图的连通性判断
图的连通性判断算法的时间复杂度

图的连通性判断算法的时间复杂度图是数学中一种常见的数据结构,在计算机科学中也有广泛的应用。
图由节点(顶点)和边组成,表示了不同元素之间的关系。
在图中,如果每个节点都可以通过路径相互到达,则该图被称为连通图,否则被称为非连通图。
图的连通性判断算法指的是判断给定的图是否是连通图的问题。
常见的图的连通性判断算法包括深度优先搜索(DFS)和广度优先搜索(BFS)算法。
接下来,将分别介绍这两种算法,并分析它们的时间复杂度。
一、深度优先搜索(DFS)算法深度优先搜索算法是一种递归的算法,通过访问节点的方式来遍历整个图。
DFS算法首先选择一个节点作为起始节点,然后通过递归地访问与该节点相邻的节点,直到没有未访问过的节点。
如果所有的节点都被访问过,则图是连通的;否则,图是非连通的。
DFS算法的时间复杂度取决于图的大小和结构。
假设图有n个节点和m条边,那么DFS算法的时间复杂度为O(n + m)。
在最坏的情况下,每个节点都需要被访问一次,并且每个节点都需要遍历它的所有相邻节点。
二、广度优先搜索(BFS)算法广度优先搜索算法是一种迭代的算法,通过按层级的方式遍历整个图。
BFS算法首先选择一个节点作为起始节点,然后按照从起始节点开始的顺序,依次访问每个节点的所有相邻节点。
通过不断扩展搜索的范围,直到所有节点都被访问过。
如果所有的节点都被访问过,则图是连通的;否则,图是非连通的。
BFS算法的时间复杂度也取决于图的大小和结构。
假设图有n个节点和m条边,那么BFS算法的时间复杂度为O(n + m)。
在最坏的情况下,每个节点都需要被访问一次,并且每次访问时都需要遍历其所有相邻节点。
总结:图的连通性判断算法的时间复杂度分别为O(n + m)的DFS算法和BFS算法。
其中,n表示图的节点数,m表示图的边数。
这两种算法在连通性判断问题上表现良好,并且可以在较短的时间内找到问题的解答。
需要注意的是,虽然DFS和BFS可以用于判断图的连通性,但它们在处理大规模图时可能存在效率问题。
图的连通性判断(并查集+Bfs+Dfs+Floyd)

图的连通性判断(并查集+Bfs+Dfs+Floyd)有向图的连通性检查共4种⽅法,并查集性能最⾼,代码也短,优先推荐:⼀、并查集#include <bits/stdc++.h>using namespace std;const int N = 1010; //图的最⼤点数量/**共提供两组数据,样例1为不连通⽤例,样例2为连通⽤例样例1:不连通,5号结点为独⽴的5 41 22 33 41 4样例2:连通,不存在独⽴结点5 41 22 33 41 5检测各种算法是否能准确获取结果*/int n; //n个⼈int m; //m个亲戚int p; //询问p对亲戚关系int x, y; //输⼊两个⼈之间的关系int fa[N]; //并查集数组//要深⼊理解这个递归并压缩的过程int find(int x) {if (fa[x] != x)//如果x不是族长,递归找⽗亲,副产品就是找回的结果更新掉⾃⼰的家族信息。
fa[x] = find(fa[x]);//⾮常经典的更新,路径压缩⼤法!//返回族长是谁return fa[x];}//加⼊家族集合中void join(int c1, int c2) {int f1 = find(c1), f2 = find(c2);if (f1 != f2)fa[f1] = f2;//各⾃找家长,如果家长不⼀样,就把C1的族长,认C2的族长为爸爸,C1的族长强烈表⽰不满意}int cnt;int main() {//n个⼈员,m个关系cin >> n >> m;//并查集初始化for (int i = 1; i <= n; i++)fa[i] = i; //⾃⼰是⾃⼰的⽼⼤//录⼊m种关系,使⽤并查集来判断图的连通性for (int i = 1; i <= m; i++) {cin >> x >> y;//加⼊并查集join(x, y);}//图已经搭好了,接下来看它们根节点是否相同,如只有⼀个相同的根节点,则说明是⼀个连通图for (int i = 1; i <= n; i++) if (fa[i] == i)cnt++;if (cnt == 1)printf("图是连通的\n");else printf("图不是连通的\n");return 0;}⼆、dfs#include <bits/stdc++.h>using namespace std;const int N = 1010; //图的最⼤点数量struct Edge { //记录边的终点,边权的结构体int to; //终点int value; //边权};int n, m; //表⽰图中有n个点,m条边vector<Edge> p[N]; //使⽤vector的邻接表/**共提供两组数据,样例1为不连通⽤例,样例2为连通⽤例样例1:不连通,5号结点为独⽴的5 41 22 33 41 4样例2:连通,不存在独⽴结点5 41 22 33 41 5检测各种算法是否能准确获取结果*/bool st[N];int cnt;//深度遍历void dfs(int u) {st[u] = true;cnt++;//多⾛了⼀个结点for (int i = 0; i < p[u].size(); i++) {int x = p[u][i].to;if (!st[x]) dfs(x);}}int main() {//采⽤邻接表建图cin >> n >> m;//m条边for (int i = 1; i <= m; i++) {int u, v;cin >> u >> v;p[u].push_back({v, 1});//因本题不需要权值,默认权值为1 }//利⽤dfs进⾏检查是不是强连通的dfs(1);if (cnt == n) printf("图是连通的\n");else printf("图不是连通的\n");return 0;}三、bfs#include <bits/stdc++.h>using namespace std;const int N = 1010; //图的最⼤点数量struct Edge { //记录边的终点,边权的结构体int to; //终点int value; //边权};int n, m; //表⽰图中有n个点,m条边vector<Edge> p[N]; //使⽤vector的邻接表/**共提供两组数据,样例1为不连通⽤例,样例2为连通⽤例样例1:不连通,5号结点为独⽴的5 41 22 33 41 4样例2:连通,不存在独⽴结点5 41 22 33 41 5检测各种算法是否能准确获取结果*/bool st[N];int cnt;int main() {//采⽤邻接表建图cin >> n >> m;//m条边for (int i = 1; i <= m; i++) {int u, v;cin >> u >> v;p[u].push_back({v, 1});//因本题不需要权值,默认权值为1 }//利⽤bfs进⾏检查是不是强连通的//把1号结点放⼊队列queue<int> q;q.push(1);while (!q.empty()) {int u = q.front();q.pop();st[u] = true;cnt++;for (int i = 0; i < p[u].size(); i++) {int x = p[u][i].to;if (!st[x]) q.push(x);}}if (cnt == n) printf("图是连通的\n");else printf("图不是连通的\n");return 0;}四、floyd#include <bits/stdc++.h>using namespace std;const int N = 1010; //图的最⼤点数量int n, m;/**共提供两组数据,样例1为不连通⽤例,样例2为连通⽤例样例1:不连通,5号结点为独⽴的5 41 22 33 41 4样例2:连通,不存在独⽴结点5 41 22 33 41 5检测各种算法是否能准确获取结果*///⽤floyd来判断起点是否可以达到终点int dis[N][N]; //邻接矩阵void floyd() {for (int k = 1; k <= n; k++)for (int i = 1; i <= n; i++)for (int j = 1; j <= n; j++)dis[i][j] = dis[i][j] || (dis[i][k] && dis[k][j]);}int main() {//采⽤邻接矩阵建图cin >> n >> m;//m条边for (int i = 1; i <= m; i++) {int u, v;cin >> u >> v;//双向建边dis[u][v] = 1;dis[v][u] = 1;}//调⽤floydfloyd();for (int i = 1; i <= n; i++)for (int j = 1; j <= n; j++)if (!dis[i][j]) {printf("图不是连通的\n");cout << i << " " << j << endl;exit(0);}printf("图是连通的\n");return 0;}。
图连通性算法及应用

图连通性算法及应用图是计算机科学领域中常见的数据结构,用于表示对象之间的关系。
在图论中,图的连通性是一个重要的概念,指的是在图中任意两个顶点之间是否存在路径。
图连通性算法是为了判断图中的连通性而设计的算法,并且在实际应用中有着广泛的应用。
一、连通性的定义与分类在图论中,连通性有两种常见的定义方式:强连通性和弱连通性。
强连通性是指在有向图中,任意两个顶点之间存在互相可达的路径;弱连通性是指在有向图中,将其所有有向边的方向忽略后,剩下的无向图是连通的。
本文将重点介绍无向图的连通性算法及其应用。
二、连通性算法的原理1. 深度优先搜索(DFS)深度优先搜索是最常用的连通性算法之一。
它从图中的一个顶点开始,沿着一条未访问过的边深入图中的下一个顶点,直到无法深入为止,然后回溯至上一个顶点,继续深入其他未访问过的顶点。
通过深度优先搜索算法,我们可以得到一个图的连通分量,从而判断图是否连通。
2. 广度优先搜索(BFS)广度优先搜索同样是常用的连通性算法之一。
它从图中的一个顶点开始,沿着一条未访问过的边遍历与该顶点直接相邻的所有顶点,然后再以这些相邻顶点为起点,继续遍历它们的相邻顶点,直到遍历完所有连通的顶点。
通过广度优先搜索算法,我们可以得到一个图的层次遍历树,从而判断图是否连通。
三、连通性算法的应用1. 社交网络分析在社交网络分析中,连通性算法可以用来判断一个社交网络中是否存在分割成多个互不相连的社群。
通过判断社交网络的连通性,我们可以发现隐藏在社交网络背后的关系网络,从而更好地理解和分析社会关系。
2. 网络路由优化在计算机网络中,连通性算法可以用来判断网络节点之间的连通性。
通过分析网络的拓扑结构,我们可以选择合适的路由算法,从而实现快速且可靠的数据传输。
3. 图像分割在计算机视觉和图像处理中,连通性算法可以用来判断图像中的连通区域。
通过判断图像的连通性,我们可以对图像进行分割和提取,从而实现目标检测和图像识别等应用。
一笔画问题的判定法则

一笔画问题的判定法则
一笔画问题是一种经典的智力游戏,玩家需要用一笔连通所有的点,但不能重复经过同一个点。
在解决问题时,有一些判定法则可以帮助玩家更快地找到解答。
1. 判断顶点度数:顶点度数指的是一个点与多少条线段相连。
如果一个点的度数为奇数,则这个点必须作为起点或终点;如果一个点的度数为偶数,则这个点可以通行过去。
2. 判断连通性:判断图形是否连通是解决一笔画问题的关键。
如果图形不连通,则需要用多笔画才能将所有点连通。
而在连通的情况下,有些顶点是必须通过的,有些顶点则可以绕路绕开。
3. 判断欧拉路径和欧拉回路:欧拉路径指的是经过每条边一次的路径,而欧拉回路指的是在欧拉路径的基础上回到起点。
对于连通的无向图,如果存在欧拉路径,则所有点的度数均为偶数。
对于连通的有向图,如果存在欧拉路径,则所有点的入度等于出度。
4. 判断哈密顿回路:哈密顿回路指的是经过每个点一次的回路。
对于无向图,判断哈密顿回路可以使用Dirac定理:如果图中每个点的度数都大于等于n/2(n为顶点数),则图中存在哈密顿回路。
对于有向图,需要用到Ore定理:如果对于所有不相邻的点u和v,都有deg(u)+deg(v)>=n,则有向图存在哈密顿回路。
以上是几种判断一笔画问题的方法,不同的方法适用于不同的情况。
在实际解决问题时,可以根据具体情况选择合适的方法。
- 1 -。
离散数学中的图的连通性与欧拉路径问题

离散数学中的图的连通性与欧拉路径问题图论是离散数学中的一个重要分支,研究对象是图。
图是由一组顶点和连接这些顶点的边组成的数学结构。
在图论中,连通性和欧拉路径问题是两个基本概念,对于理解和解决图相关的问题具有重要意义。
一、连通性在图论中,连通性是指图中任意两个顶点之间存在一条路径。
如果一个图中任意两个顶点都是连通的,则称该图是连通图;如果一个图不是连通图,那么它可以被分解为多个连通的子图,这些子图称为连通分量。
连通性在实际应用中具有广泛的应用。
例如,在社交网络中,连通性可以用来判断两个人之间是否存在关系链;在计算机网络中,连通性可以用来判断网络中的主机之间是否可以进行通信。
二、欧拉路径问题欧拉路径问题是图论中的一个经典问题,它要求找出一条路径,经过图中每条边一次且仅一次。
如果存在这样的路径,则称图具有欧拉路径。
欧拉路径问题有两种情况:1. 欧拉回路:如果存在一条路径,从起点出发,经过图中每条边恰好一次后回到起点,则称该图具有欧拉回路。
2. 半欧拉路径:如果存在一条路径,从起点出发,经过图中每条边恰好一次后到达终点,但不回到起点,则称该图具有半欧拉路径。
欧拉路径问题的解决方法有欧拉定理和深度优先搜索算法。
欧拉定理指出,一个连通图具有欧拉回路的充分必要条件是每个顶点的度数都是偶数;一个连通图具有半欧拉路径的充分必要条件是除了起点和终点外,其它顶点的度数都是偶数。
深度优先搜索算法(DFS)是一种用来遍历图或树的算法,它可以用来解决欧拉路径问题。
DFS从起点开始遍历图,当遍历到某个顶点时,选择一个未访问过的邻接顶点进行继续遍历,直到无法继续遍历为止。
通过DFS算法,可以找到图中的欧拉路径。
三、总结离散数学中的图的连通性与欧拉路径问题是图论中的两个基本概念。
连通性用来描述图中顶点之间的连接情况,欧拉路径问题则是要找出一条路径,经过图中每条边一次且仅一次。
这两个概念在实际应用中具有广泛的应用,对于理解和解决图相关的问题具有重要意义。
图论课件第三章图的连通性

Bellman-Ford算法
总结词
Bellman-Ford算法是一种用于查找带权图中单源最短路径的算法。
详细描述
Bellman-Ford算法的基本思想是从源节点开始,通过不断更新节点之间的距离,逐步找到从源节点到 其他节点的最短路径。该算法可以处理带有负权重的边,并且在图中存在负权重环的情况下也能正确 处理。
THANKS
感谢观看
Floyd-Warshall算法
总结词
Floyd-Warshall算法是一种用于查找所有节点对之间最短路 径的动态规划算法。
详细描述
Floyd-Warshall算法的基本思想是通过动态规划的方式,逐 步构建最短路径矩阵。该算法首先初始化一个距离矩阵,然 后通过一系列的转移操作,逐步更新距离矩阵,直到找到所 有节点对之间的最短路径。
欧拉回路
总结词
欧拉回路是指一个路径的起点和终点是同一点,且经过图中的每条边且仅经过 一次的路径,并且该路径闭合。
详细描述
欧拉回路是欧拉路径的一种特殊情况,它不仅满足欧拉路径的所有条件,而且 起点和终点是同一点,形成一个闭合的路径。在图论中,欧拉回路具有重要的 应用价值。
欧拉回路的判定
总结词
判断一个图是否存在欧拉回路是一个NP 难问题,目前没有已知的多项式时间复 杂度的算法。
连通度
总结词
连通度是描述图中任意两点之间可达性的度量,表示图中节点之间的连接紧密程度。
详细描述
在图论中,连通度是衡量图连通性的一个重要参数。对于一个无向图,连通度通常用K表示,表 示图中任意两点之间是否存在路径。对于有向图,连通度分为入度和出度,分别表示从一个节 点到另一个节点是否存在路径和从另一个节点到这个节点是否存在路径。
判断图的强连通性

判断图的强连通性一、判断一个n阶图的强连通性分以下3步骤:<1>根据图写出图的邻接矩阵(n * n)。
<2>依次计算邻接矩阵的2至(n-1)次方。
<3>观察得到的矩阵,若存在一点在每一个矩阵中都是0,则该点对应的两个顶点不存在通路,可得该图不是强连通图。
若任一点在这些图中存在至少一个不为0,则任意两点总存在通路,可得该图是强连通图。
(程序中将得到每个矩阵相加得到d矩阵,将d矩阵中所有不为“0”的元素置为“1”,再由顶点到顶点是连通的性质得到可达矩阵)。
二、用程序实现<2><3>两个步骤:源代码如下:#include<stdio.h>int main(){int x,i,j,k;printf("请输入图的顶点数:");scanf("%d",&x);int a[x][x],b[x][x],c[x][x],d[x][x];//a是图的邻接矩阵由d得出图的可达矩阵printf("请依次输入每行数据:\n");for(i = 0 ; i < x ; i++){for(j = 0 ; j < x ; j++){scanf("%d",&a[i][j]);b[i][j] = a[i][j];c[i][j] = a[i][j];d[i][j] = a[i][j];}getchar();}//依次求出a的2至x-1次方int t = 2;while(t < x){printf("A的%d次方:\n",t++);for(i = 0 ; i < x ; i++){for(j = 0 ; j < x ; j++){int sum = 0;for(k = 0 ;k < x ; k++){sum = sum + b[i][k] * a[k][j];}c[i][j] = sum;d[i][j] += c[i][j];printf("%d\t",c[i][j]);}printf("\n");}for(i= 0 ; i < x ; i ++)for(j = 0 ; j < x ; j++)b[i][j] = c[i][j];}//输出可达矩阵并判断是否为强连通图int flag = 1;printf("可达矩阵为:\n");for(i= 0 ; i < x ; i ++){for(j = 0 ; j < x ; j++){if(d[i][j] > 0 || i == j)printf("1\t");else{printf("0\t");flag = 0;}}printf("\n");}if(flag == 1)printf("由可达矩阵知此图是强连通图!\n");elseprintf("由可达矩阵知此图不是强连通图!\n");return 0;}实例测试:教材p127图5-13教材p125 图5-9(a)。
图的连通性

有向图中,极大强连通子图=强连通分量
G1的两个强连通分量 G1
V’是连通图G的一个顶点子集。在G中删去V’及与V’ 相关联的边后图不连通,则称V’是G的割顶集。 最小割顶集中顶点的个数,记成K(G),叫做G的连通度。
规定: K(完全图)=顶点数-1 K(不连通图)=K(平凡图)=0
K(G)=l时,割顶集中的那个顶点叫做割顶。 没有割顶的图叫做块,G中成块的极大子图叫做G的块。
LOW(U)值的计算步骤如下:
在算法执行中,对任何顶点U计算LOW(U)值是不断修改 的,只有当以U为根的dfs子树和后代的LOW值、dfn值产 生后才停止。
图中(7,1)应为(7,7)
如r被选为根,则r 成为割顶当且仅当 它有不止一个儿子 点。
顶点U的标号函数LOW(U): LOW(U)=min{dfn(),LOW(s),dfn(W)} 其中:S是U的一个儿子,(U,W)是后向边
LOW(U)是U或U的后代所能追溯到的最早 (序号小)的祖先结点序号。
顶点U<>r作为图的割顶当且仅当U有一个儿子, 使得LOW(S)>=dfn(U),即S和S的后代不会追溯 到比U更早的祖先点。
G1 K(G1)=0
G2 K(G2)=1
G3 K(G3)=3
G4 K(G4)=5-1=
威廉王迷宫
前向边(实线部分) 后向边(虚线部分) Dfn(x):顶点x被首次访问的次序。 Dfn(x)=I表示x是第I个首次被访问的节点 称为深度优先搜索序数。
Dfs树
如U不是根,U成 为割顶当且仅当 存在U的某一个儿 子顶点S,从S或S 的后代点到U的祖 先点之间不存在 后向边
图的连通性
G1
G2
在无向图中,如果从顶点V到V’有路径,则称V和V’是连通的。 在有向图中,如果从顶点V到V’有路径,并且从V’到V有路径, 则称V和V’是强连通的。 如果对于图中任意两个顶点Vi,Vj,Vi和Vj都是连通的,则称连通图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB的实现,此方法可以知道有几个连通域,并且知道各个顶点的归属。
Branches中显示各个节点的归属,同一行的为同一连通分支中的节点。
其第一列为它的分类数。
例如下图,有五个连通分支,1、2、3在同一个连通分支中。
这是上图的邻接矩阵,同一节点间为0。
Branches中的显示内容,第一列为连通分支数,后边跟着的是给连通分支中的节点。
第一行就表示1、2、3为一个连通分支,4自己在一个连通分支中等等。
function [Branches,numBranch]=Net_Branches(ConnectMatrix)
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
% This program is designed to count the calculate connected components in networks.
% Usage [Cp_Average, Cp_Nodal] = Net_ClusteringCoefficients(ConnectMatrix,Type)
% Input:
% ConnectMatrix --- The connect matrix without self-edges.
% Output:
% Branches --- A matrix, each rows of which represents the
% different connected components.
% numBranch --- The numbers of connected components in network
%
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % Refer:
% Ulrik Barandes <A faster algorithm for betweennes centrality>
% Written by Hu Yong, Nov,2010
% E-mail: carrot.hy2010@
% based on Matlab 2008a
% Version (1.0),Copywrite (c) 2010
% Input check-------------------------------------------------------------%
[numNode,I] = size(ConnectMatrix);
if numNode ~= I
error('Pls check your connect matrix');
end
% End check---------------------------------------------------------------%
Node = [1:numNode];
Branches = [];
while any(Node)
Quence = find(Node,1); %find a non-zero number in Node set
subField=[]; %one component
% start search
while ~isempty(Quence)
currentNode = Quence(1);
Quence(1) = []; %dequeue
subField=[subField,currentNode];
Node(currentNode)=0;
neighborNode=find(ConnectMatrix(currentNode,:));
for i=neighborNode
if Node(i) ~= 0 %first found
Quence=[Quence,i];
Node(i)=0;
end
end
end
subField = [subField,zeros(1,numNode-length(subField))];
Branches = [Branches;subField]; %save
end
numBranch = size(Branches,1);。