工程光学习题解答 第七章 典型光学系统

合集下载

工程光学_郁道银_光学习题解答

工程光学_郁道银_光学习题解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学习题解答

工程光学习题解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学习题参考答案第七章 典型光学系统

工程光学习题参考答案第七章 典型光学系统

第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。

解: ① 21-==rl R )/1(m ∴ m l r 5.0-=②P R A -= D A 8= D R 2-= ∴D A R P 1082-=--=-=m P l p 1.01011-=-== ③fD '=1∴m f 1-=' ④D D R R 1-=-='m l R1-=' ⑤P R A '-'= D A 8= D R 1-='D A R P 9-=-'='m l P11.091-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。

eye已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①fDP '-'-=Γ1 25501252501250-+=''-+'=f P f 92110=-+=②由%50=K 可得: 18.050*2182=='='P D tg 放ω ωωtg tg '=Γ ∴02.0918.0==ωtg Dytg =ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm fe 250='mm l 2.22-= yy l l X '==='=92.22200β mm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='f l l '=-'11125112001=--l mm l 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

工程光学习题解答

工程光学习题解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、xx树胶(n=1.526)、xx(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在xx树胶中,n=1.526时,v=1.97 m/s,当光在xx中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一大小的像,xx拉远,则像的大小变为,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=即屏到针孔的初始距离为。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=,所以纸片最小直径为。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学第七章典型光学系统

工程光学第七章典型光学系统
六、显微镜的照明方式
①透射光亮视场照明。光通过透明物体产生亮视场。 ②反射光亮视场照明。对不透明的物体,从上面照射产生漫射或规 则的反射形成亮视场。 ③透射光暗视场照明。倾斜入射的照明光束在物体旁侧向通过,光 束通过物体结构的衍射、折射和反射,射向物镜,形成物体的像, 则获得暗视场。 ④反射光暗视场照明。在旁侧入射到物体上的照明光束经反射后在 物镜侧向通过,若无缺陷的放射镜作为物体,得到一均匀暗视2场2 。
距离
距离
R为远点视度,P为近点视度,单位为屈光度(D)=1/m。 医学上, 1D=100度。 随着年龄增大,肌肉调节能力下降,调节范围减小。
(二)眼的缺陷及校正
眼睛的远点在无限远或眼光学系统的后焦点在视网膜上,称
为正常眼。
正常眼观察近物时,物体距眼最适宜的距离是250mm,称
为明视距离M。
4
①近视眼 近视眼的网膜离水晶体太远或水晶体表面曲率太大,无限 远物点成像在网膜之前,远点在眼前有限远。 需配一负光角度凹面透镜,透镜的像方焦点与眼睛的远点 重合,这样,无限远物点就能成像在网膜上。
大小应与目 500tgw 6,8,11,16,22,32。 镜的视场角 250 D ②成实像的眼睛、摄影和投影系统。
f e
e
一致: e
2 y 5 0 0tg w e
5 0 0tg w
表明:在选定目镜后,显微镜的视觉放大率越大,其在物
空间的线视场越小。
18
三、显微镜的出瞳直径 普通显微镜,物镜框是孔径光阑。 复杂物镜,其最后镜组的镜框为孔径光阑。 测量用显微镜,物镜像方焦平面上设置专门的孔径光阑, 经目镜所成的像为出瞳(直径为D‘)。 则有: n ysinun ysinu nsinuyn sinu y n sinu fo

后六章工程光学习题及解答

后六章工程光学习题及解答
不论是从 M 面开始追迹或是从与光线垂直的切平面开始追迹,前光线与主光线的光程差都
I1]) / 1.471 相同,故前光线的光程差为 OPD ([ AO] [ A1
后光线:以 M 面作为起始面,后光线的初始数据为:
X 1 DEP /2,Y1 L tan U, Z1 0 K1 0, L1 n1 sin U , M1 n1 cosU
[AO]=[AB]+[BC]+[CD]+[DE]+[EF]+[FG]+[GH]-[HO]; 计算可得每一段的光程为: [AB]=0.311mm,[BC]=8.119mm,[CD]=8.380mm, [DE]=2.689mm,[EF]=7.121mm,[FG]=4.341mm, [GH]=69.847mm,[HO]=80.533mm. 故主光线的光程为:[AO]=20.274mm. 上光线:同样以 M 面作为起始面开始光线追迹,依次经过每个折射面,到达高斯像面后反 向追迹到参考波前,可得到上光线的光程. 上光线的光程为:
OPD
子午面
H1 H
M
I1
A1
A1'
出瞳
F1
D1
E1
上光
G1
G
线
B1
C1
D
B
E
F
主光
线Leabharlann 高 斯 像 面AT
C
O
线 下光
参考波前 实际波前
提示:主光线和其它光线分别从垂直于主光线并过T点的切平 面进行光线追迹至参考球,再求它们间的光程差
图 7.1 解: (1)确定照相物镜的入瞳位置 L :由于系统没有专门设置的光孔,这里假设第四面为孔 径光阑.于是先根据 ynu 光线追迹方法计算入瞳的位置(逆光线计算).设轴上点发出的光线 在 第 一 面 上 的 高 度 为 y1 10mm , 物 距 此 时 等 于 间 隔 t1 1.6mm , 所 以 ,

工程光学习题解答--第七章-典型光学系统

工程光学习题解答--第七章-典型光学系统

工程光学习题解答--第七章-典型光学系统第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。

解: ① 21-==rl R )/1(m∴ ml r5.0-=②PR A -= D A 8= D R 2-=∴D A R P 1082-=--=-=m P l p1.01011-=-== ③f D '=1 ∴m f 1-=' ④D D R R 1-=-=' m l R1-='⑤P R A '-'= DA 8=D R 1-='DA R P 9-=-'='m l P11.091-=-='2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。

已知:放大镜 mm f 25=' mmD 18=放mm P 50='mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①f D P '-'-=Γ125501252501250-+=''-+'=f P feye92110=-+=②由%50=K 可得:18.050*2182=='='P D tg 放ωωωtg tg '=Γ ∴02.0918.0==ωtg D y tg =ω ∴mmDtg y 502.0*250===ω∴mm y 102= 方法二:18.0='ωtg Θmmtg y 45*250='='ωmml 200-='mmfe 250='mm l 2.22-=yy l l X'==='=92.22200βΘmm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='l l =-'1125112001=--lmml 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e25='。

工程光学习题解答第七章_典型光学系统

工程光学习题解答第七章_典型光学系统

第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。

解: ① 21-==rl R )/1(m ∴ m l r 5.0-=②P R A -= D A 8= D R 2-= ∴D A R P 1082-=--=-=m P l p 1.01011-=-== ③fD '=1∴m f 1-=' ④D D R R 1-=-='m l R1-=' ⑤P R A '-'= D A 8= D R 1-='D A R P 9-=-'='m l P11.091-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。

eye已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①fDP '-'-=Γ1 25501252501250-+=''-+'=f P f 92110=-+=②由%50=K 可得: 18.050*2182=='='P D tg 放ω ωωtg tg '=Γ ∴02.0918.0==ωtg Dytg =ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:18.0='ωtg Θ mm tg y 45*250='='ω mm l 200-=' mm fe 250='mm l 2.22-= yy l l X '==='=92.22200βΘ mm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='f l l '=-'11125112001=--l mm l 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 典型光学系统1.一个人近视程度是D 2-(屈光度),调节范围是D 8,求: (1)远点距离; (2)其近点距离;(3)配戴100度近视镜,求该镜的焦距; (4)戴上该近视镜后,求看清的远点距离; (5)戴上该近视镜后,求看清的近点距离。

解: ① 21-==rl R )/1(m ∴ m l r 5.0-=②P R A -= D A 8= D R 2-= ∴D A R P 1082-=--=-=m P l p 1.01011-=-== ③fD '=1∴m f 1-=' ④D D R R 1-=-='m l R1-=' ⑤P R A '-'= D A 8= D R 1-='D A R P 9-=-'='m l P11.091-=-=' 2.一放大镜焦距mm f 25=',通光孔径mm D 18=,眼睛距放大镜为mm 50,像距离眼睛在明视距离mm 250,渐晕系数为%50=k ,试求(1) 视觉放大率;(2)线视场;(3)物体的位置。

eye已知:放大镜 mm f 25=' mm D 18=放 mm P 50=' mm l P 250='-'%50=K求:① Γ ② 2y ③l 解:①fDP '-'-=Γ1 25501252501250-+=''-+'=f P f 92110=-+=②由%50=K 可得: 18.050*2182=='='P D tg 放ω ωωtg tg '=Γ ∴02.0918.0==ωtg Dytg =ω ∴mm Dtg y 502.0*250===ω ∴mm y 102= 方法二:18.0='ωtg mm tg y 45*250='='ω mm l 200-=' mm fe 250='mm l 2.22-= yy l l X '==='=92.22200β mm y 102=③ l P D '-'= mm D P l 20025050-=-=-'='f l l '=-'11125112001=--l mm l 22.22-=3.一显微镜物镜的垂轴放大率为x3-=β,数值孔径1.0=NA ,共扼距mm L 180=,物镜框是孔径光阑,目镜焦距mm f e 25='。

(1)求显微镜的视觉放大率。

(2)求出射光瞳直径。

(3)求出射光瞳距离(镜目距)。

(4)斜入射照明时,m μλ55.0=,求显微镜的分辨率。

(5)求物镜的通光孔径。

(6)射物高mm y 62=,渐晕系数%50=k ,求目镜的通光孔径。

已知:显微物镜 X 3-=β 1.0=NA 共轭距mm L 180=物镜框为孔径光阑mm f e 25='① X ee f 1025250250=='=Γ X e 30*-=Γ=Γβ ② mm NA D 67.1301.0*500500==Γ=' ③由物镜成象关系:⎪⎩⎪⎨⎧='+--='=180)(3l l l l β⎩⎨⎧='-=mm l mm l 13545 mm f l l e Z 160)(-='+'-=eZ Z f l l '=-'111 16012511-='Zl mm l Z62.29=' 孔④道威判断 m mNA μμλσ75.21.055.0*5.05.0===⑤目镜的 185.016062.29-=-='=Z Z l l 目βmm D 02.9185.067.1==⑥mm y 62= 322='=yy β mm y 182=' %50=K 时36.0259*218=='='e f tg ω ω''=tg l D Z *2目 36.0*62.29*2= mm 33.21=4.欲分辨mm 000725.0的微小物体,使用波长mm 00055.0=λ,斜入射照明,问: (1) 显微镜的视觉放大率最小应多大? (2) 数值孔径应取多少适合?视场光阑决定了物面大小,而物面又决定了照明 的大小A 'A B 1F 2F 'D ' ω' ω'5.有一生物显微镜,物镜数值孔径5.0=NA ,物体大小mm y 4.02=,照明灯丝面积 1.2×1.22mm ,灯丝到物面的距离100mm ,采用临界照明,求聚光镜焦距和通光孔径。

已知 5.0=NA 4.02=y 灯丝面积 1.2×1.22mm灯丝到物面的距离100mm 临界照明求: 聚f ' 和通光孔径. :⎪⎩⎪⎨⎧='+-'=-=-=100)(312.14.0l l l l β ⎩⎨⎧='-=mm l mml 2575f l l '=-'111 ∴mm f 75.18='聚 u n NA sin =∴5.0sin =u ︒=30umm tg tg l D 86.2830*25*230**2=='=︒︒AB l -l ' uu 聚 物6.为看清4km 处相隔150mm 的两个点(设rad 0003.01='),若用开普勒望远镜观察,则: (1)求开普勒望远镜的工作放大倍率;(2)若筒长mm L 100=,求物镜和目镜的焦距; (3)物镜框是孔径光阑,求出射光瞳距离;(4)为满足工作放大率的要求,求物镜的通光孔径; (5)视度调节在D 5±(屈光度),求目镜的移动量; (6)若物方视场角︒=82ω求象方视场角; (7)渐晕系数%50=K ,求目镜的通光孔径。

已知:m l 4000-= mm 150=σ 解: ① 510*75.31000*1000*4150-==mmmmϕ(rad )有效放大率 810*75.30003.0065==''=Γ-ϕ工作放大率 X 24~16=Γ② ⎪⎩⎪⎨⎧=''=Γ==-+'8100)(e o e o f f mm L f f⎪⎩⎪⎨⎧='='mm f mm f e o 11.1189.88 ③100-=Z l 11.11='e f 求 'Z le Z Zf l l'=-'111 100111.1111-='Z l mm l Z5.12=' ④3.2D=Γ mm D 4.188*3.2== ⑤对于 D R 5+= mm l R 200= )11.11(1∆+-=l115.2122005.12∆-=∆-+='l 代入公式e f l l '=-'111 整理得: 04.12339.201121=+∆-∆ ∴62.01=∆mm对于 D R 5-= mm l R 200-=75.18)5.12200(/-=--=l'=-'ef l l 11111.11175.181111--='-'=e f l l mm l 488.10-=mm 62.0488.1011.112=-=∆⑥ ωγtg ==Γ 5594.04*8=='︒tg tg ω ︒='44.582ω ⑦5.0=Kmm tg l D Z 985.135594.0*5.12*2**2==''=ω目7.一开普勒望远镜,五经焦距mm f 2000=',目镜的焦距为mm f e 25=',物方视场角︒=82ω,渐晕系数%50=K ,为了使目镜通光孔径mm D 7.23=,在物镜后焦平面上放一场镜,试:(1)求场镜焦距;(2)若该场镜是平面在前的平凸薄透镜,折射率5.1=n ,求其球面的曲率半径。

① )11(*-=tg l h Z tg tg f o 4*2004*=='=︒︒ 目D f l h l e Z *5.0'-'=' mm l 1.164='f l l '=-'111 20011.16411+='场f∴mm f 14.9='场②011.014.90121==+=ϕϕϕ 孔阑∞=1r 01=ϕ 011.02=ϕrnn l n l n -'=-'' 其中∞=l 14.='l 5.1=n 1='n代入求得:r 5.115.114.901-=∞- mm r 45-=9.一个照明器由灯泡和聚光镜组成,已知聚光镜焦距mm f 400=',通光孔径mm D 200=,要求照明距离为5m 远直径为3m 的圆,试问灯泡应安装在什么位置。

已知: mm f 400=' 5m 处3m 直径光照明 求 l 解:1500100l l '-='- mm l 14.357-=' f l l '=-'111 4001114.3571=--l mm l 679.188-=11.用电视摄象机监视天空中的目标,设目标的光亮度为2/2500m cd ,光学系统的透过滤为0.6,摄象管靶面要求照度为lx 20,求摄影物镜应用多大的光圈。

解:A'AFF 'm5m5.1● ●14.开普勒望远镜的筒长255mm ,X 8-=Γ,︒=62ω,mm D 5=',无渐晕, (1)求物镜和目镜的焦距; (2)目镜的通光孔径和出瞳距;(3)在物镜焦面处放一场镜,其焦距为mm f 75=',求新的出瞳距和目镜的通光孔径; (4)目镜的视度调节在D 4±(屈光度),求目镜的移动量。

①⎪⎩⎪⎨⎧='+'-=''-=Γ2258目物目物f f f f 解得 ⎩⎨⎧='='mm f mm f 25200目物②mm D D 4058=⨯='Γ=物 mm D tg D 6.28)22252='+⨯=ω(目 mm tg tg f h i 48.103200*=⨯='=︒ω物由三角形相似得:⎪⎩⎪⎨⎧=+=20020y x y h x i⎩⎨⎧==mm y mm x 77.6823.131有大三角形相似得:目目f y D x '+=220 2577.68223.13120+=目D mm D 58.28=目225-=P mm f 25='目目f P P '=-'111 mm P 125.28='③77.68-=-=y l A 场f l l A A '=-'11175177.6811=+'A l mm l A 889.827-='∴ 0126587.0889.82748.10=='=Ai l h tg ϕ mm tg f l D A 59.210126587.0)25889.827(22=⨯+⨯='+'-⨯=ϕ)(目目 物镜经场镜成像751200111=+'l mm l 1201=' 经目镜成像 mm l 9525145.542=-=2519511=-'Zl mm l P 79.192='='④mm f x e 5.2100025410004±=⨯±='±= 15.一透镜焦距mm f 30'=,如在其前边放置一个x6-=Γ的开普勒望远镜,求组合后系统的像方基点位置和焦距,并画出光路图。

相关文档
最新文档