高压架空线路铁塔防雷接地设计方案

合集下载

架空线路的防雷措施

架空线路的防雷措施

架空线路的防雷措施架空线路的防雷措施是否得当,直接关系到电网的安全运行与矿井的安全生产。

现在我们结合实际了解几种防雷措施:一、架设避雷线避雷线主要是防止雷直击导线,它是架空线路最基本的防雷措施。

规程规定:35KV_110KV架空线路,如果未沿全线架设避雷线,则应在1KM_2KM的进线段架设避雷线。

公司现在运行的架空线路最高电压等级是35KV:它们是曲矿线、铜矿线、王坡线、相坡线共四条35KV等级线路,其中曲矿线和铜矿线都是在主焦变电站进线段约1.5KM范围内架设有避雷线。

相坡线和王坡线原先也是只在坡北变电站进线段装设有避雷线,但是由于线路雷电活动较强,几乎每年都会发生雷击跳闸事故。

严重威胁到了矿井的安全生产,所以在2005年底,将这两条线路在全线补设了避雷线。

全线封闭后,到现在已有四年。

只在07年王坡线24#铁塔发生了一起雷电绕击事故。

(这与24#铁塔在龙山山顶的位置有关)事实证明,全线架设避雷线虽然成本较高,但它防止直击雷的效果还是非常明显的。

二、装设自动重合闸重合闸的作用是在线路因雷击跳闸后,能在1.5秒的时间内重新自动合一次闸。

一般设定只让重合闸一次,如果线路出现的是永久性故障,重合一次合不上,就不再重合了。

雷击造成的闪路大多数能在跳闸后自行恢复绝缘,所以重合成功率比较高。

由于它能在极短时间内恢复送电,因此对矿井的安全生产有重要意义。

咱们的35KV铜矿线就有这套装置。

实践证明,合闸成功率接近100%。

(但是它不能保护设备绝缘)三、装设避雷器公司35kv和6kv线路上都装有避雷器,使用非常广泛。

避雷器在正常工作电压下,对地呈绝缘状态;在雷电过电压(不管是直击雷还是感应雷),则呈低电阻状态,对地泄放雷电流,将过电压数值限制在设备绝缘安全值以下,从而有效地保护了被保护电器设备的绝缘免受过电压的损害。

除了这三种,还有采用消弧线圈接地、降低杆塔接地电阻等措施,这里不再讲了。

现在我们知道:避雷线是防直击雷的,对导线起屏蔽作用;自动重合闸能在架空线路因雷击跳闸后,缩短事故停电时间,但是它不能保护电气设备的绝缘;避雷器则能有效保护电气设备的绝缘,并且由于它具有成本较低、安装方便、残压低等优点,已成为架空线路不可替代的防雷措施。

35KV—110KV输电线路防雷措施

35KV—110KV输电线路防雷措施

35KV—110KV输电线路防雷措施发表时间:2018-03-13T10:59:16.307Z 来源:《电力设备》2017年第30期作者:徐英哲[导读] 摘要:随着经济的快速发展,对电网供电可靠性的要求越来越高。

(国网陕西省电力公司渭南供电公司陕西渭南 714000)摘要:随着经济的快速发展,对电网供电可靠性的要求越来越高。

同时在电网的发展中,电网中的事故又以输电线路的故障占大部分,输电线路的故障又以雷击跳闸占的比重较大,尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的经济损失。

要保障线路安全运行,应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。

关键词:35kv-110kv输电线路;防雷措施 1 雷害原因分析输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。

雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。

输电线路感应雷过电压,对35KV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁很小,110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。

直击雷又分为反击和绕击,都严重危害线路安全运行。

在采取各种防雷措施之前,应该对雷击性质进行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的防雷措施,才能达到很好的防雷效果。

反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。

绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值,线路防雷保护方式,杆塔高度,特殊地形有关,主要发生在两边相。

目前对绕击雷过电压采取的主要措施是减少避雷线保护角,安装避雷器等。

220kV高压输电线路防雷接地技术探析

220kV高压输电线路防雷接地技术探析

220kV高压输电线路防雷接地技术探析陈 卓 陈嘉康(国网重庆电力公司北碚供电分公司)摘 要:我国高压输电线路中220kV电路分布较为广泛,此类电路往往通过户外架空方式进行连接,因此,容易受到环境因素影响出现故障,如常见的雷击故障是破坏高压输电线稳定运行的主要因素之一。

为保障电路安全,本文对220kV高压输电线路防雷接地技术进行探析,详细分析常见的高压输电线路雷击形式,并针对防雷接地技术的实际情况,提出220kV高压输电线路防雷接地技术的设计和使用方式,全面提高防雷措施的有效落实程度,保障输电线路安全运行。

关键词:220kV;高压;输电线路;防雷接地技术;继电保护0 引言输电线路受到雷电威胁较大,在电路连接设计时,需要考虑其防雷性能和特点,确保防雷效果符合要求,保障高压电路的正常使用。

目前常见的防雷方式可以归纳为两种,其一为将雷电阻挡在设施之外,避免雷电进入而影响系统运行;其二为将雷电引导到其他区域,减轻雷电对重点区域相关设备的影响。

1 220kV输电线路雷击形式高压输电线在被雷击时会发生闪络,以此为依据,将输电线路的雷击形式分为两类:其一为直击。

在雷电直击塔顶避雷线时,电流会通过避雷线传导入相邻的杆塔结构,随着杆塔传输到大地。

该情况下一部分雷电电压会留在杆塔中,与导线上的电位形成高位电压差,从而引发杆塔导线闪络。

此类雷击故障在山区输电线中发生概率相对较高。

其二为绕击。

在雷电经过线路时,受到电感影响,容易出现雷电绕击故障,发生时会产生瞬间高压,使导线电位快速提高,此时导线的电位差与杆塔电位差相差过大,引起绝缘子串击穿放电,随之出现闪络现象[1]。

由于绕击产生的瞬时电压和电流较大,使其危害相对较大且发生较为频繁,其中高压线路发生概率更大,一般占总绕击的80%左右。

对其产生原因进行分析,能够发现其与高压线路保护角有关,具体公式如下:Pa=β槡h/86-3 35(1)其中,Pa为输电线路绕击率;β为高压线路保护角。

防雷接地设计方案

防雷接地设计方案

防雷接地设计方案目录1防雷接地设计 (3)1.防护原则 (3)2.前端设备防护设计 (3)2.1直击雷的防护 (3)2.2摄像机杆塔的地网安装(根据现场情况定) (3)2.3感应雷的防护 (4)3.监控中心的防护设计 (5)3.1监控中心电源防雷设计 (5)3.2监控中心室内防雷设计 (6)4.系统传输 (6)4.1传输可靠性设计 (7)4.2传输经济性设计 (7)4.3传输合理性设计 (7)4.4山内库区: (7)1防雷接地设计1.防护原则我们根据监控中心及各点监控设备等所处环境及其网络特点,根据库区的实际情况和对工程现场的考察,充分考虑本项目各子系统设备的功能和价值,考虑到经济、有效的目的,保证供电系统的可靠性与建筑物、人身和设备的安全,以《IEC国际标准》、《GB50057-94(2000)》以及《计算机房防雷设计规范》等相关标准为设计基础,从电源、信号、地网三方面入手,本着全面、安全、持久、实用的原则提出本方案。

本方案主要针对防感应雷击部分,接地系统部分进行设计。

2.前端设备防护设计2.1直击雷的防护室外的摄像头分别安放在杆子每个有效点上,首先在考虑避免直击雷侵入时,分别在每根摄像机杆顶点安装高1米直径为Φ16以上镀锌避雷针一支,与金属杆连接,用设备杆本身做引下线,其保护角度为45度,以保护室外摄像机,接地电阻应小于10Ω。

2.2摄像机杆塔的地网安装(根据现场情况定)摄像机的避雷针接地是必不可少的环节,在设计中以摄像机杆塔为中心挖一2米×2米范围的地沟,沟的规格为600mm宽800mm深,将40×4的热镀锌扁钢平铺在沟内,然后至少有两点与引下线连接。

2.3感应雷的防护雷电活动是一种随机过程,有多途径的入侵可能,对于感应雷、侧击雷等多种雷电波可以在架空线路或金属管道上产生高压冲击波,沿线路或管道的两个方向迅速传播,雷电波侵入时会直接对安防设备、计算机网络、通信设备、电源等造成更大的危害。

架空输电线路雷击模型及防雷应用

架空输电线路雷击模型及防雷应用

架空输电线路雷击模型及防雷应用摘要:在架空输电线路的雷击处理方面,由于雷电情况出现的未知性、不稳定性和复杂性,使得对于线路的维修和防护方面产生较大的困难。

因此,本文将在对雷电现象的分析基础上,对架空输电线路的防雷措施进行全面分析,并通过建立架空输电线路雷击模型进行验证。

关键词:架空输电线路雷击模型防雷应用1架空输电线路雷击情况概述架空输电线路作为我国重要的配电线路,在电能的传输和对用户电能的分配方面具有重要作用。

由于中压等级的配电网络数量巨大,通常情况下不会全线架设避雷线,因而在线路运行中其遭受雷击的几率较高,尤其是在山区和多雷区的复杂地形区域。

在输电线路雷击放电以及雷电压、雷电流形成原理的基础上,对架空输电线路的防雷措施进行全面分析,并通过建立架空输电线路雷击事故模型进行验证。

1.1架空输电线路雷击放电原理分析一般情况下,人们认为当雷云中的电荷受到热气流影响时,当遇到稀薄的空气时就会发生即时性的冷凝变化,进而形成放电过程,也就是我们所说的放电原理[1]。

除此之外,雷云与雷云、雷云与地点之间也能形成放电现象。

1.2雷电参数在研究雷击情况时,必须要对雷电参数有所了解,这是工程设计和电压计算的首要前提。

雷电参数有雷电流特性、雷暴日、地面落雷密度三个方面,其中雷电流特性本身又分为波头、波长、幅值三个重要参数。

雷暴日参数是指在多年数据的统计下,根据雷暴日出现的雷暴小时和雷暴天数而进行定义并用来判断所处区域少雷、多雷的有效依据。

雷暴日的分布情况和不同的地理位置有关[2]。

在陆地、山区、气候条件炎热潮湿的地区发生雷击情况的几率较大,在海洋、平原发生雷击情况的几率相对较少。

雷暴日的定义为在一定的时间内(一个小时或者24小时)之内,出现雷声,就可以将其定义为雷暴小时和雷暴日,雷暴日雷击压力的大小是雷暴小时的三倍。

从全球各地区的雷暴日统计图来看,雷电活动最活跃的地区为赤道,平均活跃时间为100到150日,最长活跃期可超过300日。

防雷接地线设置要求

防雷接地线设置要求

防雷接地线设置要求:
1、特别要求终端杆、引入杆及局前5根电杆必须装置直埋式避雷接地线
2、角杆、跨越杆、分支杆、12米以上的特殊杆、高坡杆利用拉线入地装置避雷地线,避雷线应用4.0mm铁线沿杆子直接入地,其上部高出杆顶10cm,4.0mm 铁线用2.5mm铁线间距40-60cm 固定在电杆上
3、穿越高压电力线两端的电杆必须装置直埋式避雷接地线,与电力线平行的架空线路必须保证每200米做一次接地
4、利用拉线式装置避雷接地线的,不得触碰吊线抱箍
5、对于架空线路必须保证每1km有一处接地
6、特殊地区土质电阻过大,直埋式接地不能充分保证防雷防电的,需要将直埋式地线延伸,做成延伸式地线。

浅析110kV输电线路综合防雷技术与接地电阻的设计

浅析110kV输电线路综合防雷技术与接地电阻的设计

浅析 110kV输电线路综合防雷技术与接地电阻的设计摘要:110kV的输电线路在当今社会的电力系统中发挥着至关重要的作用,由于110kV的输电线路多在高空和山区中架设,存在着许多不安全的因素,很容易遭受鸟粪、污秽物附着、雷电等不安全因素的影响,从而导致线路跳闸、短路等电网事故的发生。

所以说防雷技术与降低接地电阻可以增强架空线路安全性,提高综合防雷技术,降低对110kV输电线路的维护费用。

因此110kV输电线路综合防雷技术与降低接地电阻的设计至关重要。

关键词:110kV输电线路防雷技术接地电阻一、110kV输电线路遭受雷击原理以及降低铁塔接地电阻的必要性110kV输电线路对整个电网系统中起着至关重要地位,在社会中也起着重要作用,能够促进社会经济的发展,提高人们的生活水平。

110kV一旦发生事故,可能导致大面积停电,造成重大经济损失,因此110kV输电线路的安全也十分重要。

110kV输电线路现在已经广泛使用,但在使用过程中经常受到雷击导致的架空输电线路事故。

而雷电属于自然现象,雷云放电一般在云中或者是云间进行的,只有很少一部分电子会对地发生,而雷云相对于其他云较低,再加上110kV输电线路的周边没有任何的带其他电性的电荷云层,这样110kV架空输电线路就会对带电雷云造成吸引,雷云集聚足够多的电荷后雷云电子被吸引且会形成电流,这些能够在很短时间内达到最大值,之后再逐渐的衰减下去,其冲击波陡度和雷电流幅值也会到达最大值。

当铁塔接地电阻没有较大时,雷击塔顶时将导致塔顶电位较高,塔顶电位Uk=Ik×R×a。

其中:Uk-塔顶电位;Ik-雷电流;R-铁塔接地电阻;a-雷电流冲击系数。

这个电压Uk足够高时,可以击穿空气,雷电流向导线释放。

再加上绝缘子表面脏污,导通电流不能及时恢复绝缘强度时,形成持续性放电,最终导致跳闸和引发一系列的事故。

这个雷击后电流也会通过输电线路的铁支架传递到地面,可能对当地的居民也会造成一定的危害。

35kV架空线路的防雷保护措施

35kV架空线路的防雷保护措施

35kV架空线路的防雷保护措施本文介绍了35kV线路遭受雷击后的危害。

采用典型的防雷保护接线;在35kV线路变电所进出线段架设避雷线;降低杆塔接地电阻;在无避雷线杆塔上装设金属性消雷器,这些防雷技术措施,可以使35kV线路免受雷击的危害。

标签:大气过电压;避雷线;不平衡绝缘;金属性消雷器;避雷器;自动重合闸一、前言35kV线路一般分布很广,雷雨季节遭受雷击机会很多。

线路遭受雷击有三种情况:一是雷击于线路导线上,产生直击雷过电压;二是雷击避雷线后,反击到输电线上;三是雷击于线路附近或杆塔上,在输电线上产生感应过电压。

雷电进行波顺线路侵入到变电站,威胁电气设备的绝缘,造成避雷器爆炸、主变压器绝缘损坏等事故,直接影响了变电站的安全运行。

为了提高供电的可靠性,减少因大气过电压造成的危害,对35kV架空线路应采取必要的防雷保护措施。

二、35kV架空线路应采取的的防雷保护措施1、选择典型的防雷保护接线防止35kV线路直击雷和进行波最有效的方法是架设避雷线。

但因雷击避雷线时,避雷线上产生的电位相当高,35kV线路的绝缘水平承受不了这个高电压,容易造成反击,同样会引起线路跳闸,同时避雷线线路造价又高,因此,35kV 线路只在变电所進出线段,根据变压器容量,架设1~2公里避雷线,以限制流进避雷器的雷电流和限制入侵波的陡度。

为了降低侵入波的峰值和陡度,35kV 线路除架设避雷线外,限制侵入波峰值的办法是在避雷线两端杆塔上还加装管型避雷器或保护间隙。

为此,35kV线路和变电所要选择典型防雷保护接线,如图1所示:图中:HY5W2-52.7/134型氧化锌避雷器;GB1-2-GXS(35/2-10)型管型避雷器。

2、35kV线路防雷保护的设计要求2.1避雷线的选择2.1.1带避雷线杆塔的选择带地线的35kV线路,要选用定型的杆塔,以确定避雷线悬点高度和与导线间垂直距离h和避雷线的保护角α=tg-1S/h(度)。

一般水泥双杆h为3.25m-4m 为双根避雷线,铁塔h为5.7m为单根避雷线,以满足角α为20°~30°的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷电是自然界一种常见的放电现象,自然界里每年都有几百万次的闪电,每年雷电造成的人员伤亡和财产流失,仅次于水灾而大于其他的任何灾害。

随着国民经济的大幅度增长,人民生产生活层次的不断提高,对消费用电的需求量直线上升,从而推动了电力产业的迅猛发展,走上了一个新的高度。

电网面积覆盖越来越广,密度越来越大,电网容量不断增大,输送电技术也不断进步,对于输电线路的建设将是一个严峻的考验,使命重大。

其建设过程中的防雷保护也就成为一个越来越重要的课题摆在我们的面前。

九十年代是防雷工作大发展的十年,国际上国际电工委员会颁布了IEC系列防雷标准,国内也颁布了基于IEC标准的国标,各相关行业也将防雷要求列入标准。

电力部门对于预防雷电的危害,也颁布了许多关于电力设施保护、电力建设防雷新标准。

雷电的危害主要有三方面:直击雷、感应雷和雷电过电压侵入。

电力系统的高压架空线路中,直击雷的危害最大最明显,其主要集中于线路中的铁塔。

一般的架空线路都采用了避雷线防护,根据电压等级,35kV 线路不宜全线架设避雷线,一般在变电所的进线段架设1~2km的避雷线,同时在雷电活动强烈的地段架设避雷线,或者安装线路金属氧化物避雷器;110kV线路应全线架设避雷线,山区应采用双避雷线;但在年平均雷暴日数不超过15日或运行经验证明雷电活动轻微的地区,可不架设避雷线;220kV线路应全线架设避雷线,同时应采用双避雷线。

通常在架空线路雷防护工程上,往往要结合当地的气候条件,雷电活动的强弱,地形地貌特点及土壤电阻率的高低等情况,其中线路中的铁塔防雷接地尤为重要与关键。

本方案主要是针对高压架空线路中铁塔的保护防雷,采用接地防雷方式,主要是引下线与接地网的设计。

将电力系统或电气装置的某一部分经接地线连接到接地极或地网称为接地。

连接到接地极的导线称为接地线。

一个接地装置正确与合理,不仅能为有效防雷提供保障,还能降低工程的建设成本,不过也是电力系统中一直攻关的难题。

高压架空线一般组成有:高压输电线、避雷线、避雷器及铁塔本体,本方案重点针对危害最常见的直击雷而设计,采用直接接地制式。

一、引下线的设计输电铁塔所处位置不定,相对高度较高,受直击雷影响明显而维护工程又比较艰巨。

线路中引下线主要包括避雷线的引下线,高压输电线防雷装备保护引线。

根据电力系统设计标准,避雷线引下线可采用铁塔作为引线,铁塔有良好的接地,只需保证引线与铁塔有良好的电气连接,并做防腐处理;铁塔采用四角引线连接到地网接点。

各相线的避雷保护器引线也同样可以采用此方法,但注意的是要确保引线连接的正确与科学,各连接点电气接触良好,一般选用导线截面为35-95mm2的多股铜导线。

高压架空线路铁塔的接地装置可采用下列模式:a)在土壤电阻率ρ≤100Ω*m的潮湿地区,可利用铁塔自然接地。

对发电厂、变电站的进线段应另设雷电保护接地装置。

在居民区,当自然接地电阻符合要求时,可不设人工接地装置。

b)在土壤电阻率100Ω*m<ρ≤300Ω*m的地区,除了利用铁塔的自然接地外,并应增设人工接地装备,接地极埋深不宜小于0.6m。

c)在土壤电阻率300Ω*m<ρ≤2000Ω*m的地区,可采用水平敷设的接地装置,接地极埋深不宜少于0.5m。

d)在土壤电阻率ρ>2000Ω*m的地区,可采用6~8根总长度不超过500m的放射线接地极或者连续伸长接地极长短结合的方式。

接地极埋深不宜小于0.3m。

还可以采用引外接地或其他措施。

e)居民区和水田中的接地装置,宜围绕铁塔基础敷设成闭合环形。

架空线路铁塔的接地线及连接方式符合DL/T620-1997〈交流电气装置的过电压保护和绝缘配合〉的要求。

二、地网的设计要布置一个合理的接地网不仅仅是依靠丰富正确的理论计算,还应该从不断的实践中去总结探索。

接地电阻是表示接地体接地状态是否良好的主要指标,通常架空线路铁塔的接地电阻不宜大于30Ω。

(一般所指的是工频接地电阻)接地系统的电阻一般由几部分电阻的总和:(1)土壤电阻,即从接地极处土壤向远处扩散的电流所经过的路径的电阻。

(2)土壤和接地体之间的接触电阻。

(3)接地体本身的电阻。

(4)接地引线、地线盘或接地汇流排以及接地配线系统中采用的导线电阻。

其中起决定作用的是接地体附近的土壤电阻。

土壤电阻的大小一般由土壤电阻率表示。

土壤电阻率一般以1cm3 的土壤电阻表示。

土壤的电阻率主要由土壤中的含水量和本身的电阻率来决定,决定土壤电阻率的因素主要有:土壤的类型、溶解在土壤中的盐和化合物、土壤中的溶解盐的浓度、含水量、温度、土壤物质的颗粒大小和颗粒大小的分布、密集性和压力、电晕作用。

通常铁塔的接地电阻标准如下表:地壤电阻率(Ω•m) 100及以下100以上至500 500以上至1000工频接地电阻(Ω) 10 15 20~30各接地装置应利用直接埋入地中或水中的自然接地极,当利用自然接地极和引外接地装置时,应采用不少于两根导体在不同地点于接地网相连接。

按YD5668-98地网的布置要求,根据IEC电气标准,依据不同的地理环境,一般采用联合地网布置方式。

按照这种方式布置的地网,其接地电阻为:设ρ为土壤率,s为地网面积,ρ为用地阻仪实测数值,R为现地网的接地电阻,可根据近似推算公式ρ≈2R√s,可得出地网面积。

地网接地极网状布置,埋深0.8m,垂直接地体长为2.5m,在地网的均分点上分别引处四条地网测试极到地面,以便检测地网情况。

铁塔接地引线通过四只脚与地网相连,确保电气连接良好,引线经过保护处理,采用PVC套管套装。

地网的形状也不是固定的,可以多样化,具体应根据气候、地形、地理环境,因地制宜。

地理环境的不同决定了地质的不同,从而土壤率也明显差异。

一般软性土壤地阻相对小,对地网的要求相对比较低,较小的成本就能保障良好的接地性能,而相对硬质土壤比如岩石、多岩山地,地阻很高,为保障良好的接地防雷,对地网的要求也相对较高,同时对地网的设计铺设也造成一定程度上的影响。

具体电阻率参考下表:类别名称电阻率近似值Ω•m 不同情况下电阻率的变化范围Ω•m较湿时较干时地下水含盐碱时土陶黏土10 5-20 10-100 3-10泥炭、泥灰岩、沼泽地20 10-30 50-300 3-30捣碎的木炭40 ——————黑土、园田土、陶土50 30-100 50-300 10-30白垩土、黏土60 30-100 50-300 10-30砂质粘土100 30-300 80-1000 10-80黄土200 100-200 250 30含砂粘土、砂土300 100-1000 1000以上30-100河滩中的砂—— 300 ————煤—— 350 ————土多石土壤400 ——————上层风化粘土,下层页岩500 ——————表层土夹石、下层砾石600 ——————砂砂、砂砾1000 250-1000 1000-2500砂层深度大于10m、地下水较深草原、底层多岩石1000 ——————岩石砾石、碎石5000 ——————多岩山地5000 ——————花岗岩200000 ——————混凝土在水中40-55 ——————在湿土中100-200 ——————在干土中500-1300 ——————在干燥的大气中12000-18000 ——————矿金属矿石0.01-1 ——————整个地网由接地极,连接体及接地线连接而成。

接地引线为96mm2铜质多股电缆连接地网与铁塔之间,电气连接良好,并进行防机械损伤和化学腐蚀处理。

接地线与接地极采用焊接技术,接地线与铁塔采用螺栓连接。

整个地极采用我公司开发的CP型电解离子接地系统,低成本,高性能,并提供全方位服务。

CP型离子接地系统采用了保湿配方技术、离子缓释技术、潜深镜像技术、长效降阻技术等当代接地技术中四大前沿科学技术,最大程度解决了降阻性、耐腐性和成本问题,使得CP型产品在各项接地性能和适应性方面具有明显优势,应用领域十分广阔。

1、运用当今先进技术,与同等性能设备比较价格下降25%--50%;2、独特的离子缓释技术与抗腐蚀性能,使接地阻值随着时间的推移而越来越低,与传统接地形成鲜明对比。

3、长效成本低。

综合性价比是传统接地的33%(传统接地两年一更换,本产品30年免维护);4、适用于不同的地质条件,在黑土、黄土、盐碱土、垃圾土、回填土、风化沙土、细沙土、黏土、山地通过优质的施工工艺均能达到良好的接地降阻效果。

传统接地在不同的地质条件下施工具有很大的局限性,并产生高昂的施工费用。

5、价格适中,在各应用领域均能被普遍接受。

采用我公司的CP型离子接地系统,能够最大程度得降低接地电阻,高效能得预防雷电危害,确保设备设施得正常。

具体可参考我公司测试数据:1 2 3 4100 <1.9 <1.1 <0.7 <0.5200 <2.9 <2.3 <2.0 <1.1300 <5.9 <3.4 <2.5 <1.7400 <7.9 <4.6 <3.3 <2.3500 <9.9 <5.8 <4.2 <2.9600 <11.8 <6.9 <4.9 <3.5700 <13.8 <8.1 <5.8 <4.0800 <15.8 <9.3 <6.6 <4.7900 <17.8 <10.4 <7.4 <5.21000 <19.8 <11.6 <8.3 <5.9以上数据显示,我公司产品不仅性能优良可靠,具有地面积小,无环境污染,使用寿命长等优点,普遍适用于通信、电力、交通、金融、石化等诸多领域,是本接地设计方案的首选,而且品种规格多,可根据不同的恶劣地理环境,适当选型。

参考标准:1、交流电气装置的接地(DL/T 621-1997)2、交流电气装置的过电压保护和绝缘配合(DL/T 620-1997)3、际电工委员会——雷电电磁脉冲的防护(IEC1312);4、物防雷设计规范(GB 50057-94);5、防雷装置的设计、施工、维护和检测。

(IEC61024)(注:文件素材和资料部分来自网络,供参考。

请预览后才下载,期待你的好评与关注。

)。

相关文档
最新文档