第六章 数理逻辑

合集下载

数理逻辑基础

数理逻辑基础

数理逻辑基础数理逻辑基础是一门涉及数学、逻辑和计算机科学的十分深奥的学科。

它主要研究的是思维、语言及其表示的形式,并以此作为计算机操作的基础。

数理逻辑的内容包括数学逻辑学、模型论、形式语言学等等。

它是计算机科学和编程语言,以及依据编程语言运行的程序之间的桥梁。

数理逻辑基础以数学逻辑为核心,针对抽象数学理论开发工具以及方法,旨在探索概念的含义及它们之间的关系。

数学逻辑中的理论概念多源自经典数学理论、抽象数学理论,如集合理论、函数理论等等。

这些概念的研究,以及它们的关系和应用,是数理逻辑的主要内容。

数理逻辑也包括模型论,这一研究领域涉及抽象数学对象及其特征、属性和行为,以及它们之间的关系。

模型论可以帮助我们理解一个专业知识领域之外的知识,从而更有效地解决相关问题。

模型论可以让我们更容易理解一个知识体系中的概念和它们之间的关系,这有助于我们更加清晰的看到整个知识体系的结构,从而更好的建立更加有效的解决问题的方法。

此外,数理逻辑也涉及形式语言学,这是一门复杂的学科,研究的主要内容是符号的表示形式、推理、证明等等。

形式语言学的研究是从另一种角度来分析数学符号语言,从而研究和分析由此产生的语言形式及其表述方式。

形式语言学也包括对符号语言使用的方法和技术的分析,以便于我们在复杂知识环境中更加准确的推理和证明。

数理逻辑的研究有助于我们分析一个问题,找出其中的逻辑性以及与其他概念之间的关系,最终以更恰当的形式表达出来。

此外,它也有助于我们建立更加有效率的处理知识的方式,从而更容易理解相关问题并作出准确的决策。

总之,数理逻辑基础是计算机科学及程序设计语言这一领域极其重要的一门学科,为计算机技术领域的发展打下了重要的基础。

数理逻辑讲义

数理逻辑讲义

数理逻辑的一般介绍我们在中学时代就能进行一些证明了, 但并非所有的人都能回答到底什么是证明. 大概来说, 所谓的证明就是把认为某一断言是正确的理由明确地表述出来. 在这一过程中, 我们通常都需要把一些人们已接受的命题作为讨论的基础. 在此基础上, 如果我们能够把该断言推导出来, 该断言就是被认为是被证明了, 因而也就会被人们接受. 于是, 一个很自然的问题就是: 推导究竟为何物? 这个问题就属于逻辑的范畴.逻辑研究推理, 而数理逻辑则研究数学中所用的推理. 由于这种推理在计算机科学中有许多有广泛的应用, 数理逻辑也就成为计算机科学的重要基础之一.很明显, 我们不能够证明一切命题. 如上所述, 当我们证明某一断言(结论) 的时候需要一些其它的命题(前提)作为推理的基础. 我们还可以要求对这些前提进行证明. 如果一直这样要求下去, 或迟或早, 我们会遇这样的情况: 我们进行了“循环” 证明, 即把要证明的命题作为前提来使用, 或者我们无法再作任何证明, 因为没有更为明显的命题可以用来作为前提了.这样,我们就必须不用证明而接受某些命题,我们把这类命题称为“公理”; 其它由这些公理而证明的命题则被称为“定理”.所谓的命题, 直观上是关于某些概念之间的关系. 因而, 我们要求公理是那些根据概念可以明显地接受的命题. 由概念,公理和定理所组成的全体就是公理系统.以上对公理系统的描述要求我们知道公理系统的确切含义. 然而, 从推理的角度来说, 我们并不需要如此. 让我们来看下面的例子:(1).每个学生都是人,(2).王平是学生, (3).王平是人.我们可以由(1) 和(2)推导出(3), 也就是说,如果(1) 和(2)是正确的, 我们就可以断定(3)是正确的. 在这个推理过程中我们并不需要知道“王平”, “学生”, “人” 的含义如何, 把它们换成任何其它的名词, 这一推理都成立. 使(3) 成为(1) 和(2) 的逻辑推论是依据这样的事实: 如果(1)和(2)为真, 则(3)为真. 换句话说, 我们从命题的形式上就可以判断某一推理是否在逻辑上成立, 而无需考虑它的实际含义. 所以我们在研究逻辑的时候往往只需要进行形式的考察就行了, 不必考虑其含义.当我们对某一类研究对象指定了一个公理系统时, 这个公理系统所表示的含义就确定了. 但是在很多情况下, 我们会发现这个公理系统也适合于其它的一些对象. 于是当代数学建立了许多公理系统框架(如各种代数结构). 在这种公理系统框架中, 真正重要的并不是各种公理系统所表达的特定含义的不同, 而是它们的系统构造方面的区别. 这就告诉我们, 在对公理系统进行研究时, 仅对公理系统的形式进行考察是有实际意义的, 在某些情况下这种形式上的考察可以使我们的研究更具有一般性.基于如上认识以及其它的一些考虑(如从计算机科学的角度进行研究等), 我们将对公理系统的语法部分和语义部分进行分别研究. 公理系统的语义部分研究公理系统的含义, 它属于"模型论" 的研究范围, 我们将在今后作一些初步的介绍. 现在,我们对公理系统的语法部分进行粗略的描述.公理系统的语法部分称为形式系统. 它由语言, 公理和推理规则这样三个部分组成.任何推理必须在一定的语言环境中进行, 所以形式系统首先需要有它的语言. 自然语言(如英语, 中文等)具有很丰富的表达能力, 但通常会产生二义性. 例如"是" 在自然语言中可以表示“恒等” (如: 我们的英语老师是张卫国.), “属于” (如: 王小平是学生.), “包含” (如: 学生是人.) 等不同的含义. 同时, 我们还希望公理系统的语言结构能尽可能地反映它的语义并能有效地进行推理. 因而, 我们通常在形式系统中使用人工设计的形式语言.1设A 是一个任给的集合. 我们把A 称为字母表, 把A 中的元素称为符号. 我们把有穷的符号序列称为A的表达式. 一个以A 为其字母表的语言是A 的表达式集合的一个子集, 我们把这个子集中的元素称为公式. 因为我们希望这个语言能够表达我们所研究的对象, 我们要求公式能反映某些事实. 虽然理论上以A 为其字母表的语言可以是A 的表达式集合的任何子集, 我们将只讨论那些能将公式和其它表达式有效地区分开的语言. 我们将用L(F)表示公理系统F 的语言.形式系统的第二个部分是它的公理. 我们对公理的唯一要求是它们必须是该公理系统语言中的公式.最后, 为了进行推理我们需要推理规则. 每个推理规则确保某个公式(结论) 可由其它一些公式(前提) 推导出来.给定公理系统F, 我们可以把F 中的定理定义如下:1). F 的公理是F 的定理;2). 如果F 的某一推理规则的前提都是定理, 则该推理规则的结论也是定理;3). 只有1)和2)所述的是定理.这种定义方式和自然数的定义方式相类似, 称为广义递归定义. 它和通常的定义方式在形式上有所区别. 为了说明它的合理性, 我们对F的定理进行进一步的描述. 设S0 是F 的公理集. 根据1), S0 中的元素是定理. 设S1 是公式集, 它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 中的元素. 根据2), S1 中元素是定理. 设S2 是公式集,它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 或S1 中的元素. 根据2), S2 中元素是定理. 如此下去, 我们得到S2 ,S3 ,.... 最后, 设S N 是公式集, 它的元素都是F 的某一推理规则的结论, 而该推理规则的前提都是S0 或S1 ,...S N中的元素. 根据2), S N 中元素是定理并且我们得到了F中的所有定理. 我们将经常使用这种定义方式. 为了书写方便, 在今后的广义递归定义中我们将不再把类似3)的条款列出.如此定义的F 中定理为我们提供了一种证明方法. 当要证明F 中的定理都具有某一性质P 时, 我们可以采用下述步骤:1). 证明F 的公理都具有性质P;2). 证明如果F 的每个推理规则的所有前提具有性质P, 则它的结论具有性质P.这种证明方法称为施归纳于F的定理. 一般说来, 如果集合C 是由广义递归定义的, 我们可用类似的方法证明C中的元素都具有性质P. 这种证明方法称为施归纳于C中的元素. 2)中的前提称为归纳假设.现在我们就可以定义什么是证明了. 所谓F 中的一个证明是一个有穷的F 的公式序列, 该序列中的每一个公式要么是公理, 要么F 的某个推理规则以该序列中前面的公式所为前提而推导出的结论. 如果A 是证明P 的最后的公式, 则称P 是A 的证明.定理公式A 是F 的定理当且仅当A 在F 中有证明.证明首先根据定理的定义可以看出任何证明中的任何公式都是定理, 所以如果A 有证明, 则A 是定理. 我们施归纳于F 的定理来证明其逆亦真. 如果A 是公理, 则A 本身就是A 的证明. 如果A 是由F 的某一推理规则以B1 ,...,B n 为前提推导而得的结论, 由归纳假设, B1 ,...,B n 都有证明. 我们把这些证明按顺序列出来即可得到A 的一个证明. 证完今后, 我们将用 F .... 表示"....是F 的定理".一阶理论2今后, 我们将主要讨论一类特殊的公理系统. 这类公理系统称为一阶理论. 一阶理论是一种逻辑推理系统, 它具有很强的表达能力和推理能力, 并且在数学, 计算机科学及许多其它的科学领域中有广泛的应用. 事实上, 目前使用的大多数计算机语言和数学理论都是一阶理论.如前所述, 一阶理论的第一个部分是它的语言. 我们把一阶理论的语言称为一阶语言. 如同其它的形式语言一样, 一阶语言应包括一个符号表和一些能使我们把公式和其它表达式区分开的语法规则.首先, 我们定义一阶语言的符号表, 它由三类功能不同的符号组成. 它们是:a) 变元x,y,z,...;b) n元函数符号f,g,..., 及n元谓词符号p,q,...;c) 联结词符号和量词符号⌝,∨和∃.为了今后的方便, 我们假定一阶语言的变元是按一定顺序排列的, 并且我们把这种排列顺序称为字母顺序. 我们称0 元函数符号是常元符号. 注意: 一个任给的一阶理论并没有要求必须有函数符号: 一个一阶理论可能没有函数符号, 可能有有穷多个函数符号, 也可能有无穷多的函数符号. 我们要求任何一阶理论必须包括一个二元谓词符号, 并用"=" 来表示它. 和函数符号一样, 一个给定的一阶语言可能有有穷或无穷多个(甚至没有) 其它的谓词符号. 函数符号和除=外的谓词符号称为非逻辑符号, 而其它的符号称为逻辑符号.在定义公式之前, 我们必须先定义"项":(1.1) 定义在一阶语言中, 项是由下述广义递归方式定义的:a) 变元是项;b) 如果u1 ,...,u n 是项, f是n元函数符号, 则fu1 ...u n 是项.然后, 我们定义公式如下:(1.2) 定义在一阶语言中, 公式是由下述广义递归方式定义的:a) 如果u1 ,...,u n 是项, p是n元谓词符号, 则pu1 ...u n 是(原子) 公式,b) 如果u,v 是公式, x 是变元, 则⌝u, ∨uv 和∃xu是公式.如前所述, 相应于公式的定义, 我们有一种广义归纳的证明方法. 我们将把这种证明方法称为施归纳于长度. 有时我们还用施归纳于高度的证明方法, 而所谓的高度是公式中含有⌝,∨,和∃的数量.如果一个表达式b包括另一个表达式a, 则称第二个表达式a在第一个表达式b中出现, 即如果u,v,w 是表达式, 则v在uvw 中出现. 这里, 我们不仅要求a的符号都包括在b中, 而且要求这些符号的排列顺序和a一样并且中间不插有任何其它的符号. 我们把b包括a的次数称为a在b中出现的次数.接下来, 我们要讨论关于一阶语言的一些性质. 这种讨论不仅可以使我们加深对一阶语言的认识, 同时还能帮助我们理解其它的形式系统. 首先要考虑的是唯一可读性问题, 也就是说, 我们将要证明一阶语言中的任何公式不可能有不同的形式. 这一性质说明一阶语言在结构上是不会产生二义性的. 为了简化书写, 我们把公式和项统称为合式表达式. 于是, 根据定义可以知道所有的合式表达式都具有uv1 ...v n 的形式, 其中u 是n 元(函数或谓词) 符号, v1 ,...,v n 是合式表达式.我们说两个表达式u和v是可比较的, 如果存在一个表达式w (w 可以是空表达式) 使u=vw. 显然, 如果uv和u'v'是可比较的, 则u 和u'是可比较的; 如果uv和uv' 是可比较的, 则v 和v'是可比较的.3(1.3) 引理如果u1 ,...,u n ,u'1 ,...,u'n 是合式表达式(u1 和u'1 都不是空表达式), 而且u1 ...u n 和u'1 ...u'n 是可比较的,则对于一切i=1,...,n, u i =u'i .证明施归纳于u1 ...u n 的长度k.如果k=1, 则u1 ...u n 只有一个符号. 所以, n=1. 于是u1 ...u n =u1 且u'1 ...u'n =u'1 . 由于u1 和u'1 都是合式表达式, 它们只可能是变元或常元符号. 由于它们是可比较的, 所以u1 =u'1 .假定当k〈m时引理成立, 并设k=m.由于u1 是合式表达式, 我们可以把它写成vv1 ...v s , 其中v 是s 元符号, v1 ,...,v s 是合式表达式. 由上, u'1 和u1 是可比较的, v 也是u'1 的第一个符号. 于是, 由于u'1 是合式表达式, 它具有vv'1 ...v's 的形式. 由上所述的性质, v1 ...v s 和v'1 ...v's 是可比较的. 由于|v1 ...v s |<|u1 |≤|u1 ...u n |, 根据归纳假设, 对于一切j=1,...,s, v j =v'j , 所以, u1 =u'1 . 由此而得, u2 ...u n 和u'2 ...u'n 是可比较的, 且|u2 ...u n |<|u1 ...u n |, 所以, 由归纳假设, 对于一切i=2,...,n, u i =u'i .于是, 引理得证#(1.4) 唯一可读性定理每一个合式表达只能以唯一的方式写成uv1 ...v n 的形式, 其中, u 是n 元符号, v1 ,...,v n 是合式表达式.证明设w,w'是同一个合式表达式书写形式, 我们必须证明它们的结构是相同的. 首先, 它们必须都有相同的第一个符号,这样, u和n就唯一确定了, 从而, w=uv1...v n 且w'=uv'1...v'n, 其中v i ,v'j 是合式表达式(i,j=1,...,n). 我们还需证明对一切i=1,...,n, v i=v'i. 因为w 和w'是同一个表达式, 因而是可比较的. 于是, 根据引理(1.3), 对于一切i=1,...,n, v i=v'i #下面的定理说明如果一个合式表达式不可能由两个(或更多) 合式表达式的某些部分组成.(1.5) 引理合式表达式u中的任何符号w都是u中某一合式表达式的第一个符号.证明施归纳于u的长度k. 如果k=1, 则u是变元或常元符号. 于是任何在u中出现的符号就是u本身, 从而引理成立.假定当k<m时引理成立, 并设k=m.设u 是vv1 ...v n , 其中v是n元符号, v1 ,...,v n 是合式表达式. 如果w是v, 则它是u的第一个符号. 否则, 存在i=1,...,n, 使w 在v i 中出现. 由于|v i |<|u|, 根据归纳假设, w 是v i 中的某一合式表达式的第一个符号, 当然也是u中的某一合式表达式的第一个符号. 证完. #(1.6) 出现定理设u是n元符号, v1 ,...,v n 是合式表达式. 如果一个合式表达式v在uv1 ...v n 出现, 而且v不是整个uv1 ...v n , 则v在某一v i 出现.证明如果v的第一个符号就是定理中的u, 则v=uv'1 ...v'n , 其中v'1 ,...,v'n 是合式表达式, 且由定理条件, u和v是可比较的. 于是根据引理(1.3), 对于一切i=1,...,n, v i =v'i , 即v=uv1 ...v n . 矛盾.现假定v的第一个符号在某一v i 中出现. 根据引理(1.5), 该符号是某一合式表达式v'的第一个符号. 显然, v和v'是可比较的, 因而由引理(1.3), v=v', 即v在v i 中出现.4#为了方便起见, 我们今后将用大写字母A,B,...表示公式, 用f,g,...表示函数符号, 用p,q,...表示谓词符号, 用x,y,...表示变元, 用a,b,...表示常元符号.现在我们定义两类性质不同的变元, 即自由变元和约束变元.(1.7) 定义a) 如果x 在原子公式中出现, 则x是自由变元;b) 如果x是A 和B 中的自由变元, 且y 不是x, 则x 是⌝A, ∨AB和∃yA中的自由变元.a') x 是∃xA中的约束变元;b') 如果x是A 或B 中的约束变元, 则x 是⌝A, ∨AB和∃yA中的约束变元.注意: x可以在A 中既是自由变元又是约束变元.我们将用u[x/a]表示在表达式u 中将所有的自由变元x换成项a而得的表达式. 设A 是公式, 在很多情况下, A[x/a]关于a 所表示的含义与A 关于x所表示的含义是一样的, 但并非总是如此. 例如, 若A 是∃y=x2y, 而a 是y+1, 则A 是说x 是偶数, 但A[x/a]却不是说y+1是偶数. 这表明并非所有的代入都会保持原有的含义. 于是我们有下述定义:(1.8) 定义 a 被称为是在A 中可代入x的, 如果i) 如果A是原子公式,则a 是在A中可代入x 的;ii) 如果a 在B中可代入x 且对于a 中的任何变元y, ∃yB不含有自由变元x,则a 是在∃yB中可代入x 的;iii) 如果a 在A, B中可代入x, 则a 在⌝A和A∨B中是可代入x 的.今后, 当使用A[x/a] 时, 我们总是假定a是在A 中可代入x的. 类似地, 我们将用u[x1/ a1 ,...,x n/ a n ]表示在表达式u 中将所有的自由变元x1 ,...,x n 分别换成项a1 ,...,a n 而得的表达式, 同时还假定它们都是可代入的.在我们的一阶语言定义中项和公式的写法对于证明和理论分析比较方便, 但和通常的阅读方式不一致. 为了克服这一弱点, 我们引进一些定义符号:(A∨B) 定义为∨AB; (A→B) 定义为(⌝A∨B); (A&B) 定义为⌝(A→⌝B);(A↔B) 定义为((A→B)&(B→A)); ∀xA 定义为⌝∃x⌝A.注意: 定义符号只是为了方便而引进的记号, 它们不是语言中的符号. 当我们计算公式的长度时, 必须把它们换成原来的符号. 同样, 当用施归纳于长度或高度进行证明时也不能把它们作为符号来处理. 今后, 我们将在展示公式时用定义符号, 而在证明时用定义(1.1) 和(1.2).我们称:⌝A 为 A 的否定; A∨B 为 A 和B 的析取(A 或者B); A&B 为 A 和B 的合取(A并且B);A→B 为 A 蕴含B; A↔B 为A等价于B; ∃xA 为关于x的存在量词(存在x 使得A);∀xA 为关于x的全称量词(对一切x 使得A).作业:1) 施归纳于长度证明如果u是公式(项), x 是变元, a是项, 则u[x/a]是公式(项).2) 证明如果uv和vv'是合式表达式, 则v和v'中必有一个是空表达式.一阶理论的逻辑公理和规则形式系统的公理和规则可以分为两类: 逻辑公理和逻辑规则, 非逻辑公理和非逻辑规则. 逻辑公理和逻辑规则指的是那些所有形式系统都有的公理, 而非逻辑公理和非逻辑规则仅在5某些特定的形式系统中才有. 但是, 当形式系统足够丰富时,我们并不需要非逻辑规则. 假定在一个形式系统F 中有一条非逻辑规则使我们可以由B1 ,...,B n 推导出A, 只要F 有足够多的逻辑规则, 我们只需要在F 中加进一条公理B1 →...→B n →A (这里, B1 →...→B n →A表示B1 →(...→(B n →A)...).)就不再需要那条非逻辑规则了. 因此, 我们今后假定我们的形式系统中没有非逻辑规则. 今后我们将把逻辑规则简称为规则. 由于我们仅对形式系统进行一般讨论, 我们的兴趣主要是那些逻辑公理和规则.下面是逻辑公理:1) 命题公理: ⌝A∨A;2) 代入公理: A[x/a]→∃xA;3) 恒等公理: x=x;4) 等式公理: x1 =y1 →...→x n =y n →fx1 ...x n =fy1 ...y n ;或x1 =y1 →...→x n =y n →px1 ...x n →py1 ...y n .注意: 以上并不是仅有四条公理, 而是四类公理. 如命题公理并非一条公理, 而是对于任何公式A 我们有一条命题公理. 所以, 以上的公理实际上是公理模式.以下是规则:1) 扩展规则: 如果A, 则B∨A;2) 收缩规则: 如果A∨A, 则A;3) 结合规则: 如果A∨(B∨C), 则(A∨B)∨C;4) 切割规则: 如果A∨B且⌝A∨C, 则B∨C;5) ∃-引入规则: 如果A→B且x 不是B 中的自由变元, 则∃xA→B.如同上面的公理, 这些规则也不是五条规则, 而是五个规则模式.现在, 我们定义一阶理论如下:(1.9) 定义一个一阶理论T (简称理论T)是具有如下特征的形式系统:1) T 的语言L(T)是一阶语言;2) T 的公理是以上列出的四组公理和一些其它的非逻辑公理;3) T 的规则是以上列出的五组规则.由于一阶理论的逻辑符号, 逻辑公理和规则已经确定, 一阶理论之间的区别在于它们的非逻辑符号和非逻辑公理. 因此, 当我们希望讨论某一具体的一阶理论时只需要把它的非逻辑符号和非逻辑公理指明就行了.例.1) 数论NN 的非逻辑符号为: 常元0, 一元函数符号S, 二元函数符号+和*, 和二元谓词符号<. N 的非逻辑公理为:N1 Sx≠0; N2 Sx=Sy→x=y; N3 x+0=x; N4 x+Sy=S(x+y); N5 x*0=0;N6 x*Sy=(x*y)+x; N7 ⌝(x<0); N8 x<Sy↔x<y∨x=y; N9 x<y∨x=y∨y<x.2) 群GG 只有一个非逻辑符号, 即二元函数符号*. G 的非逻辑公理为:G1 (x*y)*z=x*(y*z); G2 ∃x(∀y(x*y=y)&∀y∃z(z*y=x)).根据我们在第一节所述, 一阶理论T 的定理可以定义为:1) 每一条命题公理, 代入公理, 恒等公理, 等式公理和非逻辑公理是定理;2) 如果A 是定理, 则A∨B是定理;3) 如果A∨A是定理, 则A 是定理;64) 如果A∨(B∨C) 是定理, 则(A∨B)∨C 是定理;5) 如果A∨B和⌝A∨C是定理, 则B∨C是定理;6) 如果A→B是定理且x 不是B 中的自由变元, 则∃xA→B是定理.与此对应, 我们可以用如下广义归纳法证明一阶理论T 中的定理都具有某一性质P:1) 每一条命题公理, 代入公理, 恒等公理, 等式公理和非逻辑公理具有性质P;2) 如果A 具有性质P, 则A∨B具有性质P;3) 如果A∨A具有性质P, 则A 具有性质P;4) 如果A∨(B∨C) 具有性质P, 则(A∨B)∨C 具有性质P;5) 如果A∨B和⌝A∨C具有性质P, 则B∨C具有性质P;6) 如果A→B具有性质P且x 不是B 中的自由变元, 则∃xA→B具有性质P.下面我们证明一阶理论的逻辑公理是相互独立的.(1.10) 定理一阶理论的逻辑公理和规则是互相独立的.证明当我们希望证明某一命题A 是独立于某个命题集Γ和规则集Δ时, 我们需要找到一个性质P 使A 不具有性质P, 而Γ中的每一命题具有性质P 且Δ中的每一规则保持性质P (即如果该规则的前提具有性质P, 则其结论具有性质P); 当我们希望证明某一规则R 是独立于Γ和Δ时, 我们需要找到一个性质P 使R 不保持性质P, 而Γ中的每一命题具有性质P 且Δ中的每一规则保持性质P. 这样就可以断言: 在由Γ为其公理集, Δ为其规则集的形式系统中, 每一定理都具有性质P. 由于A不具有性质P (或R 不保持性质P), 所以, A (或R)是不可能由Γ和Δ来证明的. 这样, A(或R)就独立于Γ和Δ了. 我们将根据这个思想来证明本定理.1) 对于命题公理. 定义f 如下:f(A)=T 若 A 是原子公式; f(⌝A)=F; f(A∨B)=f(B); f(∃xA)=T.可以证明: f(⌝⌝(x=x)∨⌝(x=x))=F, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=T.2) 对于代入公理. 定义f 如下:f(A)=1 若A 是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1;f(A∨B)=max{f(A),f(B)}; f(∃xA)=0.可以证明: f((x=x)→∃x(x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.3) 对于恒等公理. 定义f 如下:f(A)=0 若A是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A)},f(B); f(∃xA)=f(A).可以证明: f((x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.4) 对于等式公理. 首先在L(T)中加进常元e1 ,e2 和e3 而得L'. 然后定义f 如下:f(e i =e j )=1 iff i≤j; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A),f(B)}; f(∃xA)=T iff 存在i 使f(A[x/e i ])=T .可以证明: f((x=y→x=z→x=x→y=z))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A[x/e i ])=1, 其中, x是A 中的自由变元.5) 对于扩展规则. 定义f 如下:f(A)=1 若 A 是原子公式; f(⌝A)=1 如果f(A)=0, 否则, f(A)=0; f(A∨B)=1 如果f(A)=f(⌝B), 否则f(A∨B)=0; f(∃xA)=f(A).可以证明: f((x=x∨(⌝(x=x)∨x=x)))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.6) 对于收缩规则. 定义f 如下:7f(A)=T 若 A 是原子公式; f(⌝A)=f(∃xA)=F; f(A∨B)=T.可以证明: f(⌝⌝(x=x))=F, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=T.7) 对于结合规则. 定义f 如下:f(A)=0 若 A 是原子公式; f(⌝A)=1-f(A); f(A∨B)=f(A)*f(B)*(1-f(A)-f(B)); f(∃xA)=f(A).可以证明: f(⌝(⌝(x=x)∨⌝(x=x)))>0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=0.8) 对于切割规则. 定义f 如下:f(A)=1 若 A 是原子公式; f(⌝A)=1 如果f(A)=0或A是原子公式, 否则f(⌝A)=0; f(A∨B)=max{f(A),f(B)}; f(∃xA)=f(A).可以证明: f(⌝⌝(x=x)))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.9) 对于E-引入规则. 定义f 如下:f(A)=1 若A是原子公式; f(⌝A)=1 如果f(A)=0, f(⌝A)=0 若f(A)=1; f(A∨B)=max{f(A),f(B)}; f(∃xA)=T.可以证明: f(∃y⌝(x=x)→⌝(x=x))=0, 而且对于任何可由其它的逻辑公理和规则证明的命题A, f(A)=1.结构和模型现在我们讨论一阶理论的语义部分. 为此我们先引进一些集论的记号: 集合或类是把一些我们想要研究的对象汇集在一起, 从而我们可以把它看作是一个整体. 如果A 和B 是集合, 一个由A 到B 的映射 F (记作F: A→B)是一个A 和B 之间的对应, 在这个对应中A 中的每一个元素a 都对应着一个唯一的B中元素 b (称为F在a 上的值, 记作F(b) ). 我们把n个A 中元素按一定顺序排列而得的序列称为A 的一个n 元组, 并用(a1,...,a n )表示由A 中元素a1,...,a n 按此顺序排列的n 元组. 把由A 的所有n 元组成的集合记为A n, 然后把由A n 到B的映射称为由A 到B 的n元函数. 我们把A n 的子集称为A 上的n 元谓词. 如果P是A 上的n 元谓词, 则P(a1 ,...,a n )表示(a1 ,...,a n )∈P.真值函数根据我们对公式和项的定义, 我们可以先用函数符号和谓词符号以及变元构造一些简单的公式, 然后用联结词得到比较复杂的公式, 如"A 并且B" 等等. 我们用符号"&" 表示"并且", 即若A 和B 是公式, "A&B" 表示"A 和B同时成立".于是一个很自然的问题是怎样知道A&B 的真假? 这里, A&B 的一个很重要的特征是: 只需要知道A 和B 的真假就能确定A&B 的真假, 而不必知道A 和B 的具体含义. 为了表示这一特征, 我们引进真值. 真值是两个不同的字母T 和F, 而且当公式A 为真时, 我们用T 表示其真值; 当公式A 为假时, 我们用F 表示其真值. 于是, A&B 的真值就由A 和B 的真值确定了.有了真值的概念, 我们就可以定义真值函数了. 所谓的真值函数是由真值集T,F 到真值集T,F 的函数. 由此, 我们可以把以上的讨论叙述为: 存在二元真值函数H& 使得: 若a 和b 分别是A 和B 的真值, 则H& (a,b) 是A&B 的真值. 我们定义H& 为:H& (T,T)=T, H& (T,F)=H& (F,T)=H& (F,F)=F.我们用"∨" 表示"或者", 并定义H∨如下:8H∨(F,F)=F, H∨(T,F)=H∨(F,T)=H∨(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H∨(a,b)就是A∨B的真值.我们用"→" 表示"如果...则...", 并定义H→如下:H→(T,F)=F, H→(F,F)=H→(F,T)=H→(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H→(a,b)就是A→B的真值.我们用"↔" 表示"当且仅当", 并定义H↔如下:H↔(F,T)=H↔(T,F)=F, H↔(F,F)=H↔(T,T)=T.于是当a 和b 分别是A 和B 的真值时, H↔(a,b)就是A↔B的真值.我们用"⌝" 表示"非", 并定义H⌝如下:H⌝(F)=T, H⌝(T)=F.于是当a 是A 的真值时, H⌝(a)就是⌝A的真值.容易证明, &,→, 和↔可由⌝和∨定义. 事实上所有的真值函数都可以由⌝和∨定义.作业1. 证明: 任何真值函数f(a1 ,...,a n )都可以由H⌝和H∨定义.2. 设H d , H s 是真值函数, 其定义为:H d (a,b)=T 当且仅当a=b=F; H s (a,b)=F 当且仅当a=b=T.证明: 任何真值函数f(a1 ,...,a n )都可以由H d (或H s )定义.结构现在我们讨论一阶语言的语义部分(称为它的结构). 所谓一个语言的语义, 当然是表示该语言中所指称的对象范围和每一个词和句子所表达的含义. 一阶语言的语义也是如此. 如前定义, 一阶语言中的符号有函数符号和谓词符号, 这些都应在它的语义中有具体的含义. 把这些组合起来, 我们就可以得到如下定义:(1.11) 定义称三元组M=〈|M|,F,P〉是一个结构,如果:1) |M|是一个非空集合,它称为是L 的论域, |M| 中的元素称为是M 的个体;2) F是|M|上的函数集合;3) P是|M|上的谓词集合.定义设L是一阶语言,M是一个结构。

数理逻辑总结

数理逻辑总结

数理逻辑总结数理逻辑总结一、概念数理逻辑(mathematical logic)是一门根据数学的思维模式和方法在表述语言和推理思维上进行分析和作用的逻辑学课程。

它是一门用来研究和分析与计算机科学有关的严谨思维和验证的逻辑学科。

数理逻辑从宏观意义上讲,是指用符号抽象的方法来描述,定义,表示和理解各种基础数学系统的知识,以及这些系统中定理的证明等。

二、历史数理逻辑(mathematical logic)由古典逻辑演化而来,它最早由古希腊的哲学家亚里士多德(Aristotle)创立,但是由于他的古典逻辑只涉及到了辩论中的质问和概括推理,并未涉及到像数学中的严谨性,所以不能科学地处理逻辑问题。

直到二十世纪中期,数理逻辑才发展到其现在的状态。

首先,德国数学家彼得拉多斯(Petr Lusitr)提出了系统性的作为符号逻辑学的主要著作被称为《符号逻辑学》。

随后,德国数学家卡尔·贝尔(Carl Brel)提出了一种新的逻辑秩序,用以把命题逻辑系统中的各个命题放置于命题结构之中,称为贝尔结构,他也提出了用来支持贝尔结构的证明系统。

在二十世纪五十年代,英国数学家霍华德·劳夫(Howard Lawford)引入了前言逻辑系统,并从多种角度改进了古典逻辑,使其变成一种非常完善的数学系统。

三、特点数理逻辑有它独特的特点,其一是抽象性。

数理逻辑采用抽象方法,把问题表达为一系列标准的符号,然后用逻辑证明的方法求解。

抽象的好处是可以把问题简化,可以有效地发现和解决复杂的问题。

其次,数理逻辑有其严谨性。

数理逻辑用符号语言来描述和表达问题,采用公理-定理的方法证明结果,使得结果更加准确可靠。

最后,它有其实用性。

数理逻辑可以被看作是一种被证明准确可靠的结构性思维规范,它可以用于描述,定义,表示,理解多种数学系统,以及证明系统中的定理,实际上也被广泛应用于计算机科学领域,极大地推动了计算机技术的发展。

四、应用数理逻辑在计算机科学中有着重要的应用。

数理逻辑(Mathematical Logic)

数理逻辑(Mathematical Logic)

数理逻辑(MathematicalLogic)数理逻辑(Mathematical logic)是用数学方法研究诸如推理的有效性、证明的真实性、数学的真理性和计算的可行性等这类现象中的逻辑问题的一门学问。

其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。

数理逻辑是数学基础的一个不可缺少的组成部分。

数理逻辑的研究范围是逻辑中可被数学模式化的部分。

以前称为符号逻辑(相对于哲学逻辑),又称元数学,后者的使用现已局限于证明论的某些方面。

历史背景“数理逻辑”的名称由皮亚诺首先给出,又称为符号逻辑。

数理逻辑在本质上依然是亚里士多德的逻辑学,但从记号学的观点来讲,它是用抽象代数来记述的。

某些哲学倾向浓厚的数学家对用符号或代数方法来处理形式逻辑作过一些尝试,比如说莱布尼兹和朗伯(Johann Heinrich Lambert);但他们的工作鲜为人知,后继无人。

直到19世纪中叶,乔治·布尔和其后的奥古斯都·德·摩根才提出了一种处理逻辑问题的系统性的数学方法(当然不是定量性的)。

亚里士多德以来的传统逻辑得到改革和完成,由此也得到了研究数学基本概念的合适工具。

虽然这并不意味着1900年至1925年间的有关数学基础的争论已有了定论,但这“新”逻辑在很大程度上澄清了有关数学的哲学问题。

在整个20世纪里,逻辑中的大量工作已经集中于逻辑系统的形式化以及在研究逻辑系统的完全性和协调性的问题上。

本身这种逻辑系统的形式化的研究就是采用数学逻辑的方法.传统的逻辑研究(参见逻辑论题列表)较偏重于“论证的形式”,而当代数理逻辑的态度也许可以被总结为对于内容的组合研究。

它同时包括“语法”(例如,从一形式语言把一个文字串传送给一编译器程序,从而转写为机器指令)和“语义”(在模型论中构造特定模型或全部模型的集合)。

数理逻辑的重要著作有戈特洛布·弗雷格(Gottlob Frege)的《概念文字》(Begriffsschrift)、伯特兰·罗素的《数学原理》(Principia Mathematica)等。

数理逻辑

数理逻辑

数理逻辑又称符号逻辑、理论逻辑。

它是数学的一个分支,是用数学方法研究逻辑或形式逻辑的学科。

其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。

数理逻辑是数学基础的一个不可缺少的组成部分。

虽然名称中有逻辑两字,但并不属于单纯逻辑学范畴。

所谓数学方法就是指数学采用的一般方法,包括使用符号和公式,已有的数学成果和方法,特别是使用形式的公理方法。

用数学的方法研究逻辑的系统思想一般追溯到莱布尼茨,他认为经典的传统逻辑必须改造和发展,是之更为精确和便于演算。

后人基本是沿着莱布尼茨的思想进行工作的。

简而言之,数理逻辑就是精确化、数学化的形式逻辑。

它是现代计算机技术的基础。

新的时代将是数学大发展的时代,而数理逻辑在其中将会起到很关键的作用。

逻辑是探索、阐述和确立有效推理原则的学科,最早由古希腊学者亚里士多德创建的。

用数学的方法研究关于推理、证明等问题的学科就叫做数理逻辑。

也叫做符号逻辑。

数理逻辑的产生利用计算的方法来代替人们思维中的逻辑推理过程,这种想法早在十七世纪就有人提出过。

莱布尼茨就曾经设想过能不能创造一种“通用的科学语言”,可以把推理过程象数学一样利用公式来进行计算,从而得出正确的结论。

由于当时的社会条件,他的想法并没有实现。

但是它的思想却是现代数理逻辑部分内容的萌芽,从这个意义上讲,莱布尼茨可以说是数理逻辑的先驱。

1847年,英国数学家布尔发表了《逻辑的数学分析》,建立了“布尔代数”,并创造一套符号系统,利用符号来表示逻辑中的各种概念。

布尔建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步奠定了数理逻辑的基础。

十九世纪末二十世纪初,数理逻辑有了比较大的发展,1884年,德国数学家弗雷格出版了《数论的基础》一书,在书中引入量词的符号,使得数理逻辑的符号系统更加完备。

对建立这门学科做出贡献的,还有美国人皮尔斯,他也在著作中引入了逻辑符号。

从而使现代数理逻辑最基本的理论基础逐步形成,成为一门独立的学科。

(完整版)数理逻辑知识点总结

(完整版)数理逻辑知识点总结

(完整版)数理逻辑知识点总结什么是数理逻辑?数理逻辑是一门研究命题、命题之间关系以及推理规律的学科。

它运用数学的方法来研究逻辑的基本概念和原理,用符号表示和描述逻辑概念,以及通过推理规则对命题进行推导。

命题与逻辑连接词1. 命题是陈述性语句,例如,“今天是晴天”。

在逻辑中,常用字母p、q、r等表示命题。

2. 逻辑连接词是用来构建复合命题的词语,例如,“与”、“或”、“非”等。

常用的逻辑连接词有:- “与”(合取):表示两个命题同时为真;- “或”(析取):表示两个命题中至少有一个为真;- “非”(否定):表示对命题的否定。

命题逻辑的推理规则1. 合取分配律(并):(p ∧ q) ∧ r = p ∧ (q ∧ r)2. 析取分配律(或):(p ∨ q) ∨ r = p ∨ (q ∨ r)3. 合取律(并):p ∧ p = p4. 析取律(或):p ∨ p = p5. 否定律:¬(¬p) = p6. De Morgan定律:- ¬(p ∧ q) = ¬p ∨ ¬q- ¬(p ∨ q) = ¬p ∧ ¬q命题的等价性1. 蕴含:p → q 表示当p为真时,q也为真;2. 等价:p ↔ q 表示当p与q同时为真或同时为假时成立。

命题逻辑的证明方法1. 直接证明法:直接证明命题的真假;2. 反证法:假设命题为假,推导出矛盾,得出命题为真;3. 归谬法:假设命题为真,推导出矛盾,得出命题为假;4. 数学归纳法:通过证明基础情形和推导情形的真假来证明命题。

数理逻辑的应用数理逻辑在计算机科学、数学推理、形式语言学和人工智能等领域有广泛的应用。

它能够帮助我们分析问题、进行推理以及验证和证明复杂的命题。

在算法设计、数据库查询优化、自然语言处理等方面发挥着重要作用。

以上是关于数理逻辑的基本知识点总结,希望能对您有所帮助。

数理逻辑总结

数理逻辑总结

数理逻辑总结
概述
数理逻辑是数学与逻辑学的一种结合,它以数学的方法研究逻辑的结构,探讨逻辑的内容和其它抽象结构之间的联系。

它是数学分支学科和基础学科之一,是研究逻辑学的基本理论。

概念
数理逻辑研究的对象是逻辑的基本概念,其中主要包括以下几个概念:
一、谓词逻辑
谓词逻辑是一种表达主观看法的逻辑,它表示谓词(如“苹果是红色的”)在封闭系统中的真假状态,可以用一种形式化表示。

二、图论
图论是一门应用数学思想对图形进行描述分析的学科,用来描述现实中的图形关系,图形的构成,图形以及图形上的点,边和面等。

三、模型理论
模型理论是研究形式语言和模型的学科,用来分析和构造特定模型的有效方法,还涉及其它各种复杂系统的表达。

四、证明论
证明论是一种对真假性证明进行分析的学科,研究关于真假的证明的规则,分析如何从已知的真实性来推出新的真实性,以及有关如何构建不同种类的逻辑证明的方法。

发展
数理逻辑是一门新兴的学科,自20世纪50年代以来不断发展,在整个20世纪都取得了重大突破。

数理逻辑有多种应用,包括计算机科学,逻辑计算机,物理学,经济学,人工智能等。

数理逻辑

数理逻辑

(5) 分配律 A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C); A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C) (6) 德摩根律 ¬(A ∨ B) = ¬ A ∧ ¬ B; ¬(A ∧ B) = ¬ A ∨ ¬ B
(7) 吸收律 A ∧ (A ∨ B) = A; A ∨ (A ∧ B) = A
而 (P → ), (P ∨ ¬ )) 都不 是命 题公式 .
为了简化命题公式中的括号, 作如下规定:
(1) 公 式 (¬ G)的 括号 可省略 , 写 作 ¬ G.
(2) 整个命题公式 外层括号可省略.
(3) 五种逻辑联结词的优先级按如下次序递增 : ↔ , → , ∨ , ∧ , ¬.
则上述命题公式
¬(¬p ) ∧ ¬q
命题变元与命题公式
约定: 约定 (1) 在命题演算中, 我们只注意命题的真假值, 而不再 去注意命题的汉语意义; (2) 对命题联结词, 我们只注意其真值表的定义, 而不 注意它日常生活中的含义. 命题常元: 命题常元 T, F 命题变元(命题变量 命题变元 命题变量): 一个取真值为T或F的变量, 常 命题变量 用大写英文字母A,…, Z表示.
A( P , P2 , L , Pn )共有2 n 种解释. 1 成真解释. 使A(a1 , a2 ,L , an )为t的一组值, 称为A的 成真解释
成假解释. 使A(a1 , a2 ,L , an )为f的一组值, 称为A的 成假解释
例3. 构造下列公式的真值表
(1) ¬P ∨ Q
(2) ( P ∧ ¬P) ↔ (Q ∧ ¬Q) (3) ¬( P → Q) ∧ Q
定义1.2 命题公式 由命题变元、常元、联结词、括 命题公式: 定义 号, 以规定的格式联结起来的字符串.其递归定义如下: (1) 单个命题变元或命题常元是命题公式 (原子命题 公式);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Tianjin University
(4) 命题要么是真,要么是假。(具有模棱两可含义 的语句不能作为命题) 如:100是个很大的数。 (5) 有些语句目前不能判断其真假,但他是有真假的。 这样的语句也是命题。如: ① 木星上有生命。 ② 任一足够大偶数都能表示为两素数之和 (哥德巴赫猜想) 均是命题。
Tianjin University
P或者Q,记为P∨Q。称为P与Q的析取式; P、Q称为析取项。 例3. P: 今晚我看电视 Q: 今晚我看《离散数学》 P∨Q:今晚我看电视或看《离散数学》。 ∨真值表: P T T F F Q T F T F P∨Q T T T F
(3) 否定联接词——“非” P的否定命题,记为﹁P。 例4. P: 地球是圆的 ﹁ P: 地球不是圆的 其真值关系表为: P T F
F F T T
Tianjin University
例8. 求下列命题的真值。 (1) 如果1+2=3,则雪是黑的 (2) 如果太阳从西边出来,那么地球自转 (3) 如果太阳从东边出来,那么地球自转停止。
三、复合命题
Tianjin University
复合命题:经过命题连接词连接而成的命题。 运算优先级问题: 优先级: “﹁” →“∧” →“∨” →“ →” →“ ”
一、命题的基本概念
Tianjin University
(3) 悖论不是命题。 如: ①我正在撒谎。 ②村里有名理发师,他约定:“每个人只 给不给自己刮胡子的人刮胡子。” ③鸡蛋悖论 ④柏拉图与苏格拉底悖论 柏拉图:“苏格拉底老师下面的话是假话。” 苏格拉底:“柏拉图上面的话是对的。”
一、命题的基本概念
1.3 重言式
考虑
P
Tianjin University
P Q P
Q P→Q
的真值表
﹁(P
→Q)
F T F F

P
Q P
T T F F
T F T F
T F T T
T T T T
定义1. 命题公式若对其所有指派的真值均为T,称 为永真式或重言式。相反,命题公式若对其所有指 派的真值均为F,称为永假式或矛盾。 定义2. 一个命题公式如果至少存在一个指派,使其 取值为F,则称为非永真式。如果至少存在一个指 派,使其取值为T,则称为可满足的。
1.1 命题 1.2 命题公式 1.3 重言式 1.4 命题演算基本公式 1.5 命题演算的基本蕴含重言式及推理规则 1.6 范式
1.4 命题演算基本等式

Tianjin University
P178-179
1.4 命题演算基本等式
Tianjin University
定义5. (对偶公式)设有公式A,若它仅用联接词 ﹁、∨、∧,把A种的∨、∧、T、F分别换成∧、 ∨、 F 、 T,得到公式A*,称为A的对偶公式。 定理1. 设有等式A=B,则必有A*=B*。 (此处A、B仅有联接词﹁、∨和∧) 如 狄摩根定律: P Q P Q
则语句为 P R Q R
R P R Q
R P Q
1.4 命题演算基本等式
Tianjin University
例4. 化简程序:如有下面一段PASCAL程序: IF A THEN IF B THEN X ELSE Y ELSE IF B THEN X ELSE Y;
1.2 命题公式
例11. 已知P、Q、R是命题,则
PQ R PQ
P、Q 是命题
Tianjin University
是命题公式
P、Q 是命题公式
P∧Q是命题公式 R是命题公式 P、Q 是命题 P、Q 是命题公式


P Q R是命题公式 P∨Q是命题公式
PQ R PQ
Tianjin University
定义3. P、Q为两个公式,若 P Q 为重言式, 则称其为等价重言式,也可称为P、Q相等。 记为 P Q 或 P Q。 定义4. P、Q为两个公式,若P→Q为重言式, 则称为蕴含重言式,记为 P Q 。
§1 命题演算
Tianjin University


Q P Q P Q


P
即:我去了但他没来。
1.4 命题演算基本等式
Tianjin University
例3. 试证语句“不会休息的人不会工作,没有 丰富知识的人也不会工作” “工作好的人一定 会休息,并且具有丰富的知识”。 解:P: 某人会休息 R: 某人工作的好 Q:某人有丰富的知识
P Q P∧Q
﹁(P∧Q) ﹁P ﹁Q ﹁P ∧ ﹁Q
Tianjin University
P Q P Q
T T F F
T F T F
T F F
F
F T T T
F F T T
F T
F T
F F F T
T F
F T
§1 命题演算
Tianjin University
1.1 命题 1.2 命题公式 1.3 重言式 1.4 命题演算基本公式 1.5 命题演算的基本蕴含重言式及推理规则 1.6 范式
A P A P
第六章 数理逻辑
Tianjin University
数理逻辑: 用数学的方法来研究形式逻辑。所谓数 学的方法,主要是指引进一套符号体系 的方法。故又称为符号逻辑。
§1 命题演算
Tianjin University
1.1 命题 1.2 命题公式 1.3 重言式 1.4 命题演算基本公式 1.5 命题演算的基本蕴含重言式及推理规则 1.6 范式
﹁P
Tianjin University
F T
(4) 蕴含联结词
Tianjin University
P蕴含Q,记为P→Q。可理解为“如果P,则 Q”。其中P称为蕴含前件,Q称为蕴含后件。 例5: P: 下雨了 Q: 地湿了 P → Q:如果下雨了,则地湿了。 其真值关系表为: P T T F F Q T F F T P→Q T F T T
Q: 李白是唐代著名的诗人
P Q : 爱因斯坦是个伟大的科学家当且
仅当李白是唐代著名的诗人。
(5) 等价联接词 其真值关系为: 等价表达式: 充分必要、 只有……才 能…… P T F T F Q F T T F
P Q
Tianjin University
NOTE: 命题联接词是命题间的联接词,而不是名词或 形容词之间的联接词。 如:P:“王兰和王英是姐妹”中的“和”不是命 题联接词,故P也不是一个复合语句。
﹁(P∨Q)
﹁R

P∨Q R
§1 命题演算
Tianjin University
1.1 命题 1.2 命题公式 1.3 重言式 1.4 命题演算基本公式 1.5 命题演算的基本蕴含重言式及推理规则 1.6 范式
1.2 命题公式
Tianjin University
定义3. 一个任意的未指定真值的命题,称为命题变 元。(一般也简称为命题) 定义4. 经有限步使用,下面法则所得到的公式称为 命题公式。 1. 命题变元是命题公式 2. 若P和Q是命题公式,则﹁P、P∧Q、P∨Q、 P→Q、 P Q是命题公式。
1.3 重言式
Tianjin University
例1. (1)P∨﹁P 是永真式 (2)P∧﹁P 是永假式 P P 是永真式, P 为矛盾 (3) P (4) P Q R 不是永真式,也不是永假式,是可满 足的。
1.3 重言式
Tianjin University
一、命题的基本概念
Tianjin University
例1: 判断下列语句哪些是命题。 (1) 《红楼梦》的作者是曹雪芹。 (2) 1+1=10 (是否正确与“数制”有关) (3) 我喜欢听你唱歌。 (4) 你喜欢“蓝色的多瑙河”吗? (5) x+y>=3 (x和y是任意数)
解:(1)、(2)、(3)是命题。(4)、(5)不是。
P Q P Q
又如: 吸收律: P P Q P
P P Q P
1.4 命题演算基本等式
Tianjin University
例2.化简下面语句: 情况并非如此:如果他不来,那么我也不去。 解: P:他来, Q:我去




P Q
二、命题联接词
Tianjin University
(1) 合取联接词——“并且”。 P并且Q,记为P∧Q,称为P与Q的合取式; P、Q称为合取项。 例2. P: 4是偶数 Q: 2是奇数 P∧Q:4是偶数且2是奇数。 ∧真值表: P Q P∧Q
T T F F
T F T F
T F F F
(2) 析取联接词——“或者”
1.4 命题演算基本等式
解:原程序用公式可表示为:
Tianjin University
A B X B Y A B X B Y

P B X B Y
则上式可写为:
A P A P
是命题公式
1.2 命题公式
Tianjin University
例12. P→∧Q不是公式。 定义5. 命题变元一组确定的值称为公式的一 个指派。所有的指派构成的公式的真值组 合称为公式真值表。 问题:一个由n个命题变元构成的公式共 有种多少指派? 答案:2n
1.2 命题公式
例13. 构造下列命题的真值表 P Q P Q 解:
对于(5),不能确定真假(∵x、y代入不 同的值,会得不同的真假值,当x、y为复数时, 比较关系根本不存在!)
相关文档
最新文档