湖北省“荆荆襄宜四地七校考试联盟”2020届高三历史10月联考试题(含答案)

合集下载

湖北省“荆、荆、襄、宜四地七校考试联盟”(襄阳五中襄阳四中)2020届高三10月联考数学(文)试题含答案

湖北省“荆、荆、襄、宜四地七校考试联盟”(襄阳五中襄阳四中)2020届高三10月联考数学(文)试题含答案

2019年秋“荆、荆、襄、宜四地七校考试联盟”高三10月联考文科数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{{}|1,|20A y y B x x ===-≤,则A B =A. []1,2B. []0,2C. (],1-∞D. [)2,+∞2. 在平面直角坐标系中,点22(cos ,sin )55P ππ是角α终边上的一点,若[0,)απ∈,则α= A.5π B. 25π C. 35π D. 310π3. 函数|2|y x a =-在[1,)-+∞上单调递增,则实数a 的取值范围是 A. (,1]-∞-B. (,2]-∞-C.(,1]-∞D.(,2]-∞4. 设0.1323,log log a b c ===,,a b c 的大小关系为 A. a b c <<B. a c b <<C. b c a <<D. c b a <<5. 已知函数()f x 满足2(1)f x x x -=-,则()y f x =在点(1,(1))f 处的切线方程是 A. 20x y +-=B. 30x y -=C. 310x y --=D. 20x y -=6. 函数()()ln xxf x e e x -=+的图象大致为7.给出下列三个命题①命题:P x R ∀∈,都有sin 1x ≤,则非0:P x R ∃∈,使得0sin 1x > ②在ABC ∆中,若sin 2sin 2A B =,则角A 与角B 相等③命题:“若tan x =3x π=”的逆否命题是假命题以上正确的命题序号是 A.①②③B.①②C.①③D.②③8. 若奇函数()f x 满足当[0,)x ∈+∞时,2()log (2)f x x x b =+++,则不等式()3f x ≥成立的一个充分不必要条件是 A. 2x ≥B. 3x ≥C. 1x ≥D. 3x <9. 《九章算术》是我国古代的数学巨著,其中《方田》章给出了计算弧田面积所用的经验公式为:弧田面积12=⨯(弦×矢+矢2),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为23π,矢为2的弧田,按照上述方法计算出其面积是A. B.12C.D. 10. 在ABC ∆中,,BD DC E =是AD 的中点,则EB =A. 2133AB AC - B. 2133AB AC -+C. 3144AB AC -+D. 3144AB AC -11. 已知函数23()123x x f x x =+-+,若()(2020)h x f x =-的零点都在(,)a b 内,其中,a b 均为整数,当b a -取最小值时,则b a +的值为 A. 4039B. 4037C. 1D. 1-12. 已知函数()sin()6f x x πω=+(0)ω>的最小正周期为π,若()f x 在[0,)x t ∈时所求函数值中没有最小值,则实数t 的范围是 A .0,6π⎛⎤⎥⎝⎦B .20,3π⎛⎤ ⎥⎝⎦C .5,36ππ⎛⎤⎥⎝⎦ D .2,33ππ⎛⎤⎥⎝⎦ 二、填空题(本题共4小题,每小题5分,共20分)13.已知向量(1,1),(2,)a b y ==,若()a a b ⊥-,则实数y = .14.已知函数2,(0,2]()1(1),(2)22x xf x x f x ⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩则(8)f = .15. 公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为2sin18m =︒.若24m n +=,则2= .(用数字作答) 16.定义min{,}a b =,,a a bb a b≤⎧⎨>⎩,若{}()min 1,3f x x x =+-,则使不等式(2)(2)f x f x ≤-成立的x 的取值范围是 .三、解答题:共70分。

“荆、荆、襄、宜四地七校联盟”2020届高三数学上学期10月月考试题文(含解析)

“荆、荆、襄、宜四地七校联盟”2020届高三数学上学期10月月考试题文(含解析)

“荆、荆、襄、宜四地七校联盟”2020届高三数学上学期10月月考试题文(含解析)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,则( )A. B. C. D.【答案】A【解析】【分析】先求出集合,根据交集的定义即可求得结果.【详解】,,所以,故选A.【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于简单题目.2.在平面直角坐标系中,点是角终边上的一点,若,则( )A. B. C. D.【答案】B【解析】【分析】首先根据的余弦值和正弦值的符号,判断出点所属的象限,再根据三角函数的定义确定出角的大小,得出结果.【详解】因为,所以角的终边落在第一象限,并且根据角的三角函数值的定义,,结合,得出,故选B.【点睛】该题考查的是有关根据角的终边上一点的坐标确定角的大小的问题,涉及到的知识点有三角函数的定义,属于简单题目.3.函数在上单调递增,则实数的取值范围是( )A. B. C. D.【答案】B【解析】【分析】根据函数的单调增区间是,根据题意可得,从而确定出的范围.【详解】因为函数的单调增区间是,又函数在上单调递增,所以,所以,解得,所以的取值范围是,故选B.【点睛】该题考查的是有关根据函数在给定区间上单调增确定参数的取值范围的问题,属于简单题目.4.设,则的大小关系为( )A. B. C. D.【答案】C【解析】【分析】根据指数函数与对数函数的图象与性质,即可得出的大小关系.【详解】因为,,,所以,故选C.【点睛】该题考查的是有关指数幂与对数值的比较大小的问题,涉及到的知识点有指数函数和对数函数的性质,应用中介值比较,属于简单题目.5.已知函数满足,则在点处的切线方程是( )A. B. C. D.【答案】C【解析】【分析】先求出函数的解析式,求出切点坐标,应用导数求出切线的斜率,然后由直线方程的点斜式得在点处的切线方程.【详解】由得,,,即曲线在点处的切线的斜率为:,所以在点处的切线方程为:,即,故选C.【点睛】该题考查的是有关曲线在某个点处的切线方程的求解问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.6.函数的图象大致为( )A. B.C. D.【答案】D【解析】分析】根据题意,求出函数的定义域,分析可得为偶函数,进而分析可得当时,,当时,,当时,,分析选项,从而选出正确的结果.【详解】根据题意,函数的定义域,因为,所以为偶函数,图象关于轴对称,排除B项,当时,,当时,,排除选项,当时,,所以D项是正确的,故选D.【点睛】该题考查的是有关函数图象的选择问题,在选择的过程中,注意从函数的定义域,图象的对称性,函数值的符号,函数图象的变化趋势,属于简单题目.7.给出下列三个命题①命题,都有,则非,使得②在中,若,则角与角相等③命题:“若,则”的逆否命题是假命题以上正确的命题序号是( )A. ①②③B. ①②C. ①③D. ②③【答案】C【解析】【分析】①根据命题的否定的形式可知其正确;②根据三角形内角的关系以及两角正弦值相等的时候除了相等还可以互补从而得到两种结果,所以错误;③根据原命题和逆否命题等价可知其正确;从而得到答案.【详解】①根据命题的否定的形式可知,命题,都有,则非,使得,所以是正确的;②在中,若,则有2A=2B或2A+2B=,所以角与角相等或互余,所以错误;③因为命题:“若,则”是假命题,所以其逆否命题是假命题,所以正确;所以正确命题的序号是①③,故选C.【点睛】该题考查的是有关命题真假的判断问题,涉及到的知识点有含有一个量词的命题的否定,三角函数公式,原命题和逆否命题等价,属于简单题目.8.若奇函数满足当时,,则不等式成立的一个充分不必要条件是( )A. B. C. D.【答案】B【解析】【分析】利用,求出,确定,函数在上单调递增,利用函数的单调性,即可求出的解集.【详解】由题意,,所以,所以,所以,函数在上单调递增,,所以不等式的解集为,不等式成立的一个充分不必要条件是的真子集,分析选项可得满足条件,故选B.【点睛】该题考查的是有关充分不必要条件的问题,涉及到的知识点有根据奇函数求参数值,根据函数的单调性解不等式,充分不必要条件的定义,属于简单题目.9.《九章算术》是我国古代的数学巨著,其中《方田》章给出了计算弧田面积所用的经验公式为:弧田面积(弦×矢+矢),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,矢为的弧田,按照上述方法计算出其面积是( )A. B. C. D.【答案】A【解析】【分析】根据在直角三角形的边角关系求出,以及弦长“矢”的大小,结合弧田面积公式进行计算即可.【详解】如图,由题意可得,在中,,所以,结合题意可知矢,半径,弦,所以弧田面积(弦矢矢),故选A.【点睛】该题考查的是有关与数学文化相关的问题,涉及到的知识点有应用题中所给的条件与公式解决相关的问题,在解题的过程中,注意对条件的正确转化,属于简单题目.10.在中,是的中点,则( )A. B.C. D.【答案】D【解析】【分析】利用向量的加减运算和中线向量的表示,计算可得所求向量.【详解】在中,为边上的中线,为的中点,所以,故选D.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加减运算法则,以及向量共线时的表示方法,再有就是中线向量的表示,属于简单题目.11.已知函数,若的零点都在内,其中均为整数,当取最小值时,则的值为( ) A. B. C. D.【答案】A【解析】【分析】首先对函数求导,可以发现恒成立,从而判断出函数在上单调递增,从而函数只有一个零点,结合函数图象的平移求得的零点落在区间上,从而得到结果.【详解】由可得恒成立,所以函数在上单调递增,所以函数只有一个零点,又,所以函数仅有的一个零点落在区间上,而由的图象向右平移个单位,所以函数的零点落在区间上,根据题意可知,所以,故选A.【点睛】该题考查的是有关函数的零点所在区间的问题,涉及到的知识点有利用导数研究函数的单调性,零点存在性定理得到函数零点所在的区间,属于简单题目.12.已知函数的最小正周期为,若在时所求函数值中没有最小值,则实数的范围是( )A. B. C. D.【答案】D【解析】【分析】首先根据函数的最小正周期为,求得,根据函数在给定区间上没有最小值,结合函数的图象,得出,从而求得结果.【详解】因为函数的最小正周期为,所以,当时,,因为时所求函数值中没有最小值,所以,解得,所以的取值范围是,故选D.【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有正弦函数的图象和性质,函数的最小正周期以及函数的最值,属于简单题目.二、填空题(本题共4小题,每小题5分,共20分)13.已知向量,,若,则实数__________.【答案】【解析】【分析】由得,化简求解即可.【详解】,由得,得【点睛】本题考查向量的四则运算,属于简单题.14.已知函数则____.【答案】【解析】【分析】首先根据题中所给的分段函数的解析式,将自变量代入,依次代换,确定出自变量对应的函数值,代入求解即可.【详解】因为,所以,故答案是:1.【点睛】该题考查的是有关分段函数的求值问题,在解题的过程中,注意对自变量进行转化,注意对分段函数的解析式的正确理解,属于简单题目.15.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为,这一数值也可以表示为.若,则=____.(用数字作答)【答案】【解析】【分析】首先利用余弦的倍角公式以及同角三角函数关系中的平方关系和正弦的倍角公式,对式子进行化简,求得结果.【详解】根据题中的条件可得:,故答案是:.【点睛】该题考查的是有关三角函数的求值问题,涉及到的知识点有新定义,利用条件对式子进行正确的变形是解题的关键.16.定义,若,则使不等式成立的的取值范围是____【答案】【解析】【分析】首先利用题中所给函数条件,确定出函数的解析式,画出函数的图象,从图象中判断出自变量离1越近,函数值越大,得到等价的不等式,求解即可得结果.【详解】因为,,所以,画出函数图象如图所示:不等式等价于如下不等式:,即,解得或,所以不等式的解集为,即答案是:.【点睛】该题考查的是有关利用函数值的大小确定自变量大小的问题,涉及到的知识点有新函数的定义,在解题的过程中,注意应用函数的图象,解决利用函数值的大小得自变量大小的问题,属于简单题目.三、解答题:共70分。

2020届湖北省“荆、荆、襄、宜四地七校考试联盟高三上学期10月联考数学(理)试题(解析版)

2020届湖北省“荆、荆、襄、宜四地七校考试联盟高三上学期10月联考数学(理)试题(解析版)

2020届湖北省“荆、荆、襄、宜四地七校考试联盟高三上学期10月联考数学(理)试题一、单选题1.设集合{}|3,xA y y x R ==∈,{}|B x y x R ==∈,则AB =()A.12⎧⎫⎨⎬⎩⎭B.()0,1C.10,2⎛⎫ ⎪⎝⎭D.10,2⎛⎤ ⎥⎝⎦【答案】D【解析】集合A 表示函数3,xy x R =∈的值域,集合B表示函数y =由函数的定义域、值域的求法,求出集合A 、B ,再求A B 即可.【详解】解:因为3,xy x R =∈,则0y >,即()0,A =+∞,又y =x ∈R ,由120x -≥,解得12x ≤,即1,2B ⎛⎤=-∞ ⎥⎝⎦,即AB =10,2⎛⎤⎥⎝⎦,故选D. 【点睛】本题考查了函数的定义域、值域的求法,重点考查了集合交集的运算,属基础题.2.函数()332,0log 6,0x x f x x x ⎧->=⎨+≤⎩的零点之和为()A.-1B.1C.-2D.2【答案】A【解析】由函数零点与方程的根的关系可得函数()332,0log 6,0x x f x x x ⎧->=⎨+≤⎩的零点即方程320x -=,3log 60x +=的根,解方程后再将两根相加即可得解. 【详解】解:令320x -=,解得3log 2x =, 令3log 60x +=,解得3log 6x =-,则函数()f x 的零点之和为3331log 2log 6log 13-==-, 故选A. 【点睛】本题考查了分段函数零点的求解,重点考查了对数的运算,属基础题.3.若ln 2a =,125b -=,201cos 2c xdx π=⎰,则a ,b ,c 的大小关系() A.a b c << B.b a c << C.c b a << D.b c a <<【答案】D【解析】由定积分的运算可得c =1sin 2x |20π=11(sin sin 0)222π-=,再由以e 为底的对数函数的单调性可得1ln 22a =>=,再由以12y x -=的单调性可得 11221542b --=<=,比较即可得解. 【详解】解:201cos 2c xdx π=⎰=1sin 2x |20π=11(sin sin 0)222π-=,又 11221542b --=<=,1ln 22a =>=,即b c a <<, 故选D. 【点睛】本题考查了定积分的运算、对数值比较大小,指数幂比较大小,重点考查了不等关系,属中档题.4.下列四个结论:①若点()(),20P a a a ≠为角α终边上一点,则sin α=②命题“存在0x R ∈,2000x x ->”的否定是“对于任意的x ∈R ,20x x -≤”; ③若函数()f x 在()2019,2020上有零点,则()()201920200f f ⋅<; ④“log 0a b >(0a >且1a ≠)”是“1a >,1b >”的必要不充分条件. 其中正确结论的个数是() A.0个 B.1个C.2个D.3个【答案】C【解析】对于①,由三角函数的定义,讨论0a >,0a <即可; 对于②,由全称命题与特称命题的关系判断即可得解; 对于③,由零点定理,需讨论函数在()2019,2020是否单调; 对于④,由充分必要性及对数的运算即可得解. 【详解】解:对于①,当0a >时,有sin α===当0a <时,有sin α===①错误;对于②,命题“存在0x R ∈,2000x x ->”的否定是“对于任意的x ∈R ,20x x -≤”;由特称命题的否定为全称命题,则②显然正确;对于③,若函数()f x 在()2019,2020上有零点,则()()201920200f f ⋅<; 若函数在()2019,2020为单调函数,则必有()()201920200f f ⋅<,若函数在()2019,2020不单调,则必有()()201920200f f ⋅<,不一定成立,即③错误;对于④,当“1a >,1b >”时,可得到“log 0a b >(0a >且1a ≠)”,当“log 0a b >(0a >且1a ≠)”时,则“1a >,1b >”或“01a <<,01b <<”, 即④正确, 故选C. 【点睛】本题考查了三角函数的定义、全称命题与特称命题、零点定理及充分必要条件,重点考查了逻辑推理能力,属综合性较强的题型. 5.已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为()A.-7B.7C.1D.-1【答案】B【解析】由了诱导公式得sin 2cos αα=-,由同角三角函数的关系可得tan 2α=-, 再由两角和的正切公式()tan αβ+=tan tan 1tan tan αβαβ+-,将tan 2α=-代入运算即可.【详解】解:因为()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,所以sin 2cos αα=-,即tan 2α=-, 又()1tan 3αβ+=, 则tan tan 11tan tan 3αβαβ+=-,解得tan β= 7, 故选B. 【点睛】本题考查了诱导公式及两角和的正切公式,重点考查了运算能力,属中档题.6.已知()121sin 221xx f x x x -⎛⎫=-⋅ ⎪+⎝⎭,则函数()y f x =的图象大致为()A. B.C. D.【答案】D【解析】由函数解析式可得()()f x f x =-,则函数()y f x =为偶函数,其图像关于y轴对称,再取特殊变量4π得04f π⎛⎫< ⎪⎝⎭,即可得在()0,∞+存在变量使得()0f x <,再观察图像即可. 【详解】解:因为()121sin 221xx f x x x -⎛⎫=-⋅ ⎪+⎝⎭,则()121sin 221x x f x x x ---⎛⎫-=-+⋅ ⎪+⎝⎭=121sin 221xx x x -⎛⎫-⋅ ⎪+⎝⎭,即()()f x f x =-,则函数()y f x =为偶函数,其图像关于y 轴对称,不妨取4x π=,则 ()4421(08221f x πππ-=-<+,即在()0,∞+存在变量使得()0f x <, 故选D. 【点睛】本题考查了函数奇偶性的判断及函数的图像,重点考查了函数的思想,属中档题. 7.若函数()()()3,af x m xm a R =+∈是幂函数,且其图像过点(,则函数()()2log 3a g x x mx =+-的单调递增区间为()A.(),1-∞-B.(),1-∞C.()1,+∞D.()3,+∞【答案】A【解析】由幂函数的定义可得31m +=,由其图像过点(,则2α=,即12α=, 由复合函数的单调性有:()y g x =的单调递增区间等价于223,(0)t x x t =-->的减区间,一定要注意对数的真数要大于0,再求单调区间即可. 【详解】解:因为()()()3,af x m xm a R =+∈,则31m +=,即2m =-,又其图像过点(,则2α=12α=, 则()()212log 23g x x x =--, 由复合函数的单调性有:()()212log 23g x x x =--的单调递增区间等价于223,(0)t x x t =-->的减区间,又223,(0)t x x t =-->的减区间为(),1-∞-,故选A.本题考查了幂函数的定义及复合函数的单调性,重点考查了对数的真数要大于0,属中档题.8.将函数()sin 26f x x π⎛⎫+⎝=⎪⎭的图象向右平移6π,再把所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是() A.函数()g x 的图象关于点,03π⎛-⎫⎪⎝⎭对称 B.函数()g x 的最小正周期为2πC.函数()g x 的图象关于直线6x π=对称D.函数()g x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递增 【答案】D【解析】由三角函数图像的平移变换及伸缩变换可得()sin()6g x x π=-,再结合三角函数的周期、单调区间、对称轴、对称点的求法求解即可. 【详解】解:将函数()sin 26f x x π⎛⎫+⎝=⎪⎭的图象向右平移6π,所得图像的解析式为 sin[2()]sin(2)666y x x πππ=-+=-,再把所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则()sin()6g x x π=-,令6x k ππ-=,则6x k ππ=+,即函数()g x 的图象关于点,06k ππ⎛+⎫⎪⎝⎭,k Z ∈对称,即A 错误; 令62x k πππ-=+,则23x k ππ=+,即函数()g x 的图象关于直线23x k ππ=+,k Z ∈对称,及C 错误;由221T ππ==,即C 错误; 令 22262k x k πππππ-≤-≤+,得22233k x k ππππ-≤≤+,即函数()g x 的单调递增区间为22,233k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,故D 正确,【点睛】本题考查了三角函数图像的平移变换及伸缩变换,重点考查了三角函数图像的性质,属中档题.9.已知定义在R 上的函数()f x 满足对任意x ∈R 都有()()110f x f x ++-=成立,且函数()1f x +的图像关于直线1x =-对称,则()2019f =()A.0B.2C.-2D.-1【答案】A【解析】由()()110f x f x ++-=,可得()()20f x f x ++-=, 又由函数()1f x +的图像关于直线1x =-对称,可得函数()f x 的图像关于y 轴对称,即 ()()f x f x =-,再结合函数对称性及奇偶性可得函数的周期为4,再运算即可. 【详解】由()()110f x f x ++-=,则()()20f x f x ++-=,① 又函数()1f x +的图像关于直线1x =-对称,则函数()f x 的图像关于y 轴对称,即()()f x f x =-,②联立①②可得()()4f x f x =+,即函数()f x 的周期为4, 即()2019f =(50541)(1)f f ⨯-=-, 又因为()()110f x f x ++-=,令0x =得(1)0f =,又函数()f x 的图像关于y 轴对称,则(1)0f -=, 即()2019f =0, 故选A. 【点睛】本题考查了函数的对称性、奇偶性、周期性及利用函数的性质求值,属中档题. 10.已知函数()()sin xf x e x a =-有极值,则实数a 的取值范围为()A.()1,1-B.[]1,1-C.⎡⎣D.(【答案】D【解析】由函数()()sin x f x ex a =-有极值,等价于sin cos x x a +-=0有变号根,即()0>g x ,()0<g x均有解,又()g x a a ⎡⎤∈⎣⎦,即00a a ⎧<⎪>,运算即可得解. 【详解】 解:因为()()sin xf x e x a =-,所以()()'sin cos x fx e x x a =+-,令()sin cos g x x x a =+-, 由函数()()sin xf x ex a =-有极值,则sin cos x x a +-=0有变号根, 即()0>g x ,()0<g x 均有解,又()sin cos )4g x x x a x a π=+-=+-,即()g x a a ⎡⎤∈⎣⎦,即0a a ⎧<⎪>,即a << 故选D. 【点睛】本题考查了导数的运算、函数的极值及三角函数的值域,重点考查了方程有解问题,属中档题.11.设函数()22cos f x x x =+,[]1,1x ∈-,则不等式()()12f x f x ->的解集为()A.1,13⎛⎫- ⎪⎝⎭B.10,3⎡⎫⎪⎢⎣⎭C.11,32⎛⎤ ⎥⎝⎦D.10,2⎡⎤⎢⎥⎣⎦【答案】B【解析】由()2()2cos()f x x x -=-+-=22cos ()x x f x +=,即函数()f x 为偶函数,由()'2(sin )0fx x x =-≥在[]0,1x ∈恒成立,即函数()f x 在[]0,1为增函数,再结合函数的性质解不等式11112112x x x x ⎧-≤-≤⎪-≤≤⎨⎪->⎩即可得解.【详解】解:因为函数()22cos f x x x =+,[]1,1x ∈-,所以()2()2cos()f x x x -=-+-=22cos ()x x f x +=,即函数()f x 为偶函数, 又()'2(sin )0fx x x =-≥在[]0,1x ∈恒成立,即函数()f x 在[]0,1为增函数, 又()()12f x f x ->,则11112112x x x x⎧-≤-≤⎪-≤≤⎨⎪->⎩,解得103x ≤<,即不等式()()12f x f x ->的解集为10,3⎡⎫⎪⎢⎣⎭故选B. 【点睛】本题考查了函数的奇偶性及利用导数研究函数的单调性,重点考查了函数性质的应用,属中档题.12.已知函数()f x 在R 上可导,其导函数为()'f x ,若函数()f x 满足:()()()1'0x f x f x --<⎡⎤⎣⎦,()()222xf x f x e --=,则下列判断一定正确的是()A.()()10f ef <B.()()12ef f <C.()()303e f f >D.()()514e f f -<【答案】C【解析】先设函数()()x f x g x e=,求导可得函数()g x 在(,1)-∞为增函数,()g x 在(1,)+∞为减函数,再由2(2)()xx f x f x e e--=,得()(2)g x g x =-,即函数()g x 的图像关于直线1x =对称,再结合函数()g x 的性质逐一判断即可. 【详解】解:令()()x f x g x e = ,则''()()()xf x f xg x e-= 因为()()()1'0x f x f x --<⎡⎤⎣⎦, 所以当1x >时,'()0g x <,当1x <时,'()0g x >,即函数()g x 在(,1)-∞为增函数,()g x 在(1,)+∞为减函数, 又()()222xf x f x e--=,所以2(2)()xx f x f x e e--=, 则 ()(2)g x g x =-,即函数()g x 的图像关于直线1x =对称,则(0)(1)g g <,即()()10f ef >即A 错误;(1)(2)g g >,即()()12ef f >即B 错误;(0)(3)g g >,即03(0)(3)f f e e>,即()()303e f f >,即C 正确;(1)(4)g g ->,即()()514e f f ->,即D 错误.故选C. 【点睛】本题考查了分式函数求导、利用导数的符号研究函数的单调性,再结合函数的单调性、对称性判断值的大小关系,重点考查了函数的性质,属中档题.二、填空题13.设函数()3ln 2f x x x x =+,则曲线()y f x =在点()1,2处的切线方程是___________. 【答案】750x y --=【解析】先求函数()f x 的导函数()'fx ,再由导数的几何意义,求()'17f =,则曲线()y f x =在点()1,2处的切线的斜率为7,再由直线的点斜式方程求解即可. 【详解】解:因为()3ln 2f x x x x =+,所以()'2ln 16fx x x =++,则()'21ln11617f =++⨯=,即曲线()y f x =在点()1,2处的切线方程是27(1)y x -=-,即750x y --=, 故答案为750x y --=. 【点睛】本题考查了导数的几何意义、直线的点斜式方程,重点考查了导数的应用及运算能力,属基础题.14.已知函数()(()32log 1f x ax x a R =++∈且()13f =-,则()1f -=__________.【答案】5【解析】先观察函数()f x 的结构,再证明()()2f x f x +-=,再利用函数的性质求解即可. 【详解】解:因为()(32log 1f x ax x =++,所以()(332()log ()log(22f x f x ax x a x x +-=++-+-++=,又()13f =-,则()1f -=2(1)235f -=+=, 故答案为5. 【点睛】本题考查了对数的运算及函数()f x 性质的判断,重点考查了观察能力及逻辑推理能力,属中档题.15.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c 且满足sin b C a =,22285a cb ac +-=,则tan C =___________.【答案】-3【解析】由余弦定理可得cos 45B =,3sin 5B =, 再由正弦定理可得sin sin sin cos cos sin BC B C B C =+, 再结合运算即可得解. 【详解】解:因为22285a cb ac +-=, 则2224cos 25a cb B ac +-==,则3sin 5B =, 又因为sin b C a =,则sin sin sin B C A =,则sin sin sin sin()sin cos cos sin B C A B C B C B C ==+=+,将cos 45B =,3sin 5B =代入得,sin 3cosC C =-, 即sin tan 3cos CC C==-, 故答案为-3. 【点睛】本题考查了利用正弦定理、余弦定理进行边角互化,重点考查了两角和的正弦公式及运算能力,属中档题. 16.若函数()22xk f x e x kx =-+在[]0,2上单调递增,则实数k 的取值范围是________.【答案】21,e ⎡⎤-⎣⎦【解析】由()'x fx e kx k =-+,利用导数再分情况讨论当0k ≤,当2k e ≥,当01k <≤时,当21k e <<时函数()xg x e kx k =-+的最小值,即可求得实数k 的取值范围. 【详解】解:由()22xk f x e x kx =-+, 则()'x fx e kx k =-+,由函数()f x 在[]0,2上单调递增, 则()'0x fx e kx k =-+≥在[]0,2恒成立,设()xg x e kx k =-+,[]0,2x ∈①当0k ≤时,()xg x e kx k =-+,[]0,2x ∈为增函数,要使()0g x ≥,则只需()00g ≥,求得10k -≤≤, ②由()'xg x e k =-,1 当2k e ≥时,()'0g x ≤,即函数()g x 为减函数,即()2min (2)g x g e k ==-,要使()0g x ≥,则只需()2min 0g x e k =-≥,即2k e =,2当01k <≤时,有()'0xg x e k =-≥,即函数()g x 为增函数,要使()0g x ≥,则只需()min (0)10g x g k ==-≥,即01k <≤,3当21k e <<时,有当0ln x k <<时,()'0g x <,当2ln k x e <<时,()'0g x >,即函数()g x 在(0,ln )k 为减函数,在2(ln ,)k e 为增函数,即()min (ln )2ln g x g k k k k ==-,要使()0g x ≥,则只需()min 2ln 0g x k k k =-≥,即2k e <,综上可得实数k 的取值范围是21,e ⎡⎤-⎣⎦, 故答案为21,e ⎡⎤-⎣⎦.【点睛】本题考查了利用导数求函数的单调区间,函数的最值,重点考查了分类讨论的数学思想方法,属综合性较强的题型.三、解答题17.在ABC ∆中,设内角A ,B ,C 所对的边分别为a ,b ,c ,且2cos cos a c Cb B-=. (1)求角B 的大小;(22sin cos 222C A A-的取值范围.【答案】(1)3B π=(2),44⎛⎫⎪ ⎪⎝⎭【解析】(1)由正弦定理化边为角可得2sin sin cos sin cos A C CB B -=,再由两角和的正弦可得2sin cos sin A B A =,即得1cos 2B =,得解; (2)由三角恒等变换结合倍角公式可得2sin cos 222C A A -=1cos 26C π⎛⎫+ ⎪⎝⎭,再结合203C π<<求解即可. 【详解】 解:(1)由2cos cos a c C b B -=得到2sin sin cos sin cos A C CB B-=, 即()2sin cos sin A B B C =+,即2sin cos sin A B A =, 又∵A 为三角形内角,∴sin 0A ≠,所以1cos 2B =,从而3B π=.(2)21sin cos cos 1sin 22222C A A C A -=+-12sin 2232C C ⎛⎫=--+⎪⎝⎭π11sin cos 426C C C π⎛⎫=-=+ ⎪⎝⎭, ∵203C π<<,∴5666C <+<πππ,∴cos 6C ⎛⎫<+< ⎪⎝⎭π1cos 26C π⎛⎫<+<⎪⎝⎭.2sin cos 222C A A-的取值范围为⎝⎭. 【点睛】本题考查了正弦定理、正弦与余弦的二倍角公式及三角函数求值域问题,重点考查了运算能力,属中档题.18.湖北省第二届(荆州)园林博览会于2019年9月28日至11月28日在荆州园博园举办,本届园林博览会以“辉煌荆楚,生态园博”为主题,展示荆州生态之美,文化之韵,吸引更多优秀企业来荆投资,从而促进荆州经济快速发展.在此次博览会期间,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放荆州市场.已知该种设备年固定研发成本为50万元,每生产一台.....需另投入80元,设该公司一年内生产该设备x 万台且全部售完,每万台...的销售收入()G x (万元)与年产量x (万台)满足如下关系式:()()1802,0202000900070,201x x G x x x x x -<≤⎧⎪=⎨+->⎪+⎩.(1)写出年利润()W x (万元)关于年产量x (万台)的函数解析式;(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.【答案】(1)()W x 2210050,0209000101950,201x x x x x x ⎧-+-<≤⎪=⎨--+>⎪+⎩(2)当年产量为29万台时,该公司获得的利润最大为1360万元【解析】(1)先阅读题意,再建立起年利润()W x 关于年产量x 的函数解析式即可;(2)利用配方法求二次函数的最值可得当020x <≤时()()22251200W x x =--+,即()()max 201150W x W ==,再利用重要不等式可得当90011x x +=+即29x =时()max 1360W x =,再比较两段上的最大值即可得解.【详解】解:(1)()()8050W x xG x x =--2210050,0209000101950,201x x x x x x ⎧-+-<≤⎪=⎨--+>⎪+⎩. (2)当020x <≤时()()222100502251200W x x x x =-+-=--+, ∴()()max 201150W x W ==. 当20x >时()90010119601W x x x ⎛⎫=-+++ ⎪+⎝⎭1019601360≤-⨯=, 当且仅当90011x x +=+即29x =时等号成立,∴()()max 291360W x W ==. ∵13601150>,∴当年产量为29万台时,该公司获得的利润最大为1360万元. 【点睛】本题考查了分段函数及分段函数的最值,主要考查了重要不等式,重点考查了阅读能力及解决实际问题的能力,属中档题.19.已知在多面体ABCDE 中,DE AB ∥,AC BC ⊥,24BC AC ==,2AB DE =,DA DC =且平面DAC ⊥平面ABC .(1)设点F 为线段BC 的中点,试证明EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60,求二面角B AD C --的余弦值.【答案】(1)详见解析(2【解析】(1)由四边形DEFO 为平行四边形.∴EF DO P ,再结合DO ⊥平面ABC ,即可证明EF ⊥平面ABC ;(2)由空间向量的应用,建立以O 为原点,OA 所在直线为x 轴,过点O 与CB 平行的直线为y 轴,OD 所在直线为z 轴的空间直角坐标系,再求出平面ADC 的法向量()0,1,0m =u r,平面ADB的法向量()n =r ,再利用向量夹角公式求解即可.【详解】(1)证明:取AC 的中点O ,连接EF ,OF , ∵在DAC ∆中DA DC =,∴DO AC ⊥.∴由平面DAC ⊥平面ABC ,且交线为AC 得DO ⊥平面ABC . ∵O ,F 分别为AC ,BC 的中点,∴OF AB P ,且2AB OF =. 又DE AB ∥,2AB DE =,∴OF DE P ,且OF DE =. ∴四边形DEFO 为平行四边形.∴EF DO P , ∴EF ⊥平面ABC .(2)∵DO ⊥平面ABC ,AC BC ⊥,∴以O 为原点,OA 所在直线为x 轴,过点O 与CB 平行的直线为y 轴,OD 所在直线为z 轴,建立空间直角坐标系.则()1,0,0A ,()1,0,0C -,()1,4,0B -. ∵EF ⊥平面ABC ,∴直线BE 与平面ABC 所成的角为60EBF ∠=.∴tan 60DO EF BF ===o∴(D .可取平面ADC 的法向量()0,1,0m =u r,设平面ADB 的法向量(),,n x y z =,()2,4,0AB =-uu u r,(AD =-uuu r ,则240x y x -+=⎧⎪⎨-+=⎪⎩,取1z =,则x =y =∴()n =r ,∴cos ,4m n m n m n⋅<>==u r ru r r u r r ,∴二面角B AD C --的余弦值为4.【点睛】本题考查了线面垂直的判定及利用空间向量求解二面角的大小,重点考查了空间想象能力,属中档题.20.如图,过点()2,0P 作两条直线2x =和l :()20x my m =+>分别交抛物线22y x =于A ,B 和C ,D (其中A ,C 位于x 轴上方),直线AC ,BD 交于点Q .(1)试求C ,D 两点的纵坐标之积,并证明:点Q 在定直线2x =-上; (2)若PQC PBDS S λ∆∆=,求λ的最小值.【答案】(1)详见解析(2)3【解析】(1)联立直线方程与抛物线方程求得2240y my --=,从而可得124y y =-,再由点斜式方程求得直线AC 的方程为()12222y x y -=-+,直线BD 的方程为()22222y x y +=--,消去y 求出2x =,得解; (2)由题意有()()111222PQC PBDS x x S x λ∆∆+==-,再令()120t x t =->,则432t tλ=++,再由重要不等式求最小值即可得解. 【详解】解:(1)将直线l 的方程2x my =+代入抛物线22y x =得:2240y my --=, 设点()11,C x y ,()22,D x y ,则124y y =-.由题得()2,2A ,()2,2B -,直线AC 的方程为()12222y x y -=-+, 直线BD 的方程为()22222y x y +=--,消去y 得()12121224y y y yx y y -+=-+, 将124y y =-代入上式得2x =-,故点Q 在直线2x =-上. (2)∵()111222PQC S AP x x ∆=+=+,()221222PBD S BP x x ∆=-=-, 又221212164224y y x x =⋅==,∴()()111121122242222PQCPBD S x x x x S x x x λ∆∆+++====---.令()120t x t =->,则()()2443322t t t ttλ++==++≥,当且仅当t =即12x =+λ取到最小值3. 【点睛】本题考查了直线过定点问题及三角形面积公式,重点考查了圆锥曲线的运算问题,属中档题.21.已知函数()()()1sin cos 2f x a x x x x a R =--∈,()()'g x f x =(()'f x 是()f x 的导函数),()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值为12π-. (1)求实数a 的值;(2)判断函数()f x 在()0,π内的极值点个数,并加以证明. 【答案】(1)1a =(2)()f x 在()0,π上共有两个极值点,详见解析 【解析】(1)先求得()()1'sin 2g x f x ax x ==-,再求得()()'sin cos g x a x x x =+,再讨论a 的符号,判断函数()g x 的单调性,再求最值即可得解; (2)利用(1)的结论,结合()1002g =-<,10222g ππ⎛⎫=-> ⎪⎝⎭,由零点定理可()g x 在0,2π⎛⎤⎥⎝⎦上有且仅有一个变号零点;再当,2x ππ⎛⎫∈⎪⎝⎭时,由导数的应用可0,2x ππ⎛⎫∃∈ ⎪⎝⎭使()0'0g x =,即()g x 在0,2x π⎛⎫⎪⎝⎭上单调递增,在()0,x π上单调递减,再结合特殊变量所对应的函数值的符号可得()g x 在,2ππ⎛⎫⎪⎝⎭上有且仅有一个变号零点,综合即可得解. 【详解】解:(1)由()()()1sin cos 2f x a x x x x a R =--∈ 则()()1'sin 2g x f x ax x ==-, 则()()'sin cos g x a x x x =+, ①当0a =时()12g x =-,不合题意,舍去. ②当0a <时()'0g x <,∴()g x 在0,2π⎡⎤⎢⎥⎣⎦上单调递减,∴()()max 11022g x g π-==-≠,不合题意,舍去. ③当0a >时()'0g x >,∴()g x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增,∴()max 112222a g x g πππ-⎛⎫==-= ⎪⎝⎭,解得1a =, ∴综上:1a =.(2)由(Ⅰ)知()1sin 2g x x x =-,()'sin cos g x x x x =+, 当0,2x π⎛⎤∈ ⎥⎝⎦时,()g x 在0,2π⎛⎤⎥⎝⎦上单调递增,()1002g =-<,10222g ππ⎛⎫=-> ⎪⎝⎭,∴()g x 在0,2π⎛⎤⎥⎝⎦上有且仅有一个变号零点;当,2x ππ⎛⎫∈⎪⎝⎭时,()''2cos sin 0g x x x x =-<,∴()'g x 在,2ππ⎛⎫⎪⎝⎭上单调递减.又'102g π⎛⎫=>⎪⎝⎭,()'0g ππ=-<,∴0,2x ππ⎛⎫∃∈⎪⎝⎭使()0'0g x =且当0,2x x π⎛⎫∈ ⎪⎝⎭时()'0g x >,当()0,x x π∈时()'0g x <,∴()g x 在0,2x π⎛⎫⎪⎝⎭上单调递增,在()0,x π上单调递减. 又10222g ππ⎛⎫=->⎪⎝⎭,()002g x g π⎛⎫>> ⎪⎝⎭,()102g π=-<,∴()g x 在,2ππ⎛⎫ ⎪⎝⎭上有且仅有一个变号零点.∴()g x 在0,2π⎛⎤ ⎥⎝⎦和,2ππ⎛⎫ ⎪⎝⎭上各有一个变号零点,∴()f x 在()0,π上共有两个极值点. 【点睛】本题考查了利用导数研究函数的单调性及最值,主要考查了零点定理,重点考查了函数的思想及运算能力,属综合性较强的题型.22.在直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2cos 4sin 0ρθθ-=,P 点的极坐标为3,2π⎛⎫⎪⎝⎭,在平面直角坐标系中,直线l 经过点P ,且倾斜角为60.(1)写出曲线C 的直角坐标方程以及点P 的直角坐标;(2)设直线l 与曲线C 相交于A ,B 两点,求11PA PB+的值.【答案】(1)曲线C 的直角坐标方程为24x y =;P 点的直角坐标为()0,3(2)6【解析】(1)由极坐标与直角坐标的互化可得C 的直角坐标方程为24x y =,P 点的直角坐标为()0,3P ;(2)将直线l 的参数方程代入曲线C 的直角坐标方程,利用直线的参数方程中t 的几何意义1212PA PB t t t t +=+=-,再求解即可. 【详解】解:(1)曲线C 的极坐标方程化为直角坐标方程为24x y =,P 点的极坐标为:3,2P π⎛⎫ ⎪⎝⎭,化为直角坐标为()0,3P . (2)直线l 的参数方程为cos 33sin 3x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩,即123x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 将l 的参数方程代入曲线C的直角坐标方程,得21124t =+,整理得:2480t --=,显然有>0∆,则1248t t ⋅=-,12t t +=121248PA PB t t t t ⋅=⋅=⋅=,1212PA PB t t t t +=+=-==所以116PA PB PA PB PA PB ++==⋅【点睛】本题考查了极坐标与直角坐标的互化,直线的参数方程及,直线的参数方程中t 的几何意义,属中档题.23.已知函数()5f x x =-,()523g x x =--.(1)解不等式()()f x g x <;(2)若存在x ∈R 使不等式()()2f x g x a -≤成立,求实数a 的取值范围.【答案】(1)()1,3(2)2a ≥【解析】(1)由绝对值的意义,分别讨论5x ≥,352x ≤<,32x <即可; (2)原命题等价于()()2f x g x -的最小值小于或等于a ,再利用绝对值不等式的性质可得()()2f x g x -=()2102352102352x x x x =-+--≥----=.即()()2f x g x -的最小值为2,即可得解. 【详解】 解:(1)原不等式即5235x x -+-<,∴55235x x x ≥⎧⎨-+-<⎩或3525235x x x ⎧≤<⎪⎨⎪-+-<⎩或325325x x x ⎧<⎪⎨⎪-+-<⎩, 所以x 无解或332x ≤<或312x <<,即13x <<, ∴原不等式的解集为()1,3.(2)若存在x ∈R 使不等式()()2f x g x a -≤成立,则()()2f x g x -的最小值小于或等于a .()()225523f xg x x x -=--+-()2102352102352x x x x =-+--≥----=. 当且仅当3,52x ⎡⎤∈⎢⎥⎣⎦时取等号,∴()()2f x g x -的最小值为2. ∴2a ≥.【点睛】本题考查了绝对值不等式的解法及绝对值不等式的性质,重点考查了分类讨论的数学思想方法,属中档题.。

2020届湖北省荆州中学、宜昌一中等“荆、荆、襄、宜四地七校高三上学期期末考试文科综合试题

2020届湖北省荆州中学、宜昌一中等“荆、荆、襄、宜四地七校高三上学期期末考试文科综合试题

绝密 ★ 启用前“荆、荆、襄、宜四地七校考试联盟”2020 届高三元月联考 文科综合试题本试卷共 6 页,共 47题(含选考题).满分 300分,考试用时 150 分钟★ 祝考试顺利 ★第Ⅰ卷 一、选择题:本题共 35小题,每小题 4 分,共 140分。

在每小题给出第四个选项中,只有一项是符 合题目要求的。

下图为东北地区冬季降雪日数示意图,读图回答 1-3 题。

1. 关于图中降雪日数分布情况描述正确的是A. 降雪日数自南向北逐渐递减B.C.图中平原区降雪日数最少2. 图中甲地降雪日数不是最多,A.位于冬季风的迎风坡降雪日数自东向西逐渐递减 D. 近海地区降雪日数多于内陆地区 降雪量却最大,其原因可能是 更靠近海洋,水汽充足 纬度低,蒸发旺盛 B. D. 3. 下列关于东北冬季降雪说法不正确的是A.有利于土壤保墒,利于次年农业生产C.导致交通堵塞,交通事故上升 帕隆江为雅鲁藏布江支流,流域内山高谷深,气候湿润。

受某次突发灾害影响,灾害点(D. B. 导致小麦等农作物冻害,作物减产 有利于发展冰雪旅游产业 游河道横断面发生骤变,图 a 为 L 地上游 P 地断面,图 b 为 L 地下游 Q 地断面, P 地与 害发生数日后, 断面水位恢复至正常水平。

河道横断面指河槽中某处垂直于流向的断面。

4. 引发 L 地临近上下游断面突变的原因最可能是1第L 地)上下 Q 地距离较近。

灾 据此完成 4-6 题。

C.位于夏季风的迎风坡A.强降雨致山洪爆发B.滑坡土石阻塞河道C.地震迫使河流改道D.上游大坝开闸泄流5. 此次灾害的生消过程中L 地下游水量A. 不断增加B.不断减少C. 先增加后减少D.先减少后增加6. 河道断面骤变至水位恢复正常水平期间,L 地下游应A. 迁离沿岸居民B.清理河道淤泥C. 大坝蓄水防旱D.积极恢复生产截至2019 年7月底,全国依法登记的农民合作社达220.7 万家,辐射带动了全国近一半的农户。

湖北省高三上学期历史10月联考试卷

湖北省高三上学期历史10月联考试卷

湖北省高三上学期历史10月联考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共24小题,每小题2分,共48分。

) (共24题;共48分)1. (2分) (2020高二下·安徽月考) 公卿的族属是商周政治建构的重要因素。

下列商周异、同姓公卿的比例差异说明西周政治制度的特点是()A . 家国同构B . 等级森严C . 君主专制D . 官僚政治2. (2分) (2019高二上·西安期中) 某校高二(3)班在历史研究性学习的中期报告中,提到了如下关键词:克己复礼、仁政、罢黜百家、朱熹、黄宗羲。

据此判断他们研究的主题最有可能是()A . 儒学的形成及发展B . 中央集权体制的演变C . 法家思想的形成与发展D . 科举制度的发展与完善3. (2分)《墨子》记载:“农夫早出暮入,耕稼树艺……妇人夙兴夜寐,纺绩积纴……”,农民如此兢兢业业主要是①缴纳租税的需要②商品交换的需要③自家基本生活的需要()A . ①②B . ②③C . ①③D . ①②③4. (2分) (2017高一上·枣庄月考) 按唐制,中男(男丁16岁以上至21岁为中男)不服兵役,成男(男丁22岁以上为成男)才服兵役。

封德彝提出中男服役的建议,得到太宗许可。

但是魏征不肯签署文件,并指出这是竭泽而渔的做法。

最终此提议没有通过。

据此,你认为魏征供职于()A . 尚书省B . 中书省C . 门下省D . 兵部5. (2分) (2019高二上·齐齐哈尔期末) 下列观点属于智者学派的是()①万物由水生成,又复归于水②每个人都有自己的感觉,因此一切都是相对的③正义、善德、真理等价值标准都是由人制定的④“知识就是美德”。

A . ①②B . ③④C . ①④D . ②③6. (2分) (2018高二上·长春期中) 宋朝是一个文化昌盛、科技发展的朝代,这主要得益于宋朝的文化和知识分子政策。

湖北剩荆襄宜四地七校2020届高三化学10月联考试题含解析

湖北剩荆襄宜四地七校2020届高三化学10月联考试题含解析
9.甲、乙、丙、丁四种物质中,甲、乙、丙均含有相同的某种元素,它们之间具有如下转化关系: 。下列有关物质的推断不正确的是
A.若甲为Cl2,则丁可能是铁B.若甲为NH3,则丁可能是氧气
C.若甲为AlCl3溶液,则丁可能是氨水D.若甲为NaOH,则丁可能是SO2
【答案】C
【解析】
【详解】A、若甲为Cl2,丁是Fe,则乙是FeCl3,丙是FeCl2,符合转化关系,A正确;
A.糯米、粳米、大麦等谷物中均含有淀粉
B.古法酿酒工艺中有多种酶参与催化反应
C.酒化酶将葡萄糖转化为乙醇时,温度越高反应速率一定越快
D.该过程中涉及蒸馏操作
【答案】C
【解析】
【详解】A.糯米、粳米、大麦等谷物中均含有淀粉,故A正确;
B.古法酿酒是利用淀粉在酶的作用下转化为乙醇,所以古法酿酒工艺中有多种酶参与催化反应,故B正确;
D.a点是Ba(OH)2溶液和H2SO4恰好反应产生BaSO4沉淀,此时溶液中只有水,溶液显中性,b点恰好发生反应:NaHSO4+Ba(OH)2=BaSO4↓+NaOH+H2O,所对应的溶液为NaOH溶于,显碱性,D错误;
故合理选项是A。
【点睛】本题考查酸、碱混合溶液反应的定性判断,注意:溶液导电能力与离子浓度成正比,弄清物质的量与反应的关系及各点溶液中溶质成分是解本题关键,侧重考查学生分析判断及识图能力。
湖北省荆、荆、襄、宜四地七校2020届高三化学10月联考试题(含解析)
相对原子质量:H:1 C:12 N:14 O:16 Na:23 S:32 Cl:35.5 Fe:56 Zn:65
第Ⅰ卷选择题(共48分)
一、选择题(本题包括16小题,每小题3分,共48分。每题只有一个选项符合题意)

湖北省部分学校高三上学期10月联考试题历史

湖北省部分学校高三上学期10月联考试题历史

2023—2024学年度上学期高三年级十月联考历史试卷★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共15小题,每小题3分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.公元前536年,郑国子产颁布“铸刑书”,此举遭到晋国保守贵族叔向的指责,批评他此举会导致“民知争端矣,将弃礼而征于书”。

公元前513年,晋国也颁布“铸刑鼎”。

上述现象表明春秋晚期2.西汉思想家陆贾在《新语》中指出:“夫欲富国强威,辟地服远者,必得之于民;欲建功兴誉,垂名烈,流荣华者,必取之于身……天地之性,万物之类,怀德者众归之,恃刑者民畏之,归之则充其侧,畏之则去其域。

”陆贾的上述思想3.表1不同历史人物对历史上某一赋税制度(措施)的评价表1评价的是4.(宋代)岳州知州指出:“(农民)自来兼作商旅……欲出榜招召,务令疾速归业。

如贪恋作商,不肯回归,其田权许人请射(承佃耕种)。

”宋高宗采纳户部意见:“商人田产,身虽在外,家有承管,见今输送二税者,难(不应)许人请射。

”这些现象出现的根源是5.朱元璋对能力、品性都很出众的“老人”进行授官,改变他们半民半公的尴尬身份,成为大明朝的正式“公务员”,光宗耀祖。

如:洪武十五年(公元1382年),“老人”陈原九被任命为松江知府。

洪武二十四年(公元1391年),徽州歙县“老人”胡伯顺被任命为监察御史。

材料表明朱元璋重视6.鸦片战争后的一段时间内,清政府对中外条约的认识是“照会该夷,申以盟誓”,且认为只有在两国连年构兵导致相互失信,为停战议和、避免猜疑,须“立条约以坚其信”。

湖北省宜荆荆随2023-2024学年高二上学期10月联考历史试卷(含部分解析)

湖北省宜荆荆随2023-2024学年高二上学期10月联考历史试卷(含部分解析)

2023 年宜荆荆随高二10 月联考高二历史试卷考试时间:2023 年10 月10 日上午08:00-09:15 试卷满分:100 分注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

一、选择题:本题共15 小题,每小题3 分,共45 分。

每小题给出的四个选项中,只有一个选项是最符合题目要求。

1.相传,五帝之一的尧出于“方(违)命圮(同)族”的忧虑,本不同意让鲧去治水,但面对四岳(相传为重臣羲和的四个儿子,分别在四方任职)、百姓的“强请”,尧也只能顺从。

这说明,传说时代末期的中国()A .君主权力尚未集中B .原始民主发挥功用C .尚贤观念深入人心D .神权干预部落决策2.湖北省云梦县出土的官箴竹简《为吏之道》对吏的道德模范作用和为基层地方提供教化的作用要求颇高,为吏职赋予了三大职能:法律执行者、知识传授者和道德表率者。

由此可见,《为吏之道》()A .明确了秦对吏的教化要求B .代表了秦朝官员管理水平C .打破了长期官位世袭制度D .强化了地方监察体制建设3.对历代帝王陵墓的保护是中国古代固有的文化传统。

北魏孝文帝在恢复祭陵制度的同时,对汉、魏、晋诸陵的维护沿袭了魏明帝的做法,并以古代帝王祭祀的礼仪“太牢之礼”祭汉光武及明、章三帝陵。

孝文帝这一做法旨在()A .尊重历代的贤明君主B .传承和弘扬鲜卑族文化传统C .彰显其人道主义情怀D .表明北魏入主中原的正统性4.唐代传奇《枕中记》中的主角卢生“明年,举进士,登第释褐,秘校,应制,转渭南尉,俄迁监察御史,转起居舍人知制诰,三载,出典同州,迁陕牧,生性好土功,自陕西凿河八十里,以济不通,邦人利之,刻石纪德,移节汴州,领河南道采访使,征为京兆尹”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档