考答案】5π1216.【参考答案】32 2,3 ee-⎡⎤-⎢⎥⎣⎦【试题解析】因为()f x与()g x的图像上存在关于直线1y=对称的点,若()1g x mx=+关于直线1y=对称的直线为1y mx=-+,则直线1y mx=-+与2lny x=在21,ee⎡⎤⎢⎥⎣⎦上有交点,直线1y mx=-+过定点()0,1,当直线1y mx=-+经过点1,2e⎛⎫-⎪⎝⎭时,则直线斜率3m e-=-,3m e=,若直线+1y mx=-与2lny x=相切,设切点为(),x y,则+122y mxy lnxmx⎧⎪=-⎪=⎨⎪⎪=-⎩,解得323232x eyme⎧⎪=⎪⎪=⎨⎪⎪=-⎪⎩,22m ee∴-≤≤时直线1y mx=-+与2lny x=在21,ee⎡⎤⎢⎥⎣⎦上有交点,即()f x与()g x的图象上存在关于直线1y=对称的点,实数m的取值范围是322,3e e-⎡⎤-⎢⎥⎣⎦,故答案为322,3e e-⎡⎤-⎢⎥⎣⎦. 17.【参考答案】(1)21nna=-;(2)1nnSn=+.【试题解析】(1)由已知112nn na a---=,∴11223211()()()()n n n n n n n aa a a a a a a a a -----=-+-+-++-+,∴12321222221n n n n a ---=++++++,∴1(1)1(12)21112n n n n a q a q -⋅-===---. (2)2log (1)n n b a n =+=,11111(1)1n n b b n n n n +==-⋅++,∴1111111111122334111n nS n n n n =-+-+-++-=-=+++. 18.解 (1)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C .又cos B cos C =-b 2a +c ,∴cos B cos C =-sin B2sin A +sin C, ∴2sin A cos B +sin C cos B +cos C sin B =0, ∵A +B +C =π,∴2sin A cos B +sin A =0, ∵sin A ≠0,∴cos B =-12,∵0<B <π,∴B =2π3.(2)将b =13,a +c =4,B =2π3代入b 2=a 2+c 2-2ac cos B ,即b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac (1-12),求得ac =3.于是,S △ABC =12ac sin B =343.19.【参考答案】(1)证明见解析;(2)14F AGC V -=. 【试题解析】(1)证明:如图,连接BD 交AC 于E 点,则E 为BD 的中点,连接GE ,∵SD ∥平面GAC ,平面SDB平面GAC GE =,SD ⊂平面SBD ,∴SD GE ∥,而E 为BD 的中点,∴G 为SB 的中点. (2)∵F ,G 分别为SC ,SB 的中点, ∴1111122448F AGC S AGC C AGS C ABS S ABC S ABCD V V V V V V ------=====,取AB 的中点H ,连接SH ,∵SAB △为等边三角形,∴SH AB ⊥, 又平面SAB ⊥平面ABCD ,平面SAB 平面ABCD AB =,SH ⊂平面SAB ,∴SH ⊥平面ABCD ,而SH =,菱形ABCD 的面积为1222sin 602ABCD S =⋅⋅⋅︒=∴11233S ABCD ABCD V S SH -=⋅⋅=⋅=,∴1184F AGC S ABCD V V --==.20.【参考答案】(1)10x y ±-=;【试题解析】(1)当直线l 斜率为0时,不满足题意;当直线l 斜率不为0时,设()11,A x y ,()22,B x y ,设直线l 的方程为1x my =+, 代入椭圆C 的方程消去x ,得()225610250m y my ++-=, 由0Δ>,得m ∈R .由韦达定理得1221056m y y m -+=+①,1222556y y m -=+②, 则112121122F AB S F F y y =⋅-=⨯△11==, 整理得4250490m m --=,解得21m =,或24950m =-(舍去),所以1m =±, 故直线l 的方程为10x y ±-=.(2)若222BF F A =,则()()22111,21,x y x y --=-,所以212y y =-, 代入上式①②得121056m y m =+,21225256y m =+,消去1y ,得222102525656m m m ⎛⎫= ⎪++⎝⎭,解得m =所以121215268AB y y y =-=-===⨯+. 21.【参考答案】(1)1a =;(2)见解析.【试题解析】(1)()2af x x a x'=--,由题意可得(1)0f '=,解得1a =. 经检验,1a =时()f x 在1x =处取得极值,所以1a =. (2)证明:由(1)知,2()ln f x x x x =--,令332511311()()(4)3ln 326326x x x g x f x x x x x =--+-+=-+--,由33211(1)()333(1)x x g x x x x x x x--'=-+-=--=(0)x >,可知()g x 在(0,1)上是减函数,在(1,)+∞上是增函数,所以()(1)0g x g ≥=,所以32511()4326x x f x x ≥-+-+22.【参考答案】(1)30x --=,22(2)4x y -+=;. 【试题解析】(1)将2t y =代入32x t =+,整理得30x -=, 所以直线l的普通方程为30x --=.由4cos ρθ=得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入24cos ρρθ=,得2240x y x +-=,即曲线C 的直角坐标方程为22(2)4x y -+=. (2)设A ,B 的参数分别为1t ,2t .将直线l 的参数方程代入曲线C的角坐标方程得221(32)()42t +-+=,化简得230t +-=,由韦达定理得12t t +=于是122P t t t +==. 设00(,)P x y ,则0093(41(224x y ⎧==⎪⎪⎨⎪=⨯-=-⎪⎩,即9(,)44P -.所以点P 到原点O=23.【参考答案】(1)2(,4][,)3-∞-+∞;(2)[4,10]-.【试题解析】(1)①当12x ≤-时,()21(1)2f x x x x =--+-=--,由()2f x ≥解得4x ≤-; ②当112x -<<时,()(21)(1)3f x x x x =++-=,由()2f x ≥解得23x ≥,∴213x ≤<;③当1x ≥时,()(21)(1)2f x x x x =+--=+,由()2f x ≥解得0x ≥,∴1x ≥.综上可得()2f x ≥的解集是2(,4][,)3-∞-+∞. (2)∵()|21||||3|f x x x m x =+--≥-的解集包含[3,4], ∴当[3,4]x ∈时,|21||||3|x x m x +--≥-恒成立. 原式可变为21||3x x m x +--≥-即||4x m x -≤+,∴44x x m x --≤-≤+即424m x -≤≤+在[3,4]x ∈上恒成立, 显然当3x =时,24x +取得最小值10, 即m 的取值范围是[4,10]-.。

2021届河南省八市重点高中高三第一次测评(9月) 数学(理)试题Word版含解析

2021届河南省八市重点高中高三第一次测评(9月) 数学(理)试题Word版含解析

2021届河南省八市重点高中高三第一次测评(9月)数学(理)试题一、选择题1.已知全集U R =,集合{}{}22,0,2,|230 U A C B x x x =-=--≥,则A B ⋂= ( ) A. {}2- B. {}0,2 C. ()1,2- D. (]2,1-- 【答案】B【解析】∵2230x x --≥,∴x 1x 3≤-≥,或,故()B 1,3=-,又{}2,0,2A =-, ∴{}0,2A B ⋂= 故选:B2.已知i 为虚数单位,复数z 的共轭复数为z ,且满足232z z i +=-,则z = ( ) A. 12i - B. 12i + C. 2i - D. 2i + 【答案】A【解析】设z a bi a b R =+∈,、,则a bi z =-,由232z z i +=-,得: ()2a bi a bi 32i ++-=-,即3a bi 32i +=- 易得: 1{ 2a b ==-,∴12z i =-故选:A3.已知等差数列{}n a 中, 22383829a a a a ++=,且0n a <,则数列{}n a 的前10项和为( )A. 9-B. 11-C. 13-D. 15- 【答案】D【解析】∵22383829a a a a ++=,∴(3a +8a )2=9,又0n a <∴3a +8a =−3,故S 10=()11010a a 2+=5(1a +10a )=5(3a +8a )=−15 故选D4.从[]0,2内随机取两个数,则这两个数的和不大于1的概率为( ) A.116 B. 18 C. 14 D. 12【答案】B【解析】设取出的两个数为x 、y ;则有0≤x ≤2,0≤y ≤2,其表示的区域为纵横坐标都在[]0,2之间的正方形区域,易得其面积为4,而x +y ≤1表示的区域为直线x +y =1上及下方,且在0≤x 1≤,0≤y 1≤表示区域内部的部分,如图,易得其面积为12×1×1=12; 则两数之和小于1的概率是: 124=18;故选B.5.某几何体的三视图如图所示,则该几何体的体积为( )A. 2B. 4C. 6D. 12 【答案】C【解析】由三视图可知,该几何体为直三棱柱, 其体积为1V h 23262S ==⨯⨯⨯= 故选:C6.已知函数()32,1{ 22,1x x f x x x -≤-=+>-,则满足()2f a ≥的实数a 的取值范围是( )A. ()(),20,-∞-⋃+∞B. ()1,0-C. ()2,0-D. ()[),10,-∞-⋃+∞【答案】D【解析】∵函数()22,1{ 22,1x x f x x x -≤-=+>-,且()2f a ≥∴2a 1{22a -≤-≥或1{ 222a a >-+≥,即a 1≤-,或a 0≥故选:D7.二项式5122x y ⎛⎫- ⎪⎝⎭的展开式中32x y 的系数是( )A. 5B. 20-C. 20D. 5-【答案】A【解析】二项式5122x y ⎛⎫- ⎪⎝⎭的通项为()5r1512y 2rr r T C x -+⎛⎫=- ⎪⎝⎭依据题意易得: 53{2r r -==,即r 2=所以32x y 的系数是3251452C ⎛⎫⨯= ⎪⎝⎭故选:A8.执行如图的程序框图,输出的S 值为( )A. 3-033【答案】B【解析】由程序框图可知: S 0n 1==,,循环第一次可得: 3S n 2==,, 循环第一次可得: 33S 3n 322=+==,, 循环第一次可得: S 3n 4==,,循环第一次可得: 3S n 52==,, 循环第一次可得: S 0n 6==,, 此时不适合,故输出S 0= 故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 9.函数()()sin 0,0,22f x A x A ππωφωφ⎛⎫=+>>-<<⎪⎝⎭的部分图像如图所示,则当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时, ()f x 的取值范围是( )A. 3322⎡-⎢⎣⎦B. 32⎡⎤-⎢⎥⎣⎦C. 11,22⎡⎤-⎢⎥⎣⎦ D. 1,12⎡⎤-⎢⎥⎣⎦ 【答案】D【解析】由图易知: 3753T π46124T πππ=-==,,即2ω=根据最高点,得: 522k πk Z 122ππφ⨯+=+∈,, 2k πk Z 3πφ=-+∈,,又22ππφ-<< ∴3πφ=-;再根据与y 轴的交点,可得: 3sin 32A π⎛⎫-=- ⎪⎝⎭, A 1=, ∴()sin 23f x x π⎛⎫=-⎪⎝⎭,由7521212636x x πππππ≤≤-≤-≤,,故()f x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦故选:D点睛:已知函数()sin (0,0)y A x B A ωϕω=++>>的图象求解析式(1) max min maxmin,22y y y y A B -+==. (2)由函数的周期T 求2,.T πωω=(3)利用“五点法”中相对应的特殊点求ϕ.10.已知双曲线()2222:10,0x y C a b a b-=>>的渐近线与抛物线()2:20E y px p =>的准线分别交于,A B两点,若抛物线E 的焦点为F ,且0FA FB ⋅=,则双曲线C 的离心率为( )2【答案】D【解析】∵双曲线()2222:10,0x y C a b a b-=>>,∴双曲线的渐近线方程是y =ba±x 又抛物线()2:20E y px p =>的准线方程是x =−p 2, p 02F ⎛⎫ ⎪⎝⎭,故A ,B 两点的纵坐标分别是y =pb 2a ±, pb 2FA p a ⎛⎫=- ⎪⎝⎭,, pb 2FB p a ⎛⎫=-- ⎪⎝⎭,又0FA FB ⋅=,∴222204p b p a-=,即224b a =, 2222245c a a c a -==,, e =故选:D11.三棱锥A BCD -的一条长为a ,其余棱长均为1,当三棱锥A BCD -的体积最大时,它的外接球的表面积为( ) A.53π B. 54π C. 56π D. 58π 【答案】A【解析】不妨设a BC =底面积不变,高最大时体积最大,所以,面ACD 与面ABD 垂直时体积最大,由于四面体的一条棱长为a ,其余棱长均为1,所以球心在两个正三角形的重心的垂线的交点,半径22231325113312R π⎫⎫=⨯+⨯=⎪⎪⎪⎪⎝⎭⎝⎭;经过这个四面体所有顶点的球的表面积为:S=254π3R π=; 故选A .点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解. 12.已知方程213ln 022x mx -+=有4个不同的实数根,则实数m 的取值范围是( ) A. 20,2e ⎛⎫ ⎪⎝⎭ B. 20,2e ⎛⎤ ⎥⎝⎦C. (20,e ⎤⎦D. ()20,e 【答案】D【解析】由213ln 022x mx -+=,得mx 2=2ln x +3, ∵x ≠0,∴方程等价为232ln m 22x x +=, 设f (x )=232ln 2x x+,则函数f (x )是偶函数, 当x >0时,f (x )=232ln 2x x+, 则f ′(x )=()42x 1lnx x -+,由f ′(x )>0得﹣2x (1+lnx )>0,得1+lnx <0,即lnx <﹣1,得0<x <1e,此时函数单调递增, 由f ′(x )<0得﹣2x (1+lnx )<0,得1+lnx >0,即lnx >﹣1,得x >1e,此时函数单调递减,即当x >0时,x=1e 时,函数f (x )取得极大值f (1e )=213ln21e e +⎛⎫⎪⎝⎭=22e, 作出函数f (x )的图象如图:要使232ln m 22x x +=,有4个不同的解,即y=m 2与f (x )=232ln 2x x+有四个不同的交点,则满足0<m 2<22e ,故答案为: ()20,e点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题13.若平面向量a 与b 的夹角为090, ()2,0,1a b ==,则2a b +=__________. 【答案】2 【解析】()()()222222a b a b a b+=+=+=4422+=.故答案为: 2214.已知实数,x y 满足不等式组10{0 2x y x y x y m+-≥-≤+≤,且2z y x =-的最小值为2-,则实数m =__________.【答案】6【解析】做出可行域:当直线2z y x =+经过B 点时, 2z y x =-的最小值为2-.此时B 33m m ⎛⎫⎪⎝⎭,,即2233m m -=-,即6m = 点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.15.洛书古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图案,如图结构是戴九履一,左三右七,二匹为肩,六八为足,以五居中,洛书中蕴含的规律奥妙无穷,比如:222222492816++=++,据此你能得到类似等式是__________.【答案】222222438276++=++ 【解析】根据题意得:,即有222222492816.++=++ 又可得到222222438276++=++16.已知数列{}n a 满足()()11110,2121n n n n n n n n n a a a a a a a a a ++++≠---=-+⋅,且113a =,则数列{}n a 的通项公式n a =__________. 【答案】12n + 【解析】∵()()11110,2121n n n n n n n n n a a a a a a a a a ++++≠---=-+⋅ 两边同除以1n n a a +⋅,得:()()1112121111n n n nn na a a a a a +++---=-+, 整理,得:1111n na a +-=,即1n a ⎧⎫⎨⎬⎩⎭是以3为首项,1为公差的等差数列. ()13112n n n a =+-⨯=+,即12n a n =+.三、解答题17.在ABC ∆中,角,,A B C 所对的边分别为,,a b c,已知cos cos b aB A-=.(Ⅰ)求角A 的大小;(Ⅱ)若2a =,求ABC ∆的面积S 的最大值; 【答案】(Ⅰ)4A π=(Ⅱ) 1.S ≤【解析】试题分析:(1)利用正弦定理化边为角,利用两角和正弦公式可得结果;(2)利用余弦定理以及均值不等式求ABC ∆的面积S 的最大值.试题解析:(Ⅰ)由cos cos b a B A -=,及正弦定理可得sin sin cos cos B C AB A-+=,()sin cos cos sin cos cos sin B A C A A B C A A B -==+cos sin C A C =,又sin 0C ≠,所以cos 2A =, 故4A π=.(Ⅱ)由余弦定理及(Ⅰ)得,2222242cos4a b c bc b c π==+-=+,由基本不等式得:(42bc ≥,当且仅当b c =时等号成立,所以()22222bc ≤=+-所以()112sin 2222 1.222S bc A =≤⨯+⨯=+ 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.18.在四棱柱1111ABCD A B C D -中, 1D D ⊥底面ABCD ,四边形ABCD 是边长为2的菱形,01160,3,2,,BAD DD CF FC E G ∠===分别是AB 和DF 的中点,(Ⅰ)求证: CG ⊥平面DEF ; (Ⅱ)求二面角1A DE F --的余弦值;【答案】(Ⅰ)见解析 (Ⅱ)55【解析】试题分析:(1)在△ADE 中,利用余弦定理易得: DE AB ⊥,即DE DC ⊥,又平面11CDD C ⊥底面ABCD ,所以DE ⊥平面11CDD C ,故DE CG CG DF ⊥⊥,易得,得CG ⊥平面DEF ;(2)以点D 为坐标原点,分别以1,,DE DC DD 所在直线为,,x y z 轴,建立空间直角坐标系, ()0,1,1CG =-是平面DEF 的一个法向量, ()0,3,1n =是平面1A DE 的一个法向量, 5cos ,5CG n CG n CG n⋅==-. 试题解析:(Ⅰ)证明:由012,1,602DA AE AB BAD ===∠=,结合余弦定理可得2223,DE DA AE DE ==+,所以,.DE AB DE DC ⊥⊥因为1D D⊥底面ABCD,所以平面11CDD C⊥底面.ABCD又平面11CDD C⋂底面ABCD CD=,所以DE⊥平面11CDD C,因为CG⊂平面11CDD C,所以.DE CG⊥ --------①由112,3CF FC CC==,得2.CF CD==因为点G是DF的中点,所以.CG DF⊥ --------②由①②,得CG⊥平面.DEF(Ⅱ)由(Ⅰ)知1,,DE DC DD两两垂直,以点D为坐标原点,分别以1,,DE DC DD所在直线为,,x y z轴,建立如图所示空间直角坐标系,())()()()0,0,0,3,0,0,0,2,0,0,2,2,0,1,1,D E C F G)()()13,1,3,3,0,0,3,1,3.A DE DA-==-设(),,n x y z=是平面1A DE的一个法向量,则30330xx y z=∴-+=,取0,3x y==,得()0,3,1n=,显然,()0,1,1CG=-是平面DEF的一个法向量,5cos,.CG nCG nCG n⋅==-由图可以看出二面角1A DE F--5点睛:利用法向量求解空间角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19.某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如下表:投资股获利不赔不亏损购买基金获利不赔不亏损市 40% 赚20%20% 赚10%概率p121838概率pm13n(Ⅰ)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“购买基金”,若一年后他们中至少有一人盈利的概率大于45,求m 的取值范围; (Ⅱ)若12m =,某人现有10万元资金,决定在“投资股市”和“购买基金”这两种方案中选择出一种,那么选择何种方案可使得一年后的投资收益的数学期望值较大.【答案】(Ⅰ)32.53m <≤(Ⅱ)应选择“投资股市”可使得一年后的投资收益的数学期望值较大 【解析】试题分析:( I )设事件A 为“甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙中至少有一人盈利”,则C AB AB AB =⋃⋃,其中A ,B 相互独立.利用相互独立事件、互斥事件的概率计算公式即可得出概率. ( II )假设此人选择“投资股市”,记ξ为盈利金额(单位万元),可得ξ的分布列为.假设此人选择“购买基金”,记η为盈利金额(单位万元),可得η的分布列,计算即可比较出大小关系. 试题解析:(Ⅰ)设事件A 为“甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事件C 为“一年后甲、乙中至少有一人盈利”,则C AB AB AB =⋃⋃,其中,A B 相互独立, 因为()()1,2P A P B m ==,则()()()()P C P AB P AB P AB =++,即 ()()()11111112222P C m m m m ⎛⎫=-+-+=+ ⎪⎝⎭,由()14125m +>解得35m >; 又因为113m n ++=且0n ≥,所以23m ≤,故32.53m <≤, (Ⅱ)假设此人选择“投资股市”,记ξ为盈利金额(单位万元),则ξ的分布列为:则1135402.2884E ξ=⨯+⨯-⨯= 假设此人选择“购买基金”,记η为盈利金额(单位万元),则η的分布列为:则1115201.2366E η=⨯+⨯-⨯= 因为5546>,即E E ξη>,所以应选择“投资股市”可使得一年后的投资收益的数学期望值较大. 20.已知圆()22:18C x y ++=,定点()1,0,A M 为圆上一动点,线段MA 的垂直平分线交线段MC 于点N ,设点N 的轨迹为曲线E ; (Ⅰ)求曲线E 的方程;(Ⅱ)若经过()0,2F 的直线L 交曲线于不同的两点,G H ,(点G 在点F , H 之间),且满足35FG FH =,求直线L 的方程.【答案】(Ⅰ)22 1.2x y +=(Ⅱ) 2.y =+ 【解析】试题分析:(1) NP 是线段AM 的垂直平分线, NA NM=,.NC NM NC NA NC NM AC +=+=+=>由椭圆定义得轨迹方程;(2)设直线GH 的方程为:2y kx =+,联立方程得:2214302k x kx ⎛⎫+++= ⎪⎝⎭,2121222343,,11222k k x x x x k k >+=-⋅=++,由35FG FH =,得1235x x =,巧借韦达定理建立k 的方程,解之即可.试题解析:(Ⅰ)设点N 的坐标为(),x y ,NP 是线段AM 的垂直平分线, NA NM =,又点N 在CM 上,圆()22:18C x y ++=,半径是r =.NC NM NC NA NC NM AC ∴+=+=+=∴点N 的轨迹是以,A C 为焦点的椭圆,设其方程为()2222:10x y a b a b +=>>,则22221, 1.a a c b a c ====-=∴曲线E 方程: 22 1.2x y +=(Ⅱ)设()()1122,,,,G x y H x y当直线GH 斜率存在时,设直线GH 的斜率为k 则直线GH 的方程为: 2y kx =+,222{ 12y kx x y =+∴+=,整理得: 2214302k x kx ⎛⎫+++= ⎪⎝⎭,由0∆>,解得: 2121222343,,.11222k k x x x x k k >+=-⋅=++ ------①又()()1122,,2,,,2FG x y FH x y =-=-,由35FG FH =,得1235x x =,结合①得 22235651212k k k ⎛⎫-= ⎪++⎝⎭,即2322k =>,解得k =∴直线l的方程为: 2y =+,当直线GH 斜率不存在时,直线l 的方程为10,3x FG FH ==与35FG FH =矛盾.∴直线l 的方程为: 2.y =+21.已知函数()2ln 22,.22a a f x x x x a R ⎛⎫=+-++∈ ⎪⎝⎭(Ⅰ)当1a =时,求曲线()f x 在点()()1,1f 处的切线方程; (Ⅱ)若[)1,x ∈+∞时,函数()f x 的最小值为0,求a 的取值范围. 【答案】(Ⅰ)210x y +-=(Ⅱ)[)2,+∞ 【解析】试题分析:(1)求出导函数,得到()()11,102f f '=-=,利用点斜式得到切线方程;(2)分类讨论函数()f x 的单调性,明确最小值,从而得到a 的取值范围. 试题解析:(Ⅰ)当1a =时, ()()21515ln 2,,222f x x x x f x x x =+-+=+-'()()11,10.2f f '=-=所以曲线()f x 在点()()1,1f 处的切线方程为()1012y x -=--, 即210x y +-=.(Ⅱ)()()()()224222112222ax a x ax x a f x ax x x x -++-'-⎛⎫=+-+==⎪⎝⎭, 当0a =时, ()()22102x f x x-'-=<,所以函数在[)1,+∞上为减函数,而()10f =,故此时不符合题意;当0a <时,任意[)1,x ∈+∞都有()0f x '<,所以函数在[)1,+∞上为减函数,而()10f =, 故此时不符合题意;当02a <<时,由()0f x '=得12x =或21x a =>, 21,x a ⎛⎫∈ ⎪⎝⎭时, ()0f x '<,所以函数在[)1,+∞上为减函数,而()10f =,故此时不符合题意; 当2a ≥时, ()()()22102ax x f x x'--=≥此时函数在[)1,+∞上为增函数,所以()()10f x f ≥=,即函数的最小值为0,符合题意, 综上a 的取值范围是[)2,+∞. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为2{2tx y t=-=-,( t 为参数),在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为2sin .ρθ= (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)已知点()0,1A ,若点P 是直线l 上一动点,过点P 作曲线C 的两条切线,切点分别为,M N ,求四边形AMPN 面积的最小值.【答案】(Ⅰ)2220x y y +-=(Ⅱ)2【解析】试题分析:(1)利用三种方程的转化方法,可得直线l 的普通方程和曲线C 的直角坐标方程;(2)利用切线的几何性质,将四边形AMPN 面积为直角三角形的面积问题. 试题解析:(Ⅰ)由y t =-得t y -=,代入22tx =-化简得240x y --=, 因为2sin ρθ=,所以22sin ρρθ=, 又因为{x cos y sin ρθρθ==,所以2220x y y +-=所以直线l 的普通方程为240x y --=,曲线C 的直角坐标方程为2220x y y +-=; (Ⅱ)将2220x y y +-=化为()2211x y +-=,得点A 恰为该圆的圆心.设四边形AMPN 的面积为S,则S PM r r =⋅==PA 最小时, S 最小,而PA 的最小值为点A 到直线l的距离d ==所以min 2.S ===23.选修4-5:不等式选讲已知不等式2112x x -+-<的解集为.M (Ⅰ)求集合M ;(Ⅱ)若整数m M ∈,正数,,a b c 满足42a b c m ++=,证明:1118.a b c++≥ 【答案】(Ⅰ)4|0 .3M x x ⎧⎫=<<⎨⎬⎩⎭(Ⅱ)见解析 【解析】试题分析:(1)利用零点分段法易得()3211f {1 21322x x x x x x x -≥=≤<-+<,,,,然后分段求解即可;(2)由(1)知, 42a b c ++=,巧用“1”得()111111142a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭,利用均值不等式即可证明不等式.试题解析:(Ⅰ)①当1x ≥时,原不等式等价于2112x x -+-<,解得43x <,所以413x ≤<; ②当112x ≤<时,原不等式等价于2112x x -+-<,解得2x <,所以112x ≤<;③当12x <时,原不等式等价于1212x x -+-<,解得0x >,所以10.2x <<综上, 403x <<,即4|0 3M x x ⎧⎫=<<⎨⎬⎩⎭(Ⅱ)因为4|0 3M x x ⎧⎫=<<⎨⎬⎩⎭,整数m M ∈,所以42a b c ++= 所以()11111111444422a b c a b c a b c a b c a b c a b c a b c ++++++⎛⎫⎛⎫++=++++=++ ⎪ ⎪⎝⎭⎝⎭14416622b a c a c b a b a c b c ⎛⎛⎫=++++++≥+ ⎪ ⎝⎭⎝ ()1624482=+++= 当且仅当2a b c == 时,等号成立,所以1118a b c ++≥点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

河南省九校联盟2021届高三数学(理)下学期第一次联考试题(含答案)

河南省九校联盟2021届高三数学(理)下学期第一次联考试题(含答案)

高三下学期第一次联考数学(理科)(考试时间:120分钟 试卷满分:150分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卷上;2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卷上对应的题目标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卷上,写在本试卷上无效;4.考试结束后,将本试卷和答题卷一并交回。

第Ⅰ卷 选择题(共60分)一、选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上。

)1.已知集合A ={x |2x ≥16},B ={m},若A∪B=A ,则实数m 的取值范围是A .(-∞,-4)B .[4,+∞)C .[-4,4]D .(-∞,-4]∪[4,+∞)2.已知复数Z 的共轭复数Z =112ii-+,则复数Z 的虚部是 A .35 B .35i C .-35 D .-35i 3.若f (x )=31(),()3()xx x x ⎧⎪⎨⎪,⎩≤0log >0,则f (f (19))=A .-2B .-3C .9D .194.若{n a }为等差数列,n S 是其前n 项和,且S 11=223π,{n b }为等比数列,5b ·7b =27π,则tan (6a +6b )的值为 A .3 B .3±C .3 D .3± 5.执行如右图所示的程序框图,则输出的结果是A .1920 B .2021 C .2122 D .22236.已知点P 是抛物线2x =4y 上的动点,点P 在x 轴上的射影是Q ,点A 的坐标是(8,7),则|PA |+|PQ |的最小值为A .7B .8C .9D .107.已知10770,0,0x y x y x y ⎧⎪⎨⎪⎩-+≥--≤≥≥表示的平面区域为D ,若(,)x y ∀∈D,2x +y≤a 为真命题,则实数a 的取值范围是A .[5,+∞)B .[2,+∞)C .[1,+∞)D .[0,+∞)8.如右图是一个空间几何体的三视图,则该几何体的侧面积是A .3+2+3B .23C .2+2+3D .5+29.已知双曲线M :22221x y a b -=(a >0,b >0)的一个焦点到一条渐近线的距离为23c (c为双曲线的半焦距长),则双曲线的离心率e 为A .7B .37C .37D .3710.四面体的一条棱长为x ,其余棱长为3,当该四面体体积最大时,经过这个四面体所有顶点的球的表面积为A .272π B .92π C .152πD .15π11.设x ,y∈R,则2(34cos )y x --+2(43sin )y x ++的最小值为A .4B .16C .5D .2512.当|a |≤1,|x |≤1时,关于x 的不等式|2x -ax -2a |≤m 恒成立,则实数m 的取值范围是A .[34,+∞) B .[54,+∞) C .[ 32,+∞) D .[52,+∞)第Ⅱ卷 非选择题(共90分)二、填空题(本大题共4个小题,每小题5分,共计20分。

河南省八市重点高中2018届高三第一次测评(9月)数学理试题含答案

河南省八市重点高中2018届高三第一次测评(9月)数学理试题含答案

八市。

学评20172018(上)高三第一次测评理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1。

已知全集R U =,集合{}{}032,2,0,22≥--=-=x x x B CA U,则=B A ( )A {}2-B .{}2,0C .()2,1-D .(]1,2--2.已知i 为虚数单位,复数z 的共轭复数为z ,且满足i z z 232-=+,则=z ( )A .i 21-B .i 21+C .i -2 D.i +2 3.已知等差数列{}na 中,92832823=++a a a a,且0<n a ,则数列{}n a 的前10项和为( ) A .9-B . 11-C .13-D .15-4。

从[]2,0内随机取两个数,则这两个数的和不大于1的概率为( ) A .161 B .81 C 。

41 D .215。

某几何体的三视图如图所示,则该几何体的体积为( ) A .2 B .4 C. 6 D .126。

已知函数()⎩⎨⎧->+-≤=-1,221,23x x x x f x ,则满足()2≥a f 的实数a 的取值范围是( )A .()()+∞-∞-,02,B .()0,1-C 。

()0,2-D .()[)+∞-∞-,01,7。

二项式5221⎪⎭⎫⎝⎛-y x 的展开式中23y x 的系数是( )A .5B . 20-C 。

20D .5-8。

执行如图的程序框图,输出的S 值为( ) A .23-B .0C 。

23 D .39.函数()()⎪⎭⎫⎝⎛<<->>+=22,0,0sin πϕπωϕωA x A x f 的部分图像如图所示,则当⎥⎦⎤⎢⎣⎡∈127,12ππx 时,()x f 的取值范围是( )A .⎥⎦⎤⎢⎣⎡-23,23B .⎥⎦⎤⎢⎣⎡-1,23C 。

⎥⎦⎤⎢⎣⎡-21,21 D .⎥⎦⎤⎢⎣⎡-1,2110。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届河南省名校联盟高三9月质量检测数学(理)试题一、单选题1.已知集合{}20x x x M =-≤,{}1,0,1,2N =-,则MN =( )A.{}1,0,1-B.{}1,0-C.{}1,2D.{}0,1【参考答案】D【试题解析】由集合描述求M 的集合,应用集合交运算求交集即可.因为{}{}2001M x x x x x =-≤=≤≤,所以{}0,1M N =.故选:D .本题考查了集合的基本运算,根据集合交运算求集合,属于简单题. 2.设11iz i=-+(i 为虚数单位),则在复平面内z 所对应的点位于( ) A.第一象限 B.第二象限C.第三象限D.第四象限【参考答案】D【试题解析】由复数的运算求出z ,得出对应点的坐标后可得象限.因为()()1111111111222i i i z i i i i i --=-====-+++-,所以在复平面内z 所对应的点为11,22⎛⎫-⎪⎝⎭,在第四象限. 故选:D .本题考查复数的综合运算,复数的几何意义,解题方法是由复数运算化复数为代数形式,然后由复数的几何意义得出结论.3.某工厂生产A ,B ,C 三种不同型号的产品,某月生产这三种产品的数量之比依次为2::3a ,现用分层抽样方法抽取一个容量为120的样本,已知B 种型号产品抽取了60件,则a =( ) A.3B.4C.5D.6【参考答案】C【试题解析】利用样本容量与总体容量比值相等可得. 由题意,605120a a =+,解得5a =. 故选:C .本题考查分层抽样,解题根据是样本容量与总体容量比值相等. 4.执行如图所示的程序框图,则输出S 的值为( )A.15B.17C.18D.19【参考答案】C【试题解析】模拟程序运行,观察变量值的变化,判断循环条件可得结论.第一次运行时,8412S =+=,3i =; 第二次运行时.12315S =+=,2i =; 第三次运行时,15217S =+=,1i =; 第四次运行时,17118S =+=, 此时满足判断条件1i =. 则输出S 的值为18. 故选:C .本题考查程序框图,考查循环结构,解题方法是模拟程序运行,观察变量值的变化,从而得出结论.5.圆C :2240x y y +-=被直线l 210x y --=所截得的弦长为( ) A.1B.2C.3D.4【参考答案】B【试题解析】求出圆心到直线的距离,圆的半径,利用垂径定理得弦长.圆C 的圆心为()0,2C ,半径为2R =,C 到直线l 的距离为202133d ⨯--==,所以所截得的弦长为22222232R d -=-=. 故选:B .本题考查求直线与圆相交弦长,解题方法是几何法,求出圆心到直线的距离后由勾股定理得弦长.6.2019年北京世园会的吉祥物“小萌芽”“小萌花”是一对代表着生命与希望、勤劳与美好、活泼可爱的园艺小兄妹.造型创意来自东方文化中百子图的“吉祥娃娃”,通过头饰、道具、服装创意的巧妙组合,被赋予了普及园艺知识、传播绿色理念的特殊使命.现从4张分别印有“小萌芽”“小萌花”“牡丹花”“菊花”的这4个图案的卡片(卡片的形状、大小、质地均相同)中随机选取2张,则2张恰好是“小萌芽”和“小萌花”卡片的概率为( )A.12B.16C.112D.15【参考答案】B【试题解析】4个图案的卡片编号后用列举法写出任选2张的所有可能事件,而2张恰好是“小萌芽”和“小萌花”卡片方法恰有1种,计数后可得概率.给“小萌芽”“小萌花”“牡丹花”“菊花”编号分别为1,2,3,4.从中选2个基本事件为:12,13.14,23,24,34共6个,所以2张恰好是“小萌芽”和“小萌花”卡片的概率为16. 故选:B .本题考查古典概型,解题方法是列举法.7.函数()2421x f x x =+的图像大致是( )A. B. C.D.【参考答案】B【试题解析】由奇偶性排除A ,C ,再求出0x >时函数有最值可排除D ,从而得正确选项.由()()()()22442211x x f x f x x x --===+-+,所以()f x 偶函数,可排除A ,C ; 当0x >时,()2422222211112x f x x x x x x==≤=++⋅,即当且仅当1x =时,()max 1f x =,可排除D . 故选:B .本题考查由函数解析式选择函数图象,解题方法是排除法,通过研究函数的性质如奇偶性、单调性、对称性等排除一些选项,再由特殊的函数值、函数值的正负,函数值的变化趋势,图象的特殊点等排除一些选项,最终得出正确选项. 8.将函数()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭的图象向左平移π4个单位长度,若所得图象与原图象关于x 轴对称,则π4f ⎛⎫= ⎪⎝⎭( )A.22-B.0C.22D.32【参考答案】A 【试题解析】由题意得π4等于半个周期+周期的整数倍,求出()()412k k ω=+∈Z ,求出解析式,再利用诱导公式即可求解.由题意得π4等于半个周期+周期的整数倍,即()()ππ124k k ω=+∈Z ,解得()()412k k ω=+∈Z .所以()()πsin 4124f x k x ⎡⎤=++⎢⎥⎣⎦. 则π5πsin 2π44f k ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭.所以π242f ⎛⎫=-⎪⎝⎭. 故选:A .本题考查了三角函数的平移变换、诱导公式,考查了基本知识的掌握情况,属于基础题. 9.在正方体ABCD —A 1B 1C 1D 1中,异面直线a 和b 分别在上底面A 1B 1C 1D 1和下底面ABCD 上运动,且a b ⊥,若1A D 与b 所成角为60°时,则a 与侧面ADD 1A 1所成角的大小为( ) A.30°B.45°C.60°D.90°【参考答案】B【试题解析】建立适当的空间直角坐标系,根据题意设出直线,a b 的方向向量,利用空间向量,根据异面直线所成的角的公式求得b 的方向向量的坐标关系,进而利用线面所成角的向量公式求得直线a 与平面侧面ADD 1A 1所成角的大小.以D 为原点,以1,,DA DC DD 为,,x y z 轴,建立空间直角坐标系,设正方体的棱长为1,如图所示:直线,a b 分别在上下底面内且互相垂直,设直线a 的方向向量为(),,0u m n =,则直线b 的方向向量可以为(),,0v n m =-,直线1A D 的方向向量为()11,0,1DA =, 侧面ADD 1A 1的法向量()0,1,0DC =,1A D 与b 所成角为60°,11··60DA v DA v cos ∴=︒,即12n =,2·cos ,1?DC v DC v DC v m ∴===故a 与侧面ADD 1A 1所成角的大小为45°. 故选:B.本题考查利用空间向量研究异面直线所成的角和线面所成的角问题,属创新题,难度一般.关键是建立适当的空间直角坐标系,利用空间向量进行有关计算.10.“跺积术”是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、三角垛等.现有100根相同的圆柱形铅笔,某同学要将它们堆放成横截面为正三角形的垛,要求第一层为1根且从第二层起每一层比上一层多1根,并使得剩余的圆形铅笔根数最少,则剩余的铅笔的根数是( ) A.9B.10C.12D.13【参考答案】A【试题解析】设只能堆放n 层,由已知得从最上层往下,每层铅笔数组成以首项为1、公差为1的等差数列,且余下的铅笔数小于1n +,根据等差数列的前n 项和公式可求得选项.设只能堆放n 层,则从最上层往下,每层铅笔数组成以首项为1、公差为1的等差数列,且余下的铅笔数小于1n +, 于是()11002n n +≤,且()110012n n n +-<+,解得13n =,剩余的根数为131410092⨯-=. 故选:A.本题考查数列的实际应用,关键在于将生活中的数据,转化为数列中的基本量,属于中档题.11.在ABC 中,3tan 4C =,H 在边BC 上,0AH BC ⋅=,AC BC =,则过点B 以A ,H 为两焦点的双曲线的离心率为( )A.3B.43C.13D.13【参考答案】D【试题解析】设3AH x =,求出,,,CA CH BA BH ,由双曲线的定义表示出2a ,2c AH =,再由离心率定义可得离心率.在ABC 中,0AH BC ⋅=,所以AH 为边BC 上的高,CA CB =.又3tan 4C =,令3AH x =,则|4CH x =,5AC CB x ==,BH x =,所以AB ==,所以过点B 以A 、H 为两焦点的双曲线中,)21a BA BH x =-=,23c AH x ==,所以过点B 以A 、H 为两焦点的双曲线的离心率为2123c c e a a====. 故选:D .本题考查求双曲线的离心率,解题方法是设3AH x =,根据双曲线的定义用x 表示出,a c 得离心率.12.3D 打印属于快速成形技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体的技术(即“积层造型法”).过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等).已知利用3D 打印技术制作如图所示的模型.该模型为在圆锥底内挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为,母.打印所用原料密度为31 g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为( )(取π 3.14=,精确到0.1)A.609.4gB.447.3gC.398.3gD.357.3g【参考答案】C【试题解析】作出圆锥的轴截面,截正方体得对角面,由这个轴截面中可计算出正方体的棱长和圆锥的高,再由体积公式计算出体积.体积乘密度即得质量.如图,是几何体的轴截面,因为圆锥底面直径为102cm ,所以半径为52cm OB =.因为母线与底面所成角的正切值为tan 2B =所以圆锥的高为10cm PO =.设正方体的棱长为a ,2DE a =,21021052a -=,解得5a =. 所以该模型的体积为(()2331500ππ52105125cm 33V =⨯⨯-=-. 所以制作该模型所需原料的质量为()500π500π1251125398.3g 33⎛⎫-⨯=-≈ ⎪⎝⎭. 故选:C .本题考查求组合体的体积,掌握圆锥与正方体的体积公式是解题关键.二、填空题13.设向量()2,21a m m =-+,()1,3b =-,若a b ⊥,则m =_______. 【参考答案】1-【试题解析】0a b ⋅=可计算出m 值.因为a b ⊥,所以()()2,211,32630a b m m m m ⋅=-+⋅-=-++=,解得1m =-. 故答案为:1-.本题考查向量垂直与数量积的关系,考查数量积的坐标表示,属于基础题.14.已知实数x ,y 满足不等式组24020x y y x y --≤⎧⎪≤⎨⎪+≥⎩则26z y x =-的最小值为_______.【参考答案】44-【试题解析】根据线性约束条件作出可行域,利用z 的几何意义即可求解.作出不等式组所表示的平面区域如下图中阴影部分所示: 由26z y x =-,可得32zy x =+,作直线0:3l y x =, 将其沿着可行域的方向平移,由图可知, 当直线32zy x =+过点B 时,z 取得最小值. 由240,2,x y y --=⎧⎨=⎩解得8,2,x y =⎧⎨=⎩即()8,2B ,所以min 226844z =⨯-⨯=-. 故答案为:44-.本题主要考查了根据简单的线性规划求最值,理解目标函数的几何意义最关键,属于基础题15.曲线()320y x x x=-+>的一条切线的斜率为4,则该切线的方程为_______.【参考答案】440x y --=【试题解析】利用切线的斜率求得切点坐标,然后利用点斜式可得出所求切线的方程.设切点坐标为()00,x y ,其中00x >,对函数32y x x =-+求导得231y x '=+,所以切线的斜率020314x x y x ='=+=, 因为00x >,解得01x =,则02310y =-+=,切点为()1,0, 则该切线的方程为()41y x =-,即所求切线方程为440x y --=. 故答案为:440x y --=.本题考查利用导数求解函数的切线方程,同时也考查了利用切线的斜率求切点的坐标,考查计算能力,属于基础题.16.已知数列{}n a 的前n 项和为n S ,且364n n S a =-,若()*11,,m k a a m k m k N ⋅=≤≤∈,则k 的取值集合是_______.【参考答案】{}4,5【试题解析】利用已知n S 求n a 的法,求出数列314n n a -⎛⎫= ⎪⎝⎭,可知{}n a 是递减数列,所以151a a =,241a a =,31a =,结合1m k ≤<,即可求得k 的取值集合.当1n =时,11364a a =-,解得116a =;当2n ≥时,364n n S a =-和11364n n S a --=-两式相减,得13n n n a a a -=-,即114n n a a -=, 则数列{}n a 是首项为16、公比为14的等比数列, 所以13111644n n n a --⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭,{}n a 是递减数列,即各项依次为16,4,1,14,116,164,…,所以151a a =,241a a =,31a =,结合1m k ≤<,得k 的取值集合是{}4,5.本题主要考查了已知n S 求n a ,利用递推公式求数列通项,考查了等比数列的定义,属于中档题.三、解答题17.某网校推出试听的收费标准为每课时100元,现推出学员优惠活动,具体收费标准如下(每次听课1课时):现随机抽取100位学员并统计它们的听课次数,得到数据如下:假设该网校的成本为每课时50元.(1)估计1位学员消费三次及以上的概率;(2)求一位学员听课4课时,该网校所获得的平均利润. 【参考答案】(1)310;(2)平均利润为25(元). 【试题解析】(1)根据听课课时数表和古典概率公式可求得所求的概率.(2)分别计算出第1课时、第2课时、第3课时、第4课时听课利润,从而可求出这4个课时听课获得的平均利润.解:(1)根据听课课时数表.估计1位学员听课三次及以上的概率1020310010P +==. (2)第1课时听课利润1000.95040⨯-=(元); 第2课时听课利润1000.85030⨯-=(元); 第3课时听课利润1000.75020⨯-=(元); 第4课时听课利润1000.65010⨯-=(元), 这4个课时听课获得的平均利润为40302010254+++=(元).本题考查由频数计算概率,统计的数字特征求实际问题中的平均利润,属于中档题.18.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,其面积为S ,且2223b c a S +-=. (1)求角A 的大小;(2)若4sin sin 3B C ⋅=且2a =,求ABC 的面积S .【参考答案】(1)π3;(2【试题解析】()1已知等式利用余弦定理及三角形面积公式化简,整理求出tan A 的值,即可确定出A 的度数;()2由正弦定理和三角形的面积公式可求得答案.解:(1)由2223b c a S +-=,得12cos sin 32bc A bc A =⋅,所以cos A A =,所以tan A =又()0,πA ∈, 所以π3A =.(2)由正弦定理,得2sin sin sin b c a R B C A,解得R =由正弦定理得2sin b R B =,2sin c R C =,所以2213sin 2sin sin sin 224S bc A R A B C ===⋅=⎝⎭此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键,属于中档题.19.在四棱锥P ABCD -中,四边形ABCD 是边长2的菱形,PAB △和PBC 都是正三角形,且平面PBC ⊥平面PAB .(1)求证:AC PD ⊥; (2)求三棱锥P ABD -的体积. 【参考答案】(1)证明见解析;(2)1.【试题解析】(1)先证明PB ⊥平面AOC ,得到AC PB ⊥,再证明AC BD ⊥,则可证明AC ⊥平面PBD ,根据线面垂直的性质可得AC PD ⊥;(2)由原几何体的特点可知P ABD D PAB V V --=,而点D 到底面PAB 的距离等于点C 到底面PAB 的距离,即13D PAD PAB V CO S -∆=⋅⋅.(1)证明:取PB 的中点O ,连接OA 和OC .因为PBC 是正三角形,所以CO PB ⊥. 同理OA PB ⊥. 又COOA O =,CO ,AO ⊂平面AOC ,所以PB ⊥平面AOC .又AC ⊂平面AOC ,所以AC PB ⊥,因为四边形ABCD 是边长2的菱形,所以AC BD ⊥,又PB BD B ⋂=,PB ,BD ⊂平面PBD ,所以AC ⊥平面PBD . 因为PD ⊂平面PBD ,所以AC PD ⊥. (2)因为//CD AB ,AB平面PAB ,CD ⊄平面PAB ,所以//CD 平面PAB ,所以D 到平面PAB 的距离就是C 到平面PAB 的距离,即3CO =,所以三棱锥P ABD -的体积为22112133P ABD D PAB V V CO AB --====.本题考查空间垂直关系的判定及证明,考查利用线面垂直的性质证明线线垂直,考查棱锥体积的求解,难度一般.20.已知椭圆E :()222210x y a b a b+=>>的右焦点为F ,短轴长等于焦距,且经过点()0,1P .(1)求椭圆E 的方程;(2)设过点F 且不与坐标轴垂直的直线与E 交于A ,B 两点,线段AB 的中点为C ,D 是y 轴上一点,且CD AB ⊥,求证:线段CD 的中点在x 轴上.【参考答案】(1)2212x y +=;(2)证明见解析.【试题解析】(1)由已知得1b =; 1c =,从而得椭圆E 的方程.(2)设直线l 的方程为()10x ty t =+≠,()11,A x y ,()11,B x y ,()00,C x y .直线l 与椭圆的方程联立得()222210t y ty ++-=,由题意,得>0∆,且12222t y y t +=-+,12212y y t =-+,表示点222,22t C t t ⎛⎫- ⎪++⎝⎭.设()0,D u ,根据直线的垂直关系得22tu t =+.可得证.解:(1)由椭圆E 经过点()0,1P ,得1b =;由短轴长等于焦距,得22b c =,则1c =,所以a =故椭圆E 的方程为2212x y +=.(2)设直线l 的方程为()10x ty t =+≠,()11,A x y ,()11,B x y ,()00,C x y .由221,22,x ty x y =+⎧⎨+=⎩得()222210t y ty ++-=,由题意,得>0∆,且12222ty y t +=-+,12212y y t =-+, 则120222y y t y t +==-+,002212x ty t =+=+,即222,22t C t t ⎛⎫- ⎪++⎝⎭.设()0,D u ,由CD AB ⊥,得,2212122t u t t t ++⋅=--+,解得22t u t =+. 所以00y u +=,所以002y u+=,故线段CD 的中点在x 轴上.本题考查椭圆的简单几何性质,求椭圆的标准方程,直线与椭圆的位置关系之交点问题,属于中档题.21.已知函数3()f x x ax =+. (1)讨论()f x 的单调性;(2)若函数()()ln g x f x x x =-在122⎡⎤⎢⎥⎣⎦,上有零点,求a 的取值范围. 【参考答案】(1)见解析;(2)114ln 2,ln 222⎡⎤-+--⎢⎥⎣⎦【试题解析】(1)先求导,对a 分类讨论,利用导函数的正负可得f (x )的单调性. (2)将已知进行转化,得到3ln 0x ax x x +-=在1,22⎡⎤⎢⎥⎣⎦上有解,分离参数a,构造函数,求导求得值域,可得a 的范围.(1)因为()3f x x ax =+,所以()23f x x a ='+.①当0a ≥时,因为()230f x x a '=+≥,所以()f x 在R 上单调递增;②当0a <时,令()0f x '>,解得x <x >. 令()0f x '<,解得x <<, 则()f x在,3⎛⎫-∞- ⎪ ⎪⎝⎭,3⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增;在,33⎛⎫- ⎪ ⎪⎝⎭上单调递减. (2)因为()()ln g x f x x x =-,所以()3ln g x x ax x x =+-,()()ln g x f x x x =-在1,22⎡⎤⎢⎥⎣⎦上有零点,等价于关于x 的方程()0g x =在1,22⎡⎤⎢⎥⎣⎦上有解,即3ln 0x ax x x +-=在1,22⎡⎤⎢⎥⎣⎦上有解.因为3ln 0x ax x x +-=,所以2ln a x x =-+.令()2ln h x x x =-+,则()21212x h x x x x=-'-=-+.令()0h x '<,122x ≤≤,2x <≤;令()0h x '>,122x ≤≤,解得12x ≤<则()h x 22⎛⎤ ⎥ ⎝⎦上单调递减,在1,22⎡⎫⎪⎢⎪⎣⎭上单调递增,因为2111ln 222h ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭1ln24--,()222ln24ln2h =-+=-+,所以()115224h h ⎛⎫-=⎪⎝⎭152ln2204->->,则()()min 24ln2h x h ==-+,()max12h x h ==-+⎝⎭11ln222=--, 故a 的取值范围为114ln2,ln222⎡⎤-+--⎢⎥⎣⎦.本题考查了利用导数研究函数的单调性与零点问题,考查了函数的最值的求法,考查了等价转化方法,考查了推理能力与计算能力,属于难题. 22.在平面直角坐标系xOy 中,曲线C 的参数方程为2,x u y u=⎧⎨=⎩(u 为参数);以原点O 为极点,x 轴的非负半轴为极轴且取相同的长度单位建立极坐标系,直线l 的极坐标方程为()πsin 03a a ρθ⎛⎫-=> ⎪⎝⎭. (1)求直线l 和曲线C 的直角坐标方程;(2)设直线l 和曲线C 交于A ,B 两点,直线OA ,OB ,AB 的斜率分别为1k ,2k ,k ,求证:12k k k +=.【参考答案】(1)直线l 20y a -+=,曲线C 的直角坐标方程为2x y =;(2)证明见解析.【试题解析】(1)由cos sin x y ρθρθ=⎧⎨=⎩代入πsin 3a ρθ⎛⎫-= ⎪⎝⎭中,可得直线l 的直角坐标方程,消参可得曲线C 的直角坐标方程.(2)将曲线C 的参数方程2,x u y u=⎧⎨=⎩代入直线l 20y a -+=,得220u a -=.由一元二次方程的根与系数的关系和参数的意义可得证.(1)解:由πsin 3a ρθ⎛⎫-= ⎪⎝⎭,得1sin cos 22a ρθρθ⋅-⋅=,则直线l 20y a -+=; 曲线C 的直角坐标方程为2x y =.(2)证明:将2,x u y u=⎧⎨=⎩20y a -+=,得220u a -=. 由直线l 和曲线C 交于A 、B 两点且0a >,得380a ∆=+>;设方程220u a -=的两根分别为1u ,2u ,则12u u += 而yu x=表示曲线C 上的点(),x y 与原点O 连线的斜率,所以11k u =,22k u =,所以1212k k u u +=+=又直线l 的斜率为k =所以12k k k +=.本题考查极坐标方程向直角坐标方程转化,参数方程向普通方程转化,以及直线与抛物线的位置关系之交点问题,注意理解参数的意义,属于中档题. 23.已知函数()f x x x a =++. (1)当1a =-时,解不等式()3f x ≥.(2)若对任意的x ∈R ,总存在[]1,1a ∈-,使得不等式()22f x a a k ≥-+成立,求实数k 的取值范围.【参考答案】(1)(][),12,-∞-⋃+∞;(2)(],4-∞.【试题解析】(1)当1a =-时,()3f x ≥,即为13x x +-≥.分0x ≤,01x <≤,1x >三种情况分别求解不等式,可得原不等式的解集;(2)将问题转化为()2min 2f x a a k ≥-+.①,即总存在[]1,1a ∈-,使得22a a a k ≥-+成立,由不等式的恒成立的思想可求得实数k 的取值范围.解:(1)当1a =-时,()3f x ≥,即为13x x +-≥. 当0x ≤时,不等式变为13x x -+-≥,解得1x ≤-; 当01x <≤时,不等式变为13x x +-≥,无解; 当1x >时,不等式变为13x x +-≥,解得2x ≥. 綜上,不等式的解集是(][),12,-∞-⋃+∞.(2)要使对任意的x ∈R ,不等式()22f x a a k ≥-+成立,只需()2min 2f x a a k ≥-+.①而()()f x x x a x x a a =++≥-+=, 所以①可转化为22a a a k ≥-+.②即总存在[]1,1a ∈-,使得22a a a k ≥-+成立,即总存在[]1,1a ∈-,使得()211a a k --+≥成立.而当1a =-时,()2max113a ⎡⎤--=⎣⎦;当1a =±时,max 1a =, 所以当1a =-时,()2max114a a ⎡⎤--+=⎣⎦, 所以4k ≤,故实数k 的取值范围是(],4-∞.本题考查运用分类讨论的方法解绝对值不等式,不等式的恒成立问题,属于中档题.。

相关文档
最新文档