用示波器测量信号的电压和频率
示波器的基本测量方法

示波器对被测信号进行线性扫描时,一般情 况下扫描电压线性变化和X放大器的电压增益 一定,则扫描速度也为定值。
那么,用示波器可直接测量整个信号波形持 续的时间。
(1)测量信号波形任意两点间的时间间隔
用示波器测量同一信号中任意两点A与B的时 间间隔,如图3(a)所示。
a
12
x
A
B
x
A
B
x A
B
(a)测量信号的时间差 (b)脉冲信号宽度的测量 (c)两个信号的时间差
a
8
e、调节垂直灵敏度开关,使荧光屏上的
波形位置适当,记下Dy值。
f、读出被测交流电压波峰和波谷的高度 或任意两点之间的高度h。
g、根据式 UP-P = h*Dy*k 计算出交流电
压的峰-峰值。
a
9
例2 如图2所示,h =6cm、Dy =1V/cm、k =10:1,
求交流信号的峰-峰值和有效值。
100% 90%
10% 0
x1
x2
图 4 测量脉冲上升或下a=x1*Dx 下降时间为:
t2=x2*Dx
a
18
一般情况下,应注意示波器的垂直通道 本身存在固有的上升时间,这将对测量 结果有影响,故应该对测量结果进行修 正。
因为屏幕上测得上升时间包含了示 波器本身存在的上升时间,可按下 式进行修正
a
6
解: 由式UDC=h*Dy*k可得 UDC=h*Dy*k =5*1*10=50V
a
7
(2)交流电压的测量方法
a、首先将示波器的垂直偏转灵敏度微调旋 钮置于校准挡,否则电压读数不准确。 b、把被测信号送入示波器垂直输入端。 c、将示波器输入耦合开关置于“AC”输入 位置。 d、调节扫描速度,使显示的波形稳定。
9示波器的原理和使用

实验9 示波器的原理和使用示波器是一种用途广泛的基本电子测量仪器,用它能观察电信号的波形、幅度和频率等电参数。
用双踪示波器还可以测量两个信号之间的时间差,一些性能较好的示波器甚至可以将输入的电信号存储起来以备分析和比较。
在实际应用中凡是能转化为电压信号的电学量和非电学量都可以用示波器来观测。
【实验目的】1.了解示波器的基本结构和工作原理,掌握使用示波器和信号发生器的基本方法。
2.学会使用示波器展示电信号波形,测量信号电压幅值以及频率。
3.学会使用示波器观察李萨如图并测频率。
【实验原理】不论何种型号和规格的示波器都包括了如图2-28所示的几个基本组成部分:示波器(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X 放大)、扫描信号发生电路(锯齿波发生器)、触发同步电路、电源等。
图2-28 示波器的基本结构框图1.示波管的基本结构示波管是示波器的核心部分,其功能就是将电信号转化成光信号。
示波管的基本结构如图2-29所示。
主要由电子枪、偏转系统和荧光屏三部分组成,全都密封在玻璃壳体内,里面抽成高真空。
H-灯丝;K-阴极;G1,G2- 控制栅极;A1-第一阳极;A2-第二阳极;Y-竖直偏转板;X-水平偏转板图2-29 示波管结构图(1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。
灯丝通电后加热阴极。
阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。
控制栅极是一个顶端有小孔的圆筒,套在阴极外面。
它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下奔向荧光屏。
示波器面板上的“辉度”调整就是通过调节电位以控制射向荧光屏的电子流密度,从而改变了屏上的光斑亮度。
阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。
当控制栅极、第一阳极与第二阳极电位之间电位调节合适时,电子枪内的电场对电子射线有聚集作用,所以,第一阳极也称聚焦阳极。
实验二示波器和信号发生器的使用

实验二示波器和信号发生器的使用------------------------------------------------------------------------------------------------实验二示波器和信号发生器的使用一、实验目的1、通过本实验,能够了解示波器的原理,熟悉示波器面板上的开关和旋钮的作用。
2、,练习使用示波器,用示波器观察信号波形,测量正弦电压的频率和峰值。
3、学习信号发生器的使用方法。
二、原理与说明1、示波器是一种综合性的电信号特性测试仪。
用它可以直接显示出电信号的波形,测量幅值、频率以及同频率两信号的相位差等。
2、信号发生器是产生各种波形的信号电源。
常用的有正弦信号发生器、方波信号发生器、脉冲信号发生器等。
信号电源的频率(周期)和输出辐值一般可以通过开关和旋钮加以调节。
3、示波器与信号发生器的连接三、仪器设备(1) 示波器, 1台 ;(2) 信号发生器, 1台 ;(3) 电阻箱,电容箱,各 1只;四、实验内容1、示波器的使用,体会各主要开关和旋钮的作用。
(1) 示波器置于扫描(连续)工作方式,接通电源并经预热以——————————————————————————————————————------------------------------------------------------------------------------------------------后,在示波器的荧光屏上调出一条水平扫描亮线来。
分别旋动[聚焦]、[辅助聚焦]、[亮度]、[标尺]、[垂直位移]、[水平位移]等旋钮,体会这些旋钮的作用和对水平扫描线的影响。
【聚焦】—调整光点或波形清晰度。
【辅助聚焦】—配合“聚焦”旋钮调节清晰度。
(2) 双踪示波器的自检将示波器面板部分的“标准信号”接口,通过信号电缆接至示波器的Y轴输入接口CH1或CH2,调节各旋钮,使在荧光屏上显示出线条细而清晰,亮度适中的方波波形,将时间扫描旋钮及幅值扫描旋钮调到“校准”位置,从荧光屏上读出该信号的频率和幅值,并与标称值作比较。
用示波器测量信号的电压和频率

用示波器测量信号的电压及频率长江大学马天宝应物1203班1、示波器和使用-【实验目的】1.了解示波器的大致结构和工作原理。
2.学习低频信号发生器和双踪示波器的使用方法。
3.使用示波器观察电信号的波形,测量电信号的电压和频率。
【实验原理】一、示波器原理1.示波器的基本结构示波器的种类很多,但其基本原理和基本结构大致相同,主要由示波管、电子放大系统、扫描触发系统、电源等几部分组成,如图4.9-1所示。
(1)示波管示波管又称阴极射线管,简称CRT,其基本结构如图4.9-2所示,主要包括电子枪、偏转系统和荧光屏三个部分。
电子枪:由灯丝、阳极、控制栅极、第一阳极、第二阳极五部分组成。
灯丝通电后,加热阴极。
阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。
控制栅极是一个顶端有小孔的圆筒,套在阴极外面,它的电位相对阴极为负,只有初速达到一定的电子才能穿过栅极顶端的小孔。
因此,改变栅极的电位,可以控制通过栅极的电子数,从而控制到达荧光屏的电子数目,改变屏上光斑的亮度。
示波器面板上的“亮度”旋钮就是起这一作用的。
阳极电位比阴极高得多,对通过栅极的电子进行加速。
被加速的电子在运动过程中会向四周发散,如果不对其进行聚焦,在荧光屏上看到的将是模糊一片。
聚焦任务是由阴极、栅极、阳极共同形成的一种特殊分布的静电场来完成的。
这一静电场是由这些电极的几何形状、相对位置及电位决定的。
示波器面板上的“聚焦”旋钮就是改变第一阳极电位用的,而“辅助聚焦”就是调节第二阳极电位用的。
偏转系统:它由两对互相垂直的平行偏转板——水平偏转板和竖直偏转板组成。
只有在偏转板上加上一定的电压,才会使电子束的运动方向发生偏转,从而使荧光屏上光斑的位置发生改变。
通常,在水平偏转板上加扫描信号,竖直偏转板上加被测信号。
荧光屏:示波管前端的玻璃屏上涂有荧光粉,电子打上去它就会发光,形成光斑。
荧光材料不同,发光的颜色不同,发光的延续时间(余辉时间)也不同。
使用示波器测量电流和电压的方法

使用示波器测量电流和电压的方法(一)电压的测量利用示波器所做的任何测量,都是归结为对电压的测量。
示波器可以测量各种波形的电压幅度,既可以测量直流电压和正弦电压,又可以测量脉冲或非正弦电压的幅度。
更有用的是它可以测量一个脉冲电压波形各部分的电压幅值,如上冲量或顶部下降量等。
这是其他任何电压测量仪器都不能比拟的。
1.直接测量法所谓直接测量法,就是直接从屏幕上量出被测电压波形的高度,然后换算成电压值。
定量测试电压时,一般把Y轴灵敏度开关的微调旋钮转至“校准”位置上,这样,就可以从“V/div”的指示值和被测信号占取的纵轴坐标值直接计算被测电压值。
所以,直接测量法又称为标尺法。
(1)交流电压的测量将Y轴输入耦合开关置于“AC”位置,显示出输入波形的交流成分。
如交流信号的频率很低时,则应将Y轴输入耦合开关置于“DC”位置。
将被测波形移至示波管屏幕的中心位置,用“V/div”开关将被测波形控制在屏幕有效工作面积的范围内,按坐标刻度片的分度读取整个波形所占Y轴方向的度数H,则被测电压的峰-峰值VP-P可等于“V/div”开关指示值与H的乘积。
如果使用探头测量时,应把探头的衰减量计算在内,即把上述计算数值乘10。
例如示波器的Y轴灵敏度开关“V/div”位于0.2档级,被测波形占Y轴的坐标幅度H为5div,则此信号电压的峰-峰值为1V。
如是经探头测量,仍指示上述数值,则被测信号电压的峰-峰值就为10V。
(2)直流电压的测量将Y轴输入耦合开关置于“地”位置,触发方式开关置“自动”位置,使屏幕显示一水平扫描线,此扫描线便为零电平线。
将Y轴输入耦合开关置“DC”位置,加入被测电压,此时,扫描线在Y轴方向产生跳变位移H,被测电压即为“V/div”开关指示值与H的乘积。
直接测量法简单易行,但误差较大。
产生误差的因素有读数误差、视差和示波器的系统误差(衰减器、偏转系统、示波管边缘效应)等。
2.比较测量法比较测量法就是用一已知的标准电压波形与被测电压波形进行比较求得被测电压值。
实验七 示波器的使用

实验七示波器的使用示波器是一种用途广泛的电子测量仪器,主要由示波管和复杂的电子线路组成。
用它能直接观察电信号的波形,也能测定电压信号的幅度、周期和频率等参数。
因此,一切可转化为电压信号的电学量和非电学量都可以用示波器来观察、测量。
用双踪示波器还可以测量两X 方式可以观察两个信号的垂直方向的合成。
示波器是个信号之间的时间差或相位差。
Y电子工作者的重要工具。
一、实验目的(1)了解示波器的主要结构和显示波形的基本原理。
(2)熟悉示波器和函数发生器各主要旋钮的作用和用法、掌握观察波形的调整步骤。
(3)用示波器粗略测量信号电压的频率和幅值。
(4)通过示波器观察李萨如图形,学会测量正弦振动频率的方法,二、实验仪器GOS-630FC型双踪示波器、CA1640P-20函数发生器。
三、实验原理1.示波器的基本构造示波器一般由示波管、衰减系统和放大系统、扫描、触发系统和电源供给系统组成。
双踪示波器控制电路方框图如图3-25所示。
为了适应各种测量的要求,示波器的电子线路是多样而复杂的,本书只对主要部分加以介绍。
(1)示波管。
如图3-26所示,示波管主要包括电子枪、偏转系统和荧光屏三部分,全都密封在玻璃外壳内,里面抽成高真空。
①荧光屏:它是示波器的显示部分,当加速聚焦后的电子打到荧光屏上时,屏上涂的荧光物质就会发光,从而显示出电子束的位置。
当电子束停止作用后,荧光剂的发光需经一定yy图3-25 双踪示波器控制电路方框图②电子枪。
由灯丝、阴极、控制栅极、第一阳极、第二阳极五部分组成。
灯丝通电后加热阴极,阴极是一个表面涂有氧化物的金属筒,被加热后发射电子。
控制栅极是一个顶端有小孔的圆筒,套在阴极外面,它的电位比阴极低,对阴极发射出来的电子起控制作用。
只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下奔向荧光屏。
第一阳极呈圆柱形(或圆形),有好几个间壁(中心穿有小孔),第一阳极上加有几百伏的电压,形成一个聚焦电场。
当电子束通过此聚焦电场时,在电场力的作用下,电子运动轨迹改变而会合于一点。
示波器的实验报告(共7篇)

篇一:电子示波器实验报告一、名称:电子示波器的使用二、目的:2.学会使用常用信号发生器;掌握用示波器观察电信号波形的方法。
3.学会用示波器测量电信号电压、周期和频率等电参量。
三、器材:2、ee1641b型函数信号发生器/计数器。
四、原理:1、示波器的基本结构:y输入外触发x输入 2、示波管(crt)结构简介:3、电子放大系统:竖直放大器、水平放大器(2)触发电路:形成触发信号。
#内触发方式时,触发信号由被测信号产生,满足同步要求。
#外触发方式时,触发信号由外部输入信号产生。
5、波形显示原理:只在竖直偏转板上加正弦电压的情形示波器显示正弦波原理只在水平偏转板上加一锯齿波电压的情形五、步骤:1、熟悉示波器的信号发声器面板各旋钮的作用,并将各开关置于指定位3、将信号发生器输出的频率为500hz和1000hz的正弦信号接入示波器,通过调整相应的灵敏度开关和扫描速度选择开关,使波形不超出屏幕范围,显示2~3个周期的波形。
4、将time/div顺时针旋到底至“x-y”位置,分别调节y1通道和y2六、记录:七、预习思考:1、示波器上观察到的正弦波形和李萨如图形实际上分别是哪两个波形的合成?答:正弦波形:是两组磁场使电子受力改变运动状态,然后将不同电子打到荧光屏上不同的位置而形成的;2、用示波器观察待测信号波形和用示波器观察李萨如图形时,示波器的工作方式有什么不同?3、当开启示波器的电源开关后,在屏上长时间不出现扫描线或点时,应如何调节各旋钮?八、操作后思考题1、如果y轴信号的频率?x比x轴信号的频率?y大很多,示波器上看到什么情形?相反又会看到什么情形?答:因为 ?y / ?x=nx / ny ,当?x /?y=1:1时,示波器上是一个圆柱,当?x /?y=2:1时,示波器上是一个横向的8,当?x /?y=3:1时,示波器上是三个横向的圆。
所以?y如果越大的话,横向圆的数量就越多。
篇二:示波器的原理与使用实验报告大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级 0705 姓名童凌炜学号 200767025 实验台号实验时间 2008 年 11 月 18 日,第13周,星期二第 5-6 节实验名称示波器的原理与使用教师评语实验目的与要求:(1)了解示波器的工作原理(2)学习使用示波器观察各种信号波形(3)用示波器测量信号的电压、频率和相位差主要仪器设备:yb4320g 双踪示波器, ee1641b型函数信号发生器实验原理和内容: 1. 示波器基本结构电子枪的作用是释放并加速电子束。
如何利用示波器测量一个信号的频率

如何利用示波器测量一个信号的频率
用示波器能观察各种不同电信号幅度随时间变化的波形曲线,在这个基础上示波器可以应用于测量电压、时间、频率、相位差和调幅度等电参数。
下面介绍用示波器观察电信号波形的使用步骤。
1.选择Y轴耦合方式
根据被测信号频率的高低,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC。
2.选择Y轴灵敏度
根据被测信号的大约峰-峰值(如果采用衰减探头,应除以衰减倍数;在耦合方式取DC档时,还要考虑叠加的直流电压值),将Y轴灵敏度选择V/div开关(或Y轴衰减开关)置于适当档级。
实际使用中如不需读测电压值,则可适当调节Y轴灵敏度微调(或Y轴增益)旋钮,使屏幕上显现所需要高度的波形。
3.选择触发(或同步)信号来源与极性
通常将触发(或同步)信号极性开关置于“+”或“-”档。
4.选择扫描速度
根据被测信号周期(或频率)的大约值,将X轴扫描速度t/div(或扫描范围)开关置于适当档级。
实际使用中如不
需读测时间值,则可适当调节扫速t/div微调(或扫描微调)旋钮,使屏幕上显示测试所需周期数的波形。
如果需要观察的是信号的边沿部分,则扫速t/div开关应置于最快扫速档。
5.输入被测信号
被测信号由探头衰减后(或由同轴电缆不衰减直接输入,但此时的输入阻抗降低、输入电容增大),通过Y轴输入端输入示波器。
完成以上几步后,可以直接由屏幕上看出一秒所过的波形及频率。
这是最基本的操作了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用示波器测量信号的电压及频率长江大学马天宝应物1203班1、示波器和使用-【实验目的】1.了解示波器的大致结构和工作原理。
2.学习低频信号发生器和双踪示波器的使用方法。
3.使用示波器观察电信号的波形,测量电信号的电压和频率。
【实验原理】一、示波器原理1.示波器的基本结构示波器的种类很多,但其基本原理和基本结构大致相同,主要由示波管、电子放大系统、扫描触发系统、电源等几部分组成,如图4.9-1所示。
(1)示波管示波管又称阴极射线管,简称CRT,其基本结构如图4.9-2所示,主要包括电子枪、偏转系统和荧光屏三个部分。
电子枪:由灯丝、阳极、控制栅极、第一阳极、第二阳极五部分组成。
灯丝通电后,加热阴极。
阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。
控制栅极是一个顶端有小孔的圆筒,套在阴极外面,它的电位相对阴极为负,只有初速达到一定的电子才能穿过栅极顶端的小孔。
因此,改变栅极的电位,可以控制通过栅极的电子数,从而控制到达荧光屏的电子数目,改变屏上光斑的亮度。
示波器面板上的“亮度”旋钮就是起这一作用的。
阳极电位比阴极高得多,对通过栅极的电子进行加速。
被加速的电子在运动过程中会向四周发散,如果不对其进行聚焦,在荧光屏上看到的将是模糊一片。
聚焦任务是由阴极、栅极、阳极共同形成的一种特殊分布的静电场来完成的。
这一静电场是由这些电极的几何形状、相对位置及电位决定的。
示波器面板上的“聚焦”旋钮就是改变第一阳极电位用的,而“辅助聚焦”就是调节第二阳极电位用的。
偏转系统:它由两对互相垂直的平行偏转板——水平偏转板和竖直偏转板组成。
只有在偏转板上加上一定的电压,才会使电子束的运动方向发生偏转,从而使荧光屏上光斑的位置发生改变。
通常,在水平偏转板上加扫描信号,竖直偏转板上加被测信号。
荧光屏:示波管前端的玻璃屏上涂有荧光粉,电子打上去它就会发光,形成光斑。
荧光材料不同,发光的颜色不同,发光的延续时间(余辉时间)也不同。
玻璃屏上带有刻度,供测量时使用。
(2)电子放大系统为了使电子束获得明显的偏移,必须在偏转板上加上足够的电压。
被测信号一般比较弱,必须进行放大。
竖直(Y轴)放大器和水平(X轴)放大器就是起这一作用的。
(3)扫描与触发系统扫描发生器的作用是产生一个与时间成正比的电压作为扫描信号。
触发电路的作用是形成触发信号。
当示波器工作在“自激”方式时,扫描发生器始终有扫描信号输出;当示波器工作在“DC”或“AC” 方式时,扫描发生器必须有触发信号的激励才产生扫描信号。
一般地,示波器工作在内触发方式,触发信号由被测信号产生,以保证扫描信号与被测信号同步。
当示波器工作在外触发方式时,触发信号由外部输入信号产生。
2.波形显示原理如果只在竖直偏转板上加一正弦信号,则电子束的亮点将随电压的变化在竖直方向来回运动;如果频率较高,则看到的是一条竖直亮线,如图4.9-3所示。
要能显示波形,应使电子束在水平方向上也要有偏移,这就必须同时在水平偏转板上加扫描电压。
扫描电压的特点是其幅值随时间线性增加到最大,又突然回到最小,此后再重复变化。
在扫描信号的作用下,光点从左向右运动到最大位移,再突然回到左端起点,开始下一周期。
我们把这一过程称为扫描。
扫描电压的变化曲线形同锯齿,如图4.9-4所示,所以称为锯齿波。
如果只有扫描信号加在偏转板上,在频率足够高时,屏上只能看到一条水平亮线。
如果在竖直偏转板(称Y轴)上加正弦电压,水平偏转板(称X轴)上加锯齿波电压,光点的运动将是两互相垂直运动的合成。
若锯齿波电压的周期与正弦波电压的周期相等或锯齿波电压的周期稍大,则屏上将显示一个完整周期的波形,如图4.9-5所示。
当正弦波与锯齿波的周期稍微不同时,则在下一扫描周期显示的波形与本次扫描周期显示的波形不能重叠,如图4.9-6所示,这样,在屏上看到的就是移动着的不稳定图形。
欲使前后两个扫描周期内的波形重合,使波形稳定,解决的办法有两个:(1)使锯齿波的周期等于正弦波的周期的整数倍,即T x=nT y,此时,示波器上显示n个完整的正弦波形。
示波器面板上的“扫描微调”旋钮就是用来调节锯齿波的周期,使之满足上述关系的。
(2)使扫描电压的起点自动跟随Y轴信号改变。
这可以通过触发信号的激励作用来做到,即通过由Y轴信号所形成的触发信号使扫描信号在Y轴信号回到起点时自动回到起点。
这种使扫描信号的周期等于被测信号的周期或扫描信号的起点自动跟随Y轴信号改变的现象称为“同步”(或整步)。
一般示波器只有一个电子枪,要能在屏上同时显示两路信号的图像,必须在人眼的视觉暂留时间内分别显示两波形在屏上不同的位置,这是通过电子开关来完成的。
电子开关是一个自动的快速单刀双掷开关,它把Y1通道和Y2通道的信号轮流送入Y轴放大器,在屏上轮流显示。
由于视觉暂留,观察者可以同时看到两路波形,即双踪显示。
双踪显示有“交替”和“断续”两种方式。
“交替”方式是在本次扫描时显示Y1通道信号,下次扫描时显示Y2通道信号,反复进行。
“断续”方式是在每次扫描中,高速轮流显示Y1通道和Y2通道的信号,以虚线显示在屏上。
由于虚线密集,使图形看起来连续。
二、测量原理1.测量信号的电压和周期用示波器测量信号的电压,一般是测量其峰—峰值U pp,即信号的波峰到波谷之间的电压值。
在选择适当的通道偏转因数和扫描时基因数后,只要从屏上读出峰—峰值对应的垂直距离Y(cm)和一个周期对应的水平距离X(cm),即可求出信号的电压和周期。
(4.9-1)(4.9-2)正弦信号的有效值U eff和峰—峰值U pp的关系为(4.9-3)有时,被测信号电压比较高,必须经过衰减后才能输入示波器的Y通道。
衰减倍数用分贝数表示,其定义为(4.9-4)式中,U0为未衰减时的信号电压值,U为示波器测得的衰减后的电压值。
根据衰减的分贝数和示波器测得的值U,就可得到被测信号的电压值。
2.测量信号的频率(1)李萨如图形设两个互相垂直的振动为式中,f1、f2为两振动的频率,ϕ1、ϕ2为两振动的初相。
当f1=f2时合成振动的轨迹方程为(4.9-5)(4.9-5)式是一个椭圆方程。
当ϕ2-ϕ1=0或±π时,椭圆退化为一条直线;当ϕ2-ϕ1=±π/2时,合成轨迹为一正椭圆。
当f1≠f2时,合成振动的轨迹比较复杂,但当f1与f2成简单的整数比时,合成振动的轨迹为封闭的稳定几何图形,这些图形称为李萨如图形,如图4.9-7所示。
从图形中,人们总结出如下规律:如果作一个限制光点在x,y方向运动的假想矩形框,则图形与此矩形框相切时,横边上的切点数n x与竖边上的切点数n y之比恰好等于两振动的频率之比,即(4.9-6)或因此,若已知其中一个信号的频率,从李萨如图形上数得切点数n x和n y,就可以求出另一待测信号的频率。
(2)拍设两个同方向的简谐振动为选某一时刻两振动相位相同时作为计时起点,则ϕ2=ϕ1=ϕ,若两振动的振幅也相同(A1=A2=A),则合成振动可以表示为当f1与f2的差值远小于f1、f2时,合成振动的振幅▕2Acos[π(f2-f1)t] ▏随时间缓慢地呈周期性变化,这种现象称为拍,振幅变化的频率叫拍频(4.9-7)图4.9-8所示为拍的形成的示意图,其中,t=0时,y1与y2的相位差为π。
如果信号频率f1已知且连续可调,则通过改变f1观察拍频的变化,可以判断出待测信号频率f2是大于f1还是小于f1,然后根据测得的拍频f3和(7)式就可求出待测信号的频率。
【实验仪器】DF4320型双通道示波器,EE1641B函数信号发生器,连接线若干一、DF4320型双通道示波器DF4320型双通道示波器的面板图入图4.9-9所示,各部件名称及作用介绍如下:1、亮度(intensity):用于调节光点亮度。
2、聚焦(focus):用于调节光点大小。
3、轨迹旋转(trace rotation):可调节波形与水平刻度线的角度。
4、电源指示灯(power indicator)5、电源开关(power)6、校准信号(probe adjust):提供0.5V、频率为1kHz的方波信号。
7、8.垂直移位(vertical position) 旋钮:改变波形的在屏上的竖直位置。
9.垂直方式按钮(vertical mode):共5个按钮。
按下CH1或CH2时,单独显示通道1或通道2的信号;按下ALT时,两个通道交替显示;按下CHOP 时,示波器处于断续工作方式;按下ADD时,显示两个通道信号的代数和。
10.通道2极性(CH2 NORM/invert):改变通道2信号的极性。
当垂直方式置“ADD”时,选择“NORM”,屏上显示两通道信号的和;选择“invert”, 屏上显示两通道信号的差。
11、12.电压衰减(volts/div) 旋钮:即偏转因数。
用于调节垂直偏转灵敏度,它指示竖直方向每厘米代表的电压值。
对于一定的输入信号,调节它,可改变波形在竖直方向的幅度。
13、14.微调(variable) 旋钮:用于连续调节垂直偏转灵敏度。
15、16.耦合方式(AC-GND-DC)按钮:输入信号的耦合方式。
置“AC”时,交流输入,直流成分被隔断;置“DC”时,直流输入;置“GND”时,接地,输入零信号。
17、18.通道1(CH1 OR X)和通道2(CH2 OR Y)信号输入插孔。
19.水平移位(horizontal) 旋钮:调节它可使波形水平移动。
20.电平(level) 旋钮:用来调节被测信号在某一电平触发扫描。
21.触发极性(slope):用于选择触发信号的上升沿或下降沿去触发扫描。
22.扫描方式(sweep mode)按钮:选择“AUTO”(自动)时扫描发生器自动工作,屏上始终有扫描线;选择“NORM”(常态)时,必须有触发信号扫描发生器才有扫描信号输出;选择“SINGLE”(单次)时,触发信号只触发一次扫描,下次扫描需再按动一次该键。
23.被触发或准备指示灯(trig’d ready):在被触发扫描时,指示灯亮;在单次扫描时,指示灯亮表示扫描电路在触发等待状态。
24.扫描速率(sec/div)旋钮:即扫描时基因数。
用于调节扫描速度,其数值的倒数即扫描速率。
它指示水平方向每厘米代表的时间值,其范围从0.1μs/div到0.2s/div。
25.扫描微调、扩展(variable pull×5) 旋钮:用于连续调节扫描速度。
当旋钮被拉出时,扫描速度扩大5倍。
在测量时间(周期)时,该旋钮应关上。
26.触发源(trigger source)按钮:用于选择产生触发的源信号。
有四种方式选择:CH1、CH2、LINE、EXT。
在单踪显示时,无论选择CH1还是CH2,触发信号都来自被显示的通道。
27.触发耦合(coupling)按钮。