离散数学 通路、回路与图的连通性

合集下载

离散数学图的连通性判定方法介绍

离散数学图的连通性判定方法介绍

离散数学图的连通性判定方法介绍离散数学是一门研究离散结构以及这些结构中的对象、性质和关系的学科。

其中,图论是离散数学中的一个重要分支,主要研究图的性质和关系。

图是由节点和边组成的结构,可以用于表示各种实际问题以及计算机科学中的数据结构。

在图的研究中,连通性是一个重要的概念,它描述了图中节点之间是否存在路径相连。

在实际应用中,判断图的连通性是一个常见的问题。

下面将介绍几种常用的图的连通性判定方法。

1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,它通过栈来实现。

该算法从图的某个节点开始,首先访问该节点并将其标记为已访问,然后递归地访问它的邻居节点,直到所有可达的节点都被访问过。

如果在搜索过程中访问了图中的所有节点,则图是连通的。

否则,图是不连通的。

2. 广度优先搜索(BFS)广度优先搜索也是一种常用的图遍历算法,它通过队列来实现。

与深度优先搜索不同的是,广度优先搜索首先访问图中的某个节点,并将其标记为已访问。

然后访问该节点的所有邻居节点,并将未访问的邻居节点加入队列。

接下来,依次从队列中取出节点并访问其邻居节点,直到队列为空。

如果在搜索过程中访问了图中的所有节点,则图是连通的。

否则,图是不连通的。

3. 并查集并查集是一种数据结构,用于管理元素之间的动态连通性。

在图的连通性判定中,可以使用并查集来判断图中的节点是否连通。

首先,将每个节点都初始化为一个独立的集合。

然后,遍历图中的所有边,如果两个节点之间存在边,则将它们所在的集合合并为一个集合。

最后,判断图中是否只存在一个集合,如果是,则图是连通的。

否则,图是不连通的。

4. 最小生成树最小生成树是一种保留了图连通性的树结构。

在连通性判定中,可以通过构建最小生成树来判断图的连通性。

首先,选择一个节点作为起始节点。

然后,从所有与当前树相连的边中选择权值最小的边,并将连接的节点加入树中。

重复该过程,直到树中包含了图中的所有节点。

如果最后构建的树包含图中的所有节点,则图是连通的。

离散数学 通路、回路与图的连通性

离散数学   通路、回路与图的连通性
的; 当且仅当没有割边时, 它是2-边连通的。 若图G是h-连通的, 则G也是h-边连通的。(k(G)≤ (G))
由定义可知, 若h1>h2, 图G是h1-连通的, 则G也是h2-连 通的。
若h1>h2, 图G是h1-边连通的, 则G也是h2-边连通。 一个图的连通度越大, 它的连通性能就越好。
G2
27
假设n个顶点代表n个站,e条边表示铁路或者
桥梁或者电话线,e≥n-1。为了使n个站之间 的连接不容易被破坏,必须构造一个具有n个 顶点e条边的连通图,并使其具有最大的点连
通度和边连通度。按图中G1的连接法,如果3 个站被破坏,或者3条铁路被破坏,余下的站
仍能继续相互联系,也就是仍具有连通性。
12
【例】 在一次国际会议中,由七人组成的小
组{a,b,c,d,e,f,g}中,a会英语、阿拉伯语; b会英语、西班牙语;c会汉语、俄语;d会 日语、西班牙语;e会德语、汉语和法语;f 会日语、俄语;g会英语、法语和德语。问: 他们中间任何二人是否均可对话(必要时可 通过别人翻译)?
精选2021版课件
对 (G) – 1条边中的每一条边都选取一个不同于u, v的顶点, 把这些 (G) – 1个顶点删去则必至少删 去 (G) – 1边。
若剩下的图是不连通的, 则k(G)≤(G)–1≤ (G); 若剩下的图是连通的, 则e仍是桥, 此时再删去u和v,
就必产生一个非连通图, 也有k (G)≤ (G)。 综上所述, 对任意的图G, 有k (G)≤ (G)≤ (G)。
条边的始点重合…...。第一条边的始点称为通路的 始点,最后一条边的终点称为通路的终点。
当通路的终点和始点重合时,称为回路。
通路或回路中所含边数称为该通路或回路的长度。

离散数学第七章图论习题课

离散数学第七章图论习题课
利用奇数+奇数=偶数,偶数+偶数=偶数,所以, 在G中结点度数为奇数的结点,在其补图中的度 数也应为奇数,故G和其补图的奇数结点个数也 是相同的。
P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
证明 :
2、运用 (1) 判断有向图或无向图中通路(回路)的类型。 (2) 求短程线和距离。 (3) 判断有向图连通的类型。
三、图的矩阵表示
1、基本概念。 无向图的邻接矩阵A 根据邻接矩阵判断:各结点的度, 有向图结点 出,入度。 由Ak可以求一个结点到另一个结点长度为k 的路条数. 有向图的可达矩阵P 用P可以判定:各结点的度. 有向图的强分图。 关联矩阵M:是结点与边的关联关系矩阵. 用M判定:各结点的度
设给定图G(如由图所示),则图G的点割集


应该填写:{f},{c,e}。
定义 设无向图G=<V, E>为连通图,若有点集
V1V,使图G删除了V1的所有结点后,所得的子
图是不连通图,而删除了V1的任何真子集后,所
得的子图是连通图,则称V1是G的一个点割
集.若某个结点构成一个点割集,则称该结点为
割点。
a c
a c
b
d
b
d
a c
a c
b
d
b
d
推论:任何6人的人群中,或者有3人互相认识,或者有 3人彼此陌生。(当二人x,y互相认识,边(x,y)着红色, 否则着兰色。则6人认识情况对应于K6边有红K3或者 有兰K3。)
证明简单图的最大度小于结点数。
证明: 设简单图G有n个结点。对任一结点u,由于G没

第7章 图论 [离散数学离散数学(第四版)清华出版社]

第7章 图论 [离散数学离散数学(第四版)清华出版社]

6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e

2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)

《离散数学》第6章 图的基本概念

《离散数学》第6章  图的基本概念

E ' E )。
生成子图—— G ' G 且 V ' V 。
导出子图 ——非空 V ' V ,以 V ' 为顶点集, 以两端均在 V ' 中的边的全体为边集的 G 的 子图,称 V ' 的导出子图。 ——非空 E ' E ,以 E ' 为边集,以
E ' 中边关联的顶点的全体为顶点集的 G 的子
0 vi与ek 不关联 无向图关联的次数 1 vi与ek 关联1次 2 v 与e 关联2次(e 为环) i k k
1 vi为ek的始点 有向图关联的次数 0 vi与ek 不关联 1 v 为e 的终点 (无环) i k
点的相邻——两点间有边,称此两点相邻 相邻 边的相邻——两边有公共端点,称此两边相邻
孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边 为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。
(3) 平行边——关联于同一对顶点的若干条边 称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。
简单图——不含平行边和环的图。
如例1的(1)中,
第六章 图的基本概念 第一节 无向图及有向图
内容:有向图,无向图的基本概念。
重点:1、有向图,无向图的定义, 2、图中顶点,边,关联与相邻,顶点 度数等基本概念,
3、各顶点度数与边数的关系
d (v ) 2m 及推论,
i 1 i
n
4、简单图,完全图,子图, 补图的概念, 5、图的同构的定义。
一、图的概念。 1、定义。 无序积 A & B (a, b) a A b B 无向图 G V , E E V & V , E 中元素为无向边,简称边。 有向图 D V , E E V V , E 中元素为有向边,简称边。

离散数学第十四章图论基本概念

离散数学第十四章图论基本概念
8
握手定理
定理14.1 设G=<V,E>为任意无向图,V={v1,v2,…,vn}, |E|=m, 则
n
d(vi ) 2m
i 1
证 G中每条边 (包括环) 均有两个端点,所以在计算G中各顶点 度数之和时,每条边均提供2度,m 条边共提供 2m 度.
定理14.2 设D=<V,E>为任意有向图,V={v1,v2,…,vn}, |E|=m, 则
(3) 初级通路(路径)与初级回路(圈): 中所有顶点各异,则 称 为初级通路(路径),又若除v0=vl,所有的顶点各不相 同且所有的边各异,则称 为初级回路(圈)
(4) 复杂通路与回路:有边重复出现
20
几点说明
表示法 ① 定义表示法 ② 只用边表示法 ③ 只用顶点表示法(在简单图中) ④ 混合表示法
3
有向图
定义14.2 有向图D=<V,E>, 只需注意E是VV 的多重子集 图2表示的是一个有向图,试写出它的V 和 E
注意:图的数学定义与图形表示,在同构(待叙)的意义下 是一一对应的
4
相关概念
1. 图 ① 可用G泛指图(无向的或有向的) ② V(G), E(G), V(D), E(D) ③ n阶图
定义14.17 G=<V,E>, EE E是边割集——p(GE)>p(G)且有极小性 e是割边(桥)——{e}为边割集
25
点割集与割点
例3 {v1,v4},{v6}是点 割集,v6是割点. {v2,v5} 是点割集吗? {e1,e2},{e1,e3,e5,e6}, {e8}等是边割集,e8是 桥,{e7,e9,e5,e6} 是边割 集吗?
3. 非负整数列d=(d1, d2, …, dn)是可图化的,是可简单图化的.

图的连通性_离散数学─图论初步

图的连通性_离散数学─图论初步

则称v是割
割点
(注意:只需考虑割点所在的连通分支,以下讨论不妨只 考虑连通图)
关于割点的三个等价命题
• 对于连通图,以下三个命题等价:
(1) v是割点。 (2) 存在V-{v}的划分{V1, V2}, 使 u∈V1, w∈V2, uw-通路均包含v。 (3) 存在顶点u,w(u≠v, w≠v),使得任意的uw-通路均包含v。 – 证明: (1) (2): ∵v是割点,G-v至少存在两个连通分支,设其中一个的
假设这样的公共点中距离v最近的
是x(不妨假设它在P上),则Q+wv 边以及P上的ux-段+P’上的xv-段是u
u,v之间两条中间点不相交的通路。
P
x
v
w Q
连通性的一般性质
• Menger定理(Whitney定理的推广)
– 图G是k-连通图 当且仅当 G中任意两点被至少k条除端
点外顶点不相交关联
的顶点(集合)分隔v与G-C,κ(G)≤|F|。
连通度的上限(续)
dG(v) ≤
|F|
连通度的上限(续)
• 若G中的各顶点均和F中的某条边关联。对任意顶点 v,令C是G-F中包含v的连通分支。考虑v的任一邻居 w。若w在C中,则w必定和F中的某条边关联;若 w在G-C中,则边vw属于F。因此,|N(v)| ≤ |F|, 即dG(v) ≤ |F|.
图的连通性
离散数学─图论初步
内容提要
• 通路与回路 • 通路与同构 • 无向图的连通性
– 连通度 – 2-连通图
• 有向图的连通性
– 无向图的定向
通路的定义
• 定义:图G中从v0到vn的长度为n的通路是G的n条
边e1,…, en的序列,满足下列性质

离散数学第五版第五章(耿素云、屈婉玲、张立昂编著)

离散数学第五版第五章(耿素云、屈婉玲、张立昂编著)
称+(G),+(G),-(G),-(G)分别为G的最大出度、 最小出度、最大入度和最小入度。
12
5.1 无向图及有向图
五、握手定理(定理5.1-5.2)
设G=<V,E>为任意无向图,V={1,2,……,n},|E|=m,则
n
d ( i ) = 2 m
i =1
设D=<V,E>为任意有向图,V={1,2,……,n},|E|=m,则
20
5.1 无向图及有向图
例5:下列图中那些图具有子图、真子图、生成子图的
关系?
e4 2
1 e5
e1 3
e3 4 e2
(1)
2 e4
1
e5
(2)
e4 1 2
e1 3
e3 4
(3)
1 e1
e3
2
e2 3
1 e1
e3
2
3
1 e1
2
e4
(4)
(5)
(6)
21
5.1 无向图及有向图
23
5.1 无向图及有向图
例3: (1)画出4阶3条边的所有非同构的无向简单图。 (2)画出3阶2条边的所有非同构的有向简单图。
24
5.1 无向图及有向图
例4:下列图中那些图互为同构?
e a
b
d
c
1
4
5
2
3
(1)
(2)
(3)
(4)
(5)
(6)
25
第五章 图的基本概念 5.1 无向图及有向图 5.2 通路、回路、图的连通性 5.3 图的矩阵表示 5.4 最短路径及关键路径
十一、补图的定义(定义5.9)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即:A上模3等价关系的关系图为:
精品课件
【例】 求证:若图中只有两个奇度数顶点,则二 顶点必连通。
证明 用反证法来证明。 设二顶点不连通,则它们必分属两个不同的连通
分支,而对于每个连通分支,作为G的子图只有一
个奇度数顶点,余者均为偶度数顶点,与握手定理 推论矛盾,因此,若图中只有两个奇度数顶点,则 二顶点必连通。
精品课件
1、简单通路:如果通路中各边都不相同。
如简单通路:v1→v2 →v5 →v6 →v2 →v3 →v4长度 为6
2、简单回路:如果回路中各边都不相同。 如简单回路:v1→v2 →v3 →v5 →v2 →v6 →v1长度为6
精品课件
3、基本通路:如果通路中各个顶点都不相同。 如基本通路:v1→v6 →v3 →v4长度为3
=v0e1v1e2…elvl
② 用边的序列, 如=e1e2…el ③ 简单图中, 用顶点的序列, 如=v0v1…vl ④ 非简单图中,可用混合表示法,如
=v0v1e2v2e5v3v4v5
环是长度为1的圈, 两条平行边构成长度为2的圈. 在无向简单图中, 所有圈的长度3; 在有向简单图
中, 所有圈的长度2.
图的连通性的应用 在实际问题中, 除了考察一个图是否
连通外, 往往还要研究一个图连通的 程度, 作为某些系统的可靠性度量。 图的连通性在计算机网、通信网和 电力网等方面有着重要的应用。
精品课件
点割集
在连通图中,如果删去一些顶点或边,则 可能会影响图的连通性。所谓从图中删去
某个顶点v,就是将顶点v和与v关联的所
精品课件
短程线与距离
u与v之间的短程线: u与v之间长度最短的通

(u与v连通) u与v之间的距离d(u,v): u与v之间短程线的
长度
若u与v不连通, 规定d(u,v)=∞.
性质:
d(u,v)0, 且d(u,v)=0 u=v d(u,v)=d(v,u) d(u,v)+d(v,w)d(精u品课,件w)
关系 连通图: 平凡图, 任意两点都连通的图
连通分支: V关于R的等价类的导出子图 设V/R={V1,V2,…,Vk}, G[V1], G[V2], …,G[Vk] 是G的连通分支, 其个数记作p(G)=k.
G是连通图 p(G)=1 精品课件
设 A={1,2,…,8}, R={ <x,y>| x,y∈A∧x≡y(mod 3) }
4、基本回路:如果回路中各个顶点都不相同。
如基本回路:v1→v6 →v3 →v2 →v1 显然,基本通路(回路)一定是简单通路(回路)。
反之不然。
精品课件
若通路(回路)中有边重复ቤተ መጻሕፍቲ ባይዱ现, 则称为复杂通路(回路).
精品课件
关于通路与回路的几点说明
表示方法 ① 用 顶 点 和 边 的 交 替 序 列 ( 定 义 ), 如
精品课件
定理 在n阶图G中,若从顶点vi到vj(vivj)存在通 路,则从vi到vj存在长度小于等于n1的通路. 推论 在n阶图G中,若从顶点vi到vj(vivj)存在通 路,则从vi到vj存在长度小于等于n1的初级通路. 定理 在一个n阶图G中,若存在vi到自身的回路, 则一定存在vi到自身长度小于等于n的回路. 推论 在一个n阶图G中,若存在vi到自身的简单 回路,则一定存在长度小于等于n的初级回路.
精品课件
二、图的连通性:
在图G中,如果A到B存在一条通路,则称A到B是可达的。 1、无向图的连通性 如果无向图中,任意两点是可达的,图为连通图。否则为 不连通图。 当图是不连通时,定是由几个连通子图构成。称这样的连 通图是连通分支。
精品课件
无向图的连通性
设无向图G=<V,E>, u与v连通: 若u与v之间有通路. 规定u与自身总连通. 连通关系 R={<u,v>| u,v V且uv}是V上的等价
有的边均删去;删除边只需将该边删除
精品课件
例如”国际会议对话”任何一人请假,图G-v还 连通,小组对话仍可继续进行,但如果f、g二 人同时不在,G-{f,g}是分离图,则小组中的
7.2 通路、回路与图的连通性
▪ 简单通(回)路, 初级通(回)路, 复杂通(回)路 ▪ 连通图, 连通分支 ▪ 弱连通图, 单向连通图, 强连通图 ▪ 点割集与割点 ▪ 边割集与割边(桥)
精品课件
一、通路和回路
在图中,一条通路是顶点和边的交替序列,以顶点 开始,以顶点结束。其中,第一条边的终点与第二 条边的始点重合…...。第一条边的始点称为通路的 始点,最后一条边的终点称为通路的终点。 当通路的终点和始点重合时,称为回路。 通路或回路中所含边数称为该通路或回路的长度。
精品课件
【例】 在一次国际会议中,由七人组成的小
组{a,b,c,d,e,f,g}中,a会英语、阿拉伯语; b会英语、西班牙语;c会汉语、俄语;d会 日语、西班牙语;e会德语、汉语和法语;f
会日语、俄语;g会英语、法语和德语。问: 他们中间任何二人是否均可对话(必要时可 通过别人翻译)?
精品课件
解 用顶点代表人,如果二人会同一种语言,则在代 表二人的顶点间连边,于是得到下图。问题归结为: 在这个图中,任何两个顶点间是否都存在着通路? 由于下图是一个连通图,因此,必要时通过别人翻 译,他们中间任何二人均可对话。
精品课件
在两种意义下计算的圈个数 ① 定义意义下
在无向图中, 一个长度为l(l3)的圈看作2l个不同 的圈. 如v0v1v2v0 , v1v2v0v1 , v2v0v1v2看作3个不
同的圈.
在有向图中, 一个长度为l(l3)的圈看作l个不同的
圈. ② 同构意义下 所有长度相同的圈都是同构的, 因而是1个圈.
a
b
c
e d
f
g
精品课件
定理 在n阶简单图G, 如果对G的每对顶点u和v, deg(u) + deg(v)≥ n–1, 则G是连通图。
证明 假设G不连通, 则G至少有两个分图。 设其中一个分图含有q个顶点, 而其余各分图共含有 n– q个顶点。 在这两部分中各取一个顶点u和v, 则 0≤deg(u)≤q – 1, 0≤deg(v)≤n – q – 1, 因此deg(u) + deg(v)≤n – 2, 这与题设deg(u ) + deg(v)≥n – 1矛盾。
相关文档
最新文档