离散数学14.2 通路、回路 + 14.3 图的连通性

合集下载

离散数学图的连通性判定方法介绍

离散数学图的连通性判定方法介绍

离散数学图的连通性判定方法介绍离散数学是一门研究离散结构以及这些结构中的对象、性质和关系的学科。

其中,图论是离散数学中的一个重要分支,主要研究图的性质和关系。

图是由节点和边组成的结构,可以用于表示各种实际问题以及计算机科学中的数据结构。

在图的研究中,连通性是一个重要的概念,它描述了图中节点之间是否存在路径相连。

在实际应用中,判断图的连通性是一个常见的问题。

下面将介绍几种常用的图的连通性判定方法。

1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,它通过栈来实现。

该算法从图的某个节点开始,首先访问该节点并将其标记为已访问,然后递归地访问它的邻居节点,直到所有可达的节点都被访问过。

如果在搜索过程中访问了图中的所有节点,则图是连通的。

否则,图是不连通的。

2. 广度优先搜索(BFS)广度优先搜索也是一种常用的图遍历算法,它通过队列来实现。

与深度优先搜索不同的是,广度优先搜索首先访问图中的某个节点,并将其标记为已访问。

然后访问该节点的所有邻居节点,并将未访问的邻居节点加入队列。

接下来,依次从队列中取出节点并访问其邻居节点,直到队列为空。

如果在搜索过程中访问了图中的所有节点,则图是连通的。

否则,图是不连通的。

3. 并查集并查集是一种数据结构,用于管理元素之间的动态连通性。

在图的连通性判定中,可以使用并查集来判断图中的节点是否连通。

首先,将每个节点都初始化为一个独立的集合。

然后,遍历图中的所有边,如果两个节点之间存在边,则将它们所在的集合合并为一个集合。

最后,判断图中是否只存在一个集合,如果是,则图是连通的。

否则,图是不连通的。

4. 最小生成树最小生成树是一种保留了图连通性的树结构。

在连通性判定中,可以通过构建最小生成树来判断图的连通性。

首先,选择一个节点作为起始节点。

然后,从所有与当前树相连的边中选择权值最小的边,并将连接的节点加入树中。

重复该过程,直到树中包含了图中的所有节点。

如果最后构建的树包含图中的所有节点,则图是连通的。

离散数学图的连通性判定算法

离散数学图的连通性判定算法

离散数学图的连通性判定算法离散数学中,图是研究事物之间关系的一种可视化表示方式。

而图的连通性判定算法是判断图中各个节点之间是否存在连通路径的一种方法。

本文将介绍常用的离散数学图的连通性判定算法,并对其进行详细说明。

一、深度优先搜索算法深度优先搜索算法(Depth First Search,简称DFS)是一种用于遍历图或树的搜索算法。

在图的连通性判定中,DFS算法可以用于检测一个图是否是连通图。

算法步骤如下:1. 选择一个起始节点作为当前节点,并将其标记为已访问;2. 从当前节点出发,沿着一条未访问的边到达相邻节点;3. 若相邻节点未被访问,则将其标记为已访问,并将其设为当前节点,重复步骤2;4. 若当前节点的所有相邻节点都已被访问,则回溯到上一个节点,重复步骤3,直到回溯到起始节点。

通过DFS算法,我们可以遍历图中的所有节点,并判断图的连通性。

若在遍历过程中,所有节点都被访问到,则图是连通的;否则,图是非连通的。

二、广度优先搜索算法广度优先搜索算法(Breadth First Search,简称BFS)也是一种用于遍历图或树的搜索算法。

在图的连通性判定中,BFS算法同样可以用于判断图是否为连通图。

算法步骤如下:1. 选择一个起始节点作为当前节点,并将其标记为已访问;2. 将当前节点的所有相邻节点加入一个队列;3. 从队列中取出一个节点作为当前节点,并将其标记为已访问;4. 将当前节点的所有未访问的相邻节点加入队列;5. 重复步骤3和步骤4,直到队列为空。

通过BFS算法,我们可以逐层遍历图中的节点,并判断图的连通性。

若在遍历过程中,所有节点都被访问到,则图是连通的;否则,图是非连通的。

三、并查集算法并查集算法(Disjoint Set Union,简称DSU)是一种用于处理一些不相交集合的数据结构。

在图的连通性判定中,并查集算法可以用于判断图的连通性。

算法步骤如下:1. 初始化并查集,将每个节点设为一个单独的集合;2. 对于图中的每一条边(u, v),判断节点u和节点v是否属于同一个集合;3. 若节点u和节点v属于不同的集合,则将它们合并为一个集合;4. 重复步骤2和步骤3,直到遍历完所有边。

离散数学中的图的连通性与欧拉路径问题

离散数学中的图的连通性与欧拉路径问题

离散数学中的图的连通性与欧拉路径问题图论是离散数学中的一个重要分支,研究对象是图。

图是由一组顶点和连接这些顶点的边组成的数学结构。

在图论中,连通性和欧拉路径问题是两个基本概念,对于理解和解决图相关的问题具有重要意义。

一、连通性在图论中,连通性是指图中任意两个顶点之间存在一条路径。

如果一个图中任意两个顶点都是连通的,则称该图是连通图;如果一个图不是连通图,那么它可以被分解为多个连通的子图,这些子图称为连通分量。

连通性在实际应用中具有广泛的应用。

例如,在社交网络中,连通性可以用来判断两个人之间是否存在关系链;在计算机网络中,连通性可以用来判断网络中的主机之间是否可以进行通信。

二、欧拉路径问题欧拉路径问题是图论中的一个经典问题,它要求找出一条路径,经过图中每条边一次且仅一次。

如果存在这样的路径,则称图具有欧拉路径。

欧拉路径问题有两种情况:1. 欧拉回路:如果存在一条路径,从起点出发,经过图中每条边恰好一次后回到起点,则称该图具有欧拉回路。

2. 半欧拉路径:如果存在一条路径,从起点出发,经过图中每条边恰好一次后到达终点,但不回到起点,则称该图具有半欧拉路径。

欧拉路径问题的解决方法有欧拉定理和深度优先搜索算法。

欧拉定理指出,一个连通图具有欧拉回路的充分必要条件是每个顶点的度数都是偶数;一个连通图具有半欧拉路径的充分必要条件是除了起点和终点外,其它顶点的度数都是偶数。

深度优先搜索算法(DFS)是一种用来遍历图或树的算法,它可以用来解决欧拉路径问题。

DFS从起点开始遍历图,当遍历到某个顶点时,选择一个未访问过的邻接顶点进行继续遍历,直到无法继续遍历为止。

通过DFS算法,可以找到图中的欧拉路径。

三、总结离散数学中的图的连通性与欧拉路径问题是图论中的两个基本概念。

连通性用来描述图中顶点之间的连接情况,欧拉路径问题则是要找出一条路径,经过图中每条边一次且仅一次。

这两个概念在实际应用中具有广泛的应用,对于理解和解决图相关的问题具有重要意义。

《离散数学》教学大纲

《离散数学》教学大纲

《离散数学》教学大纲(Discrete Mathematics)适用专业:电子信息类课程类别:学科基础课课程学时:48课程学分:3.0先修课程:高等数学、线性代数等一、课程简介离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支,是计算机科学中基础理论的核心课程,是计算机科学与技术的支撑学科。

它在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能与机器人、数据库、网络、计算机图形学、算法设计与分析、理论计算机科学基础等必不可少的先行课程。

通过离散数学的学习,不但可以掌握离散结构的描述工具和处理方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。

二、教学目的与任务离散数学是一门培养学生缜密思维、严格推理,具有综合归纳分析能力的课程。

通过本课程的学习,使学生有一定的严格逻辑推理与抽象思维能力,掌握离散量的处理及运算技能,能够将离散数学应用到解决计算机技术中的实际问题中。

不仅能为学生奠定计算机科学的专业基础,并且能为将后续课程的学习及将来开发软、硬件技术及研究、应用提供有力的工具。

三、课程内容第1章命题逻辑的基本概念1.1命题与联结词1.2命题公式及其赋值第2章命题逻辑等值演算2.1等值式2.2析取范式与合取范式* 2.3联结词的完备集* 2.4可满足性问题与消解法第3章命题逻辑的推理理论3.1推理的形式结构3.2自然推理系统P3.3消解证明法第4章一阶逻辑基本概念4.1一阶逻辑命题符号化4.2一阶逻辑公式及其解释第5章一阶逻辑等值演算与推理5.1一阶逻辑等值式与置换规则5.2一阶逻辑前束范式* 5.3一阶逻辑的推理理论第6章集合代数6.1集合的基本概念6.2集合的运算6.3有穷集的计数6.4集合恒等式第7章二元关系7.1有序对与笛卡儿积7.2二元关系7.3关系的运算7.4关系的性质7.5关系的闭包7.6等价关系与划分7.7偏序关系第8章函数8.1函数的定义与性质8.2函数的复合与反函数* 8.3双射函数与集合的基数* 8.4一个电话系统的描述实例第14章图的基本概念14.1图14.2通路与回路14.3图的连通性14.4图的矩阵表示* 14.5图的运算第15章欧拉图与哈密顿图15.1欧拉图15.2哈密顿图15.3最短路问题、中国邮递员问题与货郎担问题第16章树16.1无向树及其性质16.2生成树16.3根树及其应用三、课程学时分配、教学内容与教学基本要求四、教学方法与教学手段说明该课程教学方式主要有:课堂教学、交互学习、课后作业。

离散数学第十四章图论基本概念

离散数学第十四章图论基本概念
8
握手定理
定理14.1 设G=<V,E>为任意无向图,V={v1,v2,…,vn}, |E|=m, 则
n
d(vi ) 2m
i 1
证 G中每条边 (包括环) 均有两个端点,所以在计算G中各顶点 度数之和时,每条边均提供2度,m 条边共提供 2m 度.
定理14.2 设D=<V,E>为任意有向图,V={v1,v2,…,vn}, |E|=m, 则
(3) 初级通路(路径)与初级回路(圈): 中所有顶点各异,则 称 为初级通路(路径),又若除v0=vl,所有的顶点各不相 同且所有的边各异,则称 为初级回路(圈)
(4) 复杂通路与回路:有边重复出现
20
几点说明
表示法 ① 定义表示法 ② 只用边表示法 ③ 只用顶点表示法(在简单图中) ④ 混合表示法
3
有向图
定义14.2 有向图D=<V,E>, 只需注意E是VV 的多重子集 图2表示的是一个有向图,试写出它的V 和 E
注意:图的数学定义与图形表示,在同构(待叙)的意义下 是一一对应的
4
相关概念
1. 图 ① 可用G泛指图(无向的或有向的) ② V(G), E(G), V(D), E(D) ③ n阶图
定义14.17 G=<V,E>, EE E是边割集——p(GE)>p(G)且有极小性 e是割边(桥)——{e}为边割集
25
点割集与割点
例3 {v1,v4},{v6}是点 割集,v6是割点. {v2,v5} 是点割集吗? {e1,e2},{e1,e3,e5,e6}, {e8}等是边割集,e8是 桥,{e7,e9,e5,e6} 是边割 集吗?
3. 非负整数列d=(d1, d2, …, dn)是可图化的,是可简单图化的.

离散数学课件14.2-3通路与回路-连通性

离散数学课件14.2-3通路与回路-连通性

connected graph
边割集
若存在边集子集E' E, 使G删除E'(将E'中的边从G中全删除)后, 所得子图的连通分支数与G的连通分支数 满足p(G-E')>p(G), 而删除E'的任何真子集E''后,p(G-E'')=p(G), 则称E'是G的一个边割集. 若边割集中只有一条边e,则称e为割边或桥. 注:完全图没有割边和割点.
当v0=vl时,此通路称为回路.
connected graph
简单通路或迹
若Γ中的所有边e1,e2,···,el互不相同, 则称Γ为简单通路或一条迹. 若回路中的所有边互不相同,称此回 路为简单回路或一条闭迹.
connected graph
初级通路
若通路的所有顶点v0,v1···,vl互不相 同(从而所有边互不相同),则称此通 路为初级通路或一条路径. 若回路中,除v0=vl外,其余顶点各不 相同,所有边也各不相同,则称此回 路为初级回路或圈. 长度为奇(偶)数的圈称为奇(偶)圈
通路
connected graph
给定图G=<V,E>.
设G中顶点和边的交替序列为
Γ=v0e1v1e2…elvl,若Γ满足如下条件: vi-1和vi是ei的端点(在G是有向图时,要求vi-1是ei 的始点,vi是ei的终点),i=1,2,…,l,则称Γ为顶点v0 到vl的通路. v0和vl分别称为此通路的起点和终点,Γ中边的数 目l称为Γ的长度.
connected graph
有向图的连通性
易见:强连通性 单向连通性 弱连通性; 但反之 不真.反例如下:
a
c
a
强连通
d

图的连通性_离散数学─图论初步

图的连通性_离散数学─图论初步
• 相关点
– 长度为0的通路由单个顶点组成。 – 不必区分多重边时,可以用相应顶点的序列表示通路。 – 回路:起点与终点相同,长度大于0。 – 简单通路: 边不重复,即, i, j, i j ei ej
通路(举例)
a
b
c
d
e
f
• 简单通路:a, d, c, f, e。 长度为4。 • 通路:a, b, e, d, a, b。 长度为5。 • 回路:b, c, f, e, b。长度为4。 • 不是通路:d, e, c, b。
路)
• u,v VD,均存在 (u,v)-有向通路和(v,u)-有向通路,则D
称为强连通有u向图。 (见下左u 图)
u
v
v
v
强连通的充分必要条件
• 有向图D是强连通的当且仅当D中的所有顶点在同
一个有向回路上。
– 证明: 显然 设VD={v1,v2,…,vn},令 i是vi到vi+1的有向通路 (i=1,…,n-1),令 n是vn到v1的有向通路,则 1,
假设这样的公共点中距离v最近的
是x(不妨假设它在P上),则Q+wv 边以及P上的ux-段+P’上的xv-段是u
u,v之间两条中间点不相交的通路。
P
x
v
w Q
连通性的一般性质
• Menger定理(Whitney定理的推广)
– 图G是k-连通图 当且仅当 G中任意两点被至少k条除端
点外顶点不相交的路径所连接。
则称v是割
割点
(注意:只需考虑割点所在的连通分支,以下讨论不妨只 考虑连通图)
关于割点的三个等价命题
• 对于连通图,以下三个命题等价:
(1) v是割点。 (2) 存在V-{v}的划分{V1, V2}, 使 u∈V1, w∈V2, uw-通路均包含v。 (3) 存在顶点u,w(u≠v, w≠v),使得任意的uw-通路均包含v。 – 证明: (1) (2): ∵v是割点,G-v至少存在两个连通分支,设其中一个的

离散数学 图论-通路与回路

离散数学 图论-通路与回路
2、简单通路和初级通路的关系
有向图中的每一条初级通路,也都必定是简单通路。 反之不成立 回路也可分为简单回路和初级回路。
3、通路的表示:
可仅用通路中的边序列表示:e1e2…ek 也可仅用通路中所经过的结点的序列表示:v1v2v3…vk
4、性质: 1)定理 在n阶图D中,若从顶点vi到vj(vi≠vj)存在通路,则从vi到vj存在长度 小于或等于(n—1)的通路 若大于n-1,则存在相同节点(有回路),将回路删去可得 2)在n阶图D中,若从顶点vi到vj存在通路,则vi到vj一定存在长度小于或等于 n—1的初级通路(路径) 3)定理 在一个n阶图D中,若存在vi到自身的回路,则一定存在vi到自身长度 小于或等于n的回路. 4)在一个n阶图D中,若存在vi到自身的简单回路,则一定存在长度小于或等 于n的初级回路.
(3)A(D)中所有元素之和为D中长度为1的(边)通路总条数。 主对角线的元素值为图中结点vi长度为1 的环的条数
利用A(D)确定出D中长度为L的通路数和回路数,就需要用到邻接矩阵的幂次运算 (4)A2中的元素值bij是结点vi到vj长度为2 的通路条数:
说明:由矩阵的乘积定义 bij = ∑k aik * akj 由此可推断,A3矩阵中的Cij元素值,表示了从到长度恰为3的通路条数目 (5)定理14.11 设A为有向图D的邻接矩阵,V={v1,v2,…,vn} 为D的
注:三种图的关系:强连通图一定是单向连通图,反之不成立
单向连通图一定是弱连通图.反之不成立
6、有关强连通图与单向连通图的判定 (1)定理: 设有向图D=<V,E>,V={v1,v2,…,vn}.
D是强连通图当且仅当D中存在经过每个顶点至少一次的回路. (2) 定理 设D是n阶有向图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是ei的端点(在G是有向图时,要求vi-1是ei的始点,vi 是ei的终点),则称是Г为v0到vn的的通路。
v0和vn分别称为此通路的起点和终点。 Г中边的数目n称为通路的长度。 当v0=vn时,此通路称为回路。
2
若Г中所有边各异,则称Г为简单通路,又若 v0=vn,则称Г为简单回路。
若Г的所有顶点各异,所有边也各异,则称Г为 初级通路或路径,此时又若v0=vn,则称Г为初级回路 或圈。
距离的性质: 1.d(u,v)0。当u=v时,等号成立。 2.具有对称性:d(u,v)= d(v,u)。 3.满足三角不等式:
u,v,wV(G),则d(u,v)+ d(v,w) d(u,w)
14
定义14.16(点割集、割点)设无向图G=<V,E>, 若存在V’V,且V’,使得p(G-V’)>p(G),而对于任 意的V’’V’,均有p(G-V’’)=p(G),则称V’是G的点割集。
14.2 通路、回路
通路与回路是图论中两个重要而又基本的概念 本节所述定义一般说来既适合无向图,也适合有 向图,否则将加以说明或分开定义。
1
定义14.11(通路、回路) 给 定 图 G=<V,E>, 设 G 中 顶 点 和 边 的 交 替 序 列 为
Г=v0e1v1e2…envn。 若 Г 满 足 如 下 条 件 : 对 于 i=1,2,…n,vi-1 和 vi
13
定义14.15(短程线)设u,v为无向图G中任意两个 顶点,若uv,称u,v之间长度最短的通路为u,v之 间的短程线,短程线的长度称为u,v之间的距离,记 作d(u,v)。当u,v不连通时,规定d(u,v)=∞。
例如:在完全图Kn(n2)中,任何两个顶点之间 的距离都是1;
而在零图Nn(n2)中,任何两个顶点之间的距离 都是∞。
将长度为奇数的圈称为奇圈,长度为偶数的圈称 为偶圈。
有边重复出现的通路称为复杂通路,有边重复出 现的回路称为复杂回路。
3
注意: (1)有向图的通路、回路需要注意有向边方向。 (2)初级通路(回路)是简单通路(回路),但反之 不真。 (3)通路、回路是图的子图。 (4)在无向图中,环和平行边构成的回路分别是长度 为1和2的初级回路(圈)。 (5)在有向图中,环和两条方向相反边构成的回路分 别是长度为1和2的初级回路(圈)。 (6)在简单无向图中,圈的长度至少为3。 (7)可以用边的序列表示通路或回路,如Г=e1e2…en (8) 在 简 单 图 中 可 以 只 用 顶 点 表 示 通 路 或 回 路 , 如 Г=v0v1…vn
或若无向图G由若干彼此不连通的子图组成,而每 个子图自身是连通的,称这些子图为G的连通分支。
若G为连通图,则p(G)=1; 若G为非连通图,则p(G)2; 零图Nn(n2)的连通分支为p(G)= n。
11
思考题
n阶非连通的简单图的边数最多有多少条? 最少呢?[p312 6(2)]
12
思考题
证明:若无向图G中恰有两个奇度顶点,这 两个奇度顶点必然连通。 [p314 39]
5
例14.4 无向完全图Kn(n3)中有几种非同构的圈? 解:
长度相同的圈都是同构的, 因而只有长度不同的圈才是非同构的。 易知Kn(n3)中含长度为3,4,…,n的圈, 所以Kn(n3)中有n-2种非同构的圈。
6
Байду номын сангаас
例14.5无向完全图K3的顶点依次标定为a,b,c。在 同构意义下和定义意义下K3中各有多少个不同的圈。
若E’是单元集,即E’={e},则称e为割边或桥。
边割集 :{e6},{e5},{e2,e3}, {e1,e2},{e3,e4},{e1,e4}, {e1,e3},{e2,e4}
桥:e6,e5
16
下面讨论有向图的连通性 定义14.20在一个有向图D=<V,E>中,如果顶点u, v之间存在通路,则称u可达v,记作u→v。 规定任意的顶点总是可达自身的,即uV,u→u。 若u→v且v→u,则称u与v是相互可达的,记作uv, 规定uu。 说明:→、都是V上的二元关系,并且是V上的 等价关系。
解:在同构意义下,K3只有一个长度为3的圈。 但在定义意义下,不同起点的圈是不同的,顶点间 排列顺序不同的圈也是不同。 因此K3中共有6个不同的长为3的圈:abca,acba, bacb,bcab,cabc,cbac。
7
14.3 图的连通性
8
连通的概念是定义在通路的基础之上的重要的概念 首先讨论无向图的连通性。 定义14.12(连通) 在一个无向图G=<V,E>中,如 果 顶 点 u,v 之 间 存 在 通 路 , 则 称 u,v 是 连 通 的 , 记 作 uv。vV,规定vv。 由定义可知无向图中顶点之间的连通关系: ={<u,v>|u,vV∧u与v之间有通路} 显然是自反的、对称的、传递的,所以是V上的等 价关系。
4
通路、回路的性质 定理14.5 在一个n阶图中,若从顶点vi到vj(vivj)存 在通路,则从vi到vj存在长度小于等于(n-1)的通路。 推论 在一个n阶图中,若从顶点vi到vj(vivj)存在通 路,则从vi到vj存在长度小于等于(n-1)的初级通路。 定理14.6在一个n阶图中,若存在vi到自身的回路,则从 vi到自身存在长度小于等于n的回路。 推论 在一个n阶图中,若存在vi到自身的简单回路,则 从vi到自身存在长度小于等于n的初级回路。
若V’是单元集,即V’={v},则称v为割点。
点割集: {v2,v4},{v3},{v5} 割点 :v3,v5
15
定义14.17(边割集、桥) 设无向图G=<V,E>,若 存在E’E,且E’,使得p(G-E’)>p(G),而对于任意 的E’’E’,均有p(G-E’’)=p(G),则称E’是G的边割集, 简称为割集。
9
定义14.13(无向连通图)若无向图G是平凡图或G中 的任何两个顶点都是连通的,则称G是连通图,否则称G 为非连通图或分离图。
例:完全图Kn(n1)为连通图,而零图Nn(n2) 都是分离图。
10
定义14.14(连通分支)设无向图G=<V,E>,V关于 顶点之间的连通关系的商集V/={V1,V2,…,Vk},Vi为 等价类,称导出子图G[Vi](i=1,2,…,k)为G的连通分 支,连通分支数k常记为p(G)。
相关文档
最新文档