西门子PID功能块说明

合集下载

西门子S7-200SMARTPID回路控制,配置PID向导,查看项目组件

西门子S7-200SMARTPID回路控制,配置PID向导,查看项目组件

西门子S7-200SMARTPID回路控制,配置PID向导,查看项目组件本篇我们继续来学习西门子S7-200 SMART的PID回路控制,首先介绍一下如何配置PID向导。

在工具菜单功能区单击PID按钮打开PID回路向导对话框,选择要组态的回路,最多可组态8个回路,这里我们选择回路0。

选择回路0在左侧的树视图中单击回路0节点,在此定义回路名称。

单击参数节点,在此设置回路参数,如果不需要比例作用,增益设置为0.0,如果不需要积分作用,积分时间设置为无穷大值INF,如果不需要微分作用,微分时间设置为0.0,采样时间是PID控制回路对反馈采样以及重新计算输出值的时间间隔,这里我们均采用默认值,后面在实验中进行自整定。

设置回路参数单击输入节点,在此指定回路过程变量的标定方式,根据外接模拟量输入情况,类型选择単极型,标定选项中设置过程变量范围0到27648,对应回路设定值范围0.0到100.0,该值是给定值占过程变量量程的百分比,在本例中也可以认为是工程量温度值。

设置输入参数点击输出节点,在此指定回路输出的标定方式,根据外接输出信号类型选择数字量,循环时间即PWM输出的周期,采用默认值0.1秒。

设置输出参数单击报警节点,在此设定回路报警选项,启用下限报警、上限报警、模拟量输入错误报警,指定报警上下限值以百分比表示,以及模拟量输入模块连接到PLC的位置。

报警参数设置单击代码节点,在此自定义向导生成的子程序和中断程序的名称,选择添加PID的手动控制,当处于手动模式时不执行PID计算,回路输出由程序控制。

单击存储器分配节点,PID向导为完成PID运算需要120个字节的位存储器,为其指定起始地址,要保证程序中没有使用这些存储器,单击建议按钮向导将自动设定当前程序中未用的位存储器,这里我们采用VB0为起始地址。

添加PID手动控制单击组件节点,在此列出了PID向导生成的组件,包括一个初始化PID的子程序、一个用于循环执行PID功能的中断程序、一个120个字节的数据页以及一个符号表,单击生成按钮完成PID向导配置,向导生成的项目组件添加到了项目中。

西门子PID功能块介绍

西门子PID功能块介绍
• SFB41/FB41 (CONT_C), 连续控制方式; • SFB42/FB42 (CONT_S), 步进控制方式; • SFB43/FB43 (PULSEGEN), 脉冲宽度调制器; 注意:SFB41/42/43,与 FB41/42/43 兼容,可以用于 CPU 313C、CPU 313C-2 DP/PTP 和 CPU 314C-2 DP/PTP 中。
6 功能块介绍 ......................................................................................................... 13 6.1 连续调节功能SFB 41/FB 41 “CONT_C”..................................................... 13
1.1 应用
借助于由你组态大量模块组成的控制器,可以完成带有 PID 算法的实际控制器。控制效率,即 处理速度取决于你所使用的 CPU 性能。对于给定的 CPU,必须在控制器的数量和控制器所需 要执行频率之间找到一个折衷方案。连接的控制电路越快,所安装的控制器数量越少,则每个
4 参数赋值工具介绍 .............................................................................................. 10 4.1 调试PID参数的用户界面 .............................................................................. 11 4.2 获取在线帮助的途径 .................................................................................... 12

西门子300中PID的使用

西门子300中PID的使用

PID的调用要在OB35中完成.在ob35里面插入FB41,方框顶上会有红字,输入一个DB块如“DB20”。

系统会问你要不要生成这个DB,选yes就可以。

大部分参数不要填,默认就行,下面是常用参数,用变量连接:1、MAN_ON:用一个bool量,如m0.0,为true则手动,为false则自动;2、cycle:T#100MS,这个值与ob35默认的100ms一致;3、SP_INT:MD2,是hmi发下来的设定值,0-100.0的范围,real型;4、PV_IN:MD6,实际测量值,比如反馈的氧浓度,要从piw×××转换为实际的工程量(使用FC105);5、MAN:MD10 (该地址也可以是从上位机设定的地址),是手动状态下的输入值,real型。

手动设多少输出将为多少。

6、GAIN: MD100(该地址也可以是从上位机设定的地址如DB 块的地址,这样可以从上位机设P 参数了),默认写1-2吧(系统默认是2),调试的时候再改。

7、TI:MW120, 默认可以写T#30S吧,调试的时候改;8、DEAD_W:MD122,死区,就是sp和pv的偏差死区,0-100.0的范围,默认0,调试的时候改;输出:((死区:又叫死区宽度,在控制系统中,某些执行机构如果动作频繁,会导致小幅震荡,造成严重的机械磨损。

从控制要求来说,很多系统又允许被控量在一定范围内存在误差。

我们允许被控量的误差大小,被称为PID的死区宽度;死区是如何工作的呢?当误差的绝对值小于死区宽度时,死区非线性的输出量(即 PID控制器的输入量)为0 ,这时PID 控制器的输出分量中,比例部分和微分部分为0,积分部分保持不变,因此PID的输出保持不变,PID控制器起不到调节作用;当误差的绝对值超过死区宽度时,开始正常的PID 控制在FB41 中,死区宽度是“DEADB_W”PID的输入量 = 0 偏差的绝对值|ev|< "DEADB_W"= ev 偏差的绝对值|ev|>= "DEADB_W" ))9、LMN:MD126,把MD126再用fc106转换到pqw××,如果pid运算结果不再有工艺条件其他限制可以用LMN_PER更简单就不用fc106了。

西门子S7-300_400PLC的PID调节功能模块的详细说明

西门子S7-300_400PLC的PID调节功能模块的详细说明

Group Topic1Simple PID Controllers for the S7-300/400OverviewThis programming example shows a method for programming a Proportional Integral Derivative (PID) controller on a S7 PLC. The example is already a fully functioning program, needing only for the user to tie the actual inputs and outputs to appropriate variables to be a working controller. This program is suitable for simple PID applications.For complex PID applications, Siemens offers the SIMATIC S7 Standard Control software package, which offers numerous features that this applications tip lacks. These features include alarming, scaling, deadband control, feed-forward control, range limiting, ramp/soak steps, and an integrated scheduler. The Standard Control package includes a Windows-based configuration tool that greatly simplifies configuring and tuning a PID loop.To prepare a user to make these programming changes, the text will explain the basics of the PID controller implemented in the sample code. Below is a brief outline for the rest of this document:1.What does the example program do?2.Where do you use a PID controller?3.Auto Mode vs. Manual Mode4.What does a PID controller do, and how?5.What are the Sample, Gain, Rate, and Reset?6.How is the Error figured?7.How is the Proportional term figured?8.How is the Integral term figured?9.How is the Derivative term figured?10.What if the final Output is too high?11.What should the user add to make the program work for his system?12.Adjusting the Reset, Rate, Gain, Sample time and Mode during run-timePID ExploredWhat does the example program do?示例程序的用途?This programming example is a skeleton program for a true PID controller and, as such, requires that the user make a few additions (i.e. read/write input/output variables) before it is fully functional. Before discussing these, however, let’s get a better feel for what a PID program actually does through a brief example.When do you use a PID controller?Figure 2.1 shows a picture of an example system to which a user might connect a PID controller. The figure shows a water tank sitting atop a hot plate, with a temperature control device for the hot plate and a small, monitored turbine for measuring the rate of the steam flow. This is a system that will work with a PID controller because of the relationship between the two variables: You can directly control the steam flow rate by adjusting the temperature of the hot plate. Figure 2.2 shows how both variables relate to the PID controller.The variable which represents the state of the system being controlled is called the ‘Process Variable.’ In our example above, you can see that the rate at which the steam spins the turbine is a good indicator of the event that we are trying to control: the speed at which the water is being boiled off. The output is the variable which, being altered by the controller, can affect the process variable by different degrees based on its intensity -- By turning the hot plate up, the water boils more quickly, more steam is produced, and the turbine’s speed increases. Therefore, when a variable that accurately reflects the state of the process and an adjustable control which proportionally affects the process variable, then it is possible to use a PID controller. Common systems using PID controllers are air conditioning systems, solution mixing, heaters, etc.Auto Mode vs. Manual Mode自动模式和手动模式There are two settings available on our PID controller. Putting a controller in Manual mode causes the PID loop do nothing, so that the user can directly control the output. The second, Auto, is the mode in which the PID loop is actually controlling the system. For the rest of this text, it will be assumed that the controller is in Auto mode.What does the PID controller do, and how does it do it? PID控制器作些什么?如何去做?Quite simply, a PID controller adjusts the value of its output to try and balance the value of the process variable to a given ‘setpoint.’To calculate the output value for a given instance, the controller finds the value of three different terms (using its user defined Sample time, Gain, Rate, and Reset values along with the calculated Error value): a Proportional term, an Integral term, and a Derivative term.Output = M P + M I + M DFormula 2.1What are the Sample, Gain, Rate, and Reset, and where do they come from?The sample rate is the cycle time (in milliseconds) at which the PID loop recalculates the output. The gain controls the sensitivity of the output calculation by affecting the influence of all the terms. The reset is a time given in milliseconds which is used to increase or decrease the influence of the Integral term in the equation. Finally, the rate value is used to control the influence of the Derivative term in the equation. Each of these values needs to be preset by the user before the PID controller starts.If the user does not want integral action (no I in the PID calculation), then a value of infinity or a value of 0 should be specified for the integral time. If the user does not want derivative action (no D in the PID calculation), then a value of 0 should be specified for the derivative time. If the user does not want proportional action (no P in the PID), then a value of 0 should be specified for the gain (gain is normally a multiplier in the integral and derivative coefficient calculation, but is removed from the coefficient calculation, if gain = 0, to allow I, ID, or D loop control).How is the Error figured? 误差是如何计算的?Error is figured as the difference between the normalized values of the setpoint and the process variable. The controller calculates this value in three steps. The first two steps are to change both the setpoint and the process variable into values that are based on a 0 to 1 (normalized) scale. This is done using the formulae:SP = raw_SP / max_valPV = raw_PV / max_valFormulae 2.2 & 2.3In the above formulae, the raw_SP and raw_PV values are the actual values that come into the controller, and the max_val term is the maximum value that either can take on. For example, ifthe values of raw_SP and raw_PV were being read in as values from 0 to 27,648, then the max_val term would have the value 27,648.After these two values have been calculated, the error term is figured as follows:Error = SP - PVFormula 2.4How is the Proportional term calculated?The proportional term, M P, is calculated using the following equation:M P = Gain * ErrorFormula 2.2Going back to our earlier example with the water tank, the proportional term says that as the speed of the turbine increases further above the setpoint, the heat is decreased proportionally to bring the speed down. As the turbine slows below the setpoint, the heat is increased to proportionally to bring the speed up.How is the Integral Term calculated? 积分项如何计算?The integral term, M I, is calculated using the following equation:M I = Bias + (C I * Error)Formula 2.3In this equation, two new terms are introduced. The first, C I, is the coefficient系数 of the Integral term, and is calculated from the Reset:C I = Gain * (Sample / Reset)Formula 2.4Both the Sample and Reset terms were introduced earlier, but in this equation their uses become apparent. The larger the Reset value is, the less impact the integral term will have onthe output, while larger Sample times give it a bigger influence (Sample time also affects the Derivative term, which will be explained later).The Bias term in Formula 2.3 represents (technically speaking) the area under the curve of a graph plotting the Error vs. time.Abstractly, however, the Bias value (ideally) grows to an output level that keeps the system stable, letting the Proportional and Derivative terms handle any small fluctuations. In relation to our water tank example from earlier, this means that eventually the Bias portion of M I would be the only significant contribution to the final output value, and the M P and M D terms would only be active (non-zero) when a fluctuation occurred.At a time n the equations for M I and the Bias term are:M I,n = Bias n-1 + (C I * Error)Bias n = M I,nFormula 2.5How is the Derivative term calculated?微分项如何计算?The derivative formula for a given time n is calculated with the following equation:M D = C D * (PV n-1 - PV n)Formula 2.6This formula only introduces 1 new term, C D, which is calculated using Formula 2.7.C D = Gain * (Rate / Sample)Formula 2.7The Sample term (which is also used in figuring C I) is the sample time from earlier. In the Derivative term, the Sample time is indirectly proportional to the derivative component, while the Rate is directly proportional.What if the final output value is too high?如果最终输出值太高怎么办?During many processes (such as the water tank example earlier), the Process variable doesn’t respond immediately to a change in the value of the output -- if the water in the tank were ice cold, then even an output of 100% is not going to cause an instantaneous increase in steam flow. Likewise, setting the output to 0% when the water is boiling doesn’t provide an immediate reduction in steam production.Because of this ‘system inertia,’ the output value for a give time could take on a value greater than 100% or less than 0%. In response to this, the PID program implements Output Clamping. If the output is greater than 100%, then it is clamped to 100%. If the output falls lower than 0%, then it is held to 0%.The only problem left to solve lies with the Bias portion of the Integral term. When the output for a system remains at 100% for a long period of time (such as when heating up cold water in our tank from earlier), the integral sum (which the Bias term represents) can grow to extremely large values. This means that when the variable starts responding, the Bias term will be keeping the calculated output well over 100% until it can be wound down. This generally results in the output swinging wildly from one limit to the other, but can be avoided using Bias Clamping. There are a few different types of Bias Clamping, but the only pertinent one here is the one used in the program. There are two different conditions which cause Bias clamping to occur and two formulae as well:If Output > 1Bias = 1 - (M P + M D)Formula 2.8If Output < 0Bias = -(M P + M D)Formula 2.9As the formulae show, when the Output grows to be greater than 1, the value of the Bias is adjusted so that the sum of M P, M D, and the Bias will be 1. Likewise, when the Output slips below 0, the value of the Bias is adjusted so that the above sum will be 0. The adjusted Bias value is then clamped such that its maximum value is 1 and its minimum value is 0.What should be added to make the program work for the system?1. Read in the Process Variable2. Write the Output3. Set the Setpoint4. Adjust the scale for the Input and Setpoint5. Adjust the scale for the Output6. Adjust the Reset, Rate, Gain, and Sample time values.Read in the Process VariableThe Process variable (the variable which accurately reflects the state of the system to be controlled) should be passed to the PV parameter of the function block.Write the OutputThe OUT parameter of the PID loop should be set to the analog output being controlled in the PID function block call.Set the SetpointThe user’s code must pass the Setpoint value to the PID function block via the SP parameter.Adjust the scale for the Process Variable and Setpoint 调整过程值和设定点值。

西门子PID模块的使用经验

西门子PID模块的使用经验

西门子PID模块的使用经验西门子网站有文档专门说明pid软件模块的使用,可是真正要用起来还是有点混乱,参数太多,不知道取舍了,呵呵。

其实用plcsim简单测试下还是可以做到心中有数,到了现场调试不用慌了。

一、在ob35里面插入FB41,方框顶上会有红字,输入一个类似“DB120”的,系统会问你要不要生成这个Db,yes就可以二、大部分参数不要填,默认就行,下面是常用参数,用变量连接:1、MAN_ON:用一个bool量,如m0.0,为true则手动,为false则自动;2、cycle:T#100MS,这个值与ob35默认的100ms一致;3、SP_INT:MD2,是hmi发下来的设定值,0-100.0的范围,real型;4、PV_IN:md6,实际测量值,比如压力,要从piw×××转换为0-100.0的量程;5、MAN:MD10,op值,也就是手动状态下的阀门输出,real型,0-100.0的范围;6、GAIN:md14,Pid的P啊,默认写1-2吧(系统默认是2),调试的时候再改7、TI:MW20,pid的i啊.默认写T#30S吧,调试的时候改;8、DEAD_W:md22,死区,就是sp和pv的偏差死区,0-100.0的范围,默认0,调试的时候改;输出:9、LMN:MD26,0-100。

0,最终再用fc106转换为word型move到pqw×××,如果pid 运算结果不再有工艺条件其他限制可以用LMN_PER更简单就不用fc106了。

三、用plcsim模拟1、手动man_on=true,看输出是否等于man;2、自动man_on=false,调整pv或者sp,使得有偏差大于死区,看输出变化,这里的模拟只能说明pid工作了,不能测试实际调节效果啊。

3、如果需要反作用,有三种方法:a、pv和sp颠倒输入b、p值用负的c、输出用100减在 STEP 7 标准库 (SIMATIC Manager: "File > Open > Libraries > ...") "PID Control Blocks" (FBs) 目录 or "System Function Blocks" (SFBs) 目录中可以这些功能块。

【步骤详解】西门子PLCPID组态设置及PID常见问题解答

【步骤详解】西门子PLCPID组态设置及PID常见问题解答

【步骤详解】西门⼦PLCPID组态设置及PID常见问题解答1PID控制知识讲解S7-200 SMART能够进⾏PID控制。

S7-200 SMART CPU最多可以⽀持8个PID控制回路(8个PID指令功能块)PID是闭环控制系统的(⽐例-积分-微分)PID控制器根据设定值(给定)与被控对象的实际值(反馈)的差值,按照PID算法计算出控制器的输出量,控制执⾏机构去影响被控对象的变化。

PID控制是负反馈闭环控制,能够抑制系统闭环内的各种因素所引起的扰动,使反馈跟随给定变化。

根据具体项⽬的控制要求,在实际应⽤中有可能⽤到其中的⼀部分,⽐如常⽤的是PI(⽐例-积分)控制,这时没有微分控制部分。

PID算法在S7-200 SMART中的实现PID控制最初在模拟量控制系统中实现,随着离散控制理论的发展,PID也在计算机化控制系统中实现。

2PID向导组态设置Micro/WIN SMART提供了PID Wizard(PID指令向导),可以帮助⽤户⽅便地⽣成⼀个闭环控制过程的PID算法。

此向导可以完成绝⼤多数PID运算的⾃动编程,⽤户只需在主程序中调⽤PID向导⽣成的⼦程序,就可以完成PID控制任务。

PID向导既可以⽣成模拟量输出PID控制算法,也⽀持开关量输出;既⽀持连续⾃动调节,也⽀持⼿动参与控制。

建议⽤户使⽤此向导对PID编程,以避免不必要的错误。

PID向导编程组态步骤:1.在Micro/WIN SMART中的⼯具菜单中选择PID向导:图1. 在⼯具栏中选择PID向导图2.在项⽬树中打开'向导'⽂件夹,然后双击'PID',或选择'PID'并按回车键。

定义需要配置的PID回路号图3.在此对话框中选择要组态的回路图4.最多可组态 8 个回路。

在此对话框上选择回路时,PID 向导左侧的树视图随组态该回路所需的所有节点⼀起更新。

2.为回路组态命名图5.可为回路组态⾃定义名称。

西门子FB41中PID功能块说明和调整方法

西门子FB41中PID功能块说明和调整方法

西门子FB41中PID功能块说明和调整方法FB41称为连续控制的PID用于控制连续变化的模拟量,与FB42的差别在于后者是离散型的,用于控制开关量,其他二者的使用方法和许多参数都相同或相似。

PID的初始化可以通过在OB100中调用一次,将参数COM-RST置位,当然也可在别的地方初始化它,关键的是要控制COM-RST;PID的调用可以在OB35中完成,一般设置时间为200MS,一定要结合帮助文档中的PID框图研究以下的参数,可以起到事半功倍的效果以下将重要参数用黑体标明.如果你比较懒一点,只需重点关注黑体字的参数就可以了。

其他的可以使用默认参数。

A:所有的输入参数:COM_RST: BOOL: 重新启动PID:当该位TURE时:PID执行重启动功能,复位PID内部参数到默认值;通常在系统重启动时执行一个扫描周期,或在PID进入饱和状态需要退出时用这个位;MAN_ON:BOOL:手动值ON;当该位为TURE时,PID功能块直接将MAN的值输出到LMN,这可以在PID框图中看到;也就是说,这个位是PID的手动/自动切换位;PEPER_ON:BOOL:过程变量外围值ON:过程变量即反馈量,此PID可直接使用过程变量PIW(不推荐),也可使用PIW规格化后的值(常用),因此,这个位为F ALSE;copyright plc资料网P_SEL:BOOL:比例选择位:该位ON时,选择P(比例)控制有效;一般选择有效;I_SEL:BOOL:积分选择位;该位ON时,选择I(积分)控制有效;一般选择有效;INT_HOLD BOOL:积分保持,不去设置它;I_ITL_ON BOOL:积分初值有效,I-ITLVAL(积分初值)变量和这个位对应,当此位ON时,则使用I-ITLVAL变量积分初值。

一般当发现PID功能的积分值增长比较慢或系统反应不够时可以考虑使用积分初值;D_SEL :BOOL:微分选择位,该位ON时,选择D(微分)控制有效;一般的控制系统不用;CYCLE :TIME:PID采样周期,一般设为200MS;SP_INT:REAL:PID的给定值;PV_IN :REAL:PID的反馈值(也称过程变量);PV_PER:WORD:未经规格化的反馈值,由PEPER-ON选择有效;(不推荐)MAN :REAL:手动值,由MAN-ON选择有效;GAIN :REAL:比例增益;TI :TIME:积分时间;TD :TIME:微分时间;TM_LAG:TIME:我也不知道,没用过它,和微分有关;DEADB_W:REAL:死区宽度;如果输出在平衡点附近微小幅度振荡,可以考虑用死区来降低灵敏度;LMN_HLM:REAL:PID上极限,一般是100%;LMN_LLM:REAL:PID下极限;一般为0%,如果需要双极性调节,则需设置为-100%;(正负10V输出就是典型的双极性输出,此时需要设置-100%);PV_FAC:REAL:过程变量比例因子PV_OFF:REAL:过程变量偏置值(OFFSET)LMN_FAC:REAL:PID输出值比例因子;LMN_OFF:REAL:PID输出值偏置值(OFFSET);I_ITLVAL:REAL:PID的积分初值;有I-ITL-ON选择有效;DISV :REAL:允许的扰动量,前馈控制加入,一般不设置;B:部分输出参数说明:LMN :REAL:PID输出;LMN_P :REAL:PID输出中P的分量;(可用于在调试过程中观察效果)LMN_I :REAL:PID输出中I的分量;(可用于在调试过程中观察效果)LMN_D :REAL:PID输出中D的分量;(可用于在调试过程中观察效果)C:规格化概念及方法:PID参数中重要的几个变量,给定值,反馈值和输出值都是用0.0~1.0之间的实数表示,而这几个变量在实际中都是来自与模拟输入,或者输出控制模拟量的因此,需要将模拟输出转换为0.0~1.0的数据,或将0.0~1.0的数据转换为模拟输出,这个过程称为规格化规格化的方法:(即变量相对所占整个值域范围内的百分比对应与27648数字量范围内的量)对于输入和反馈,执行:变量*100/27648,然后将结果传送到PV-IN和SP-INT对于输出变量,执行:LMN*27648/100,然后将结果取整传送给PQW即可;D:PID的调整方法:一般不用D,除非一些大功率加热控制等惯大的系统;仅使用PI即可,一般先使I等于0,P从0开始往上加,直到系统出现等幅振荡为止,记下此时振荡的周期,然后设置I为振荡周期的0.48倍,应该就可以满足大多数的需求。

西门子PID功能块说明

西门子PID功能块说明

输出下限副
REAL REAL REAL REAL REAL REAL REAL
0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 LMN=(output of LMNLIMIT)*LMN_FAC+ LMN_OFF Output of PR_IN=PV_PER*100/27648 Output of PV_NORM = (output of CRP_IN) * PV_FAC + PV_OFF
REAL
100%
DB*.DBD40.0
LMN_LLM PV_FAC PV_OFF LMN_FAC LMN_OFF I_ITLVAL DISV LMN LMN_PER QLMN_HLM QLMN_LLM LMN_P LMN_I LMN_D PV ER
in in in in in in in out out out out out out out out out
输出值 输出值 高限报警输出 低限报警输出 比例输出 积分输出 微分输出 过程值 偏差信号
REAL WORD BOOL BOOL REAL REAL REAL REAL REAL
W#16#0000 LMN_PER=LMN*27648/10 FALSE FALSE 0.0 0.0 0.0 0.0 0.0
FALSE TRUE
COM_RST=TRUE(1)时PID复位位。 COM_RST=FALSE(0)时复位无效。 MAN_ON=1输出手动值。 MAN_ON=0输出自动值。 PVPER_ON=1输入经处理的PV_PER的值 。 PVPER_ON= 0 输入PV_IN的 值。 P_SEL=1比例作用启动。 P_SEL=0比例作用停止。 I_SEL=1积分作用启动。 I_SEL=0积分作用停止。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BOOL BOOL BOOL BOOL
FALSE / TRUE FALSE / TRUE FALSE / TRUE FALSE / TRUE FALSE / TRUE >=1ms -100.0 to +100.0(%) or phys.value 1 -100.0 to +100.0(%) or phys.value 1
PV_IN
in
过程值
REAL
0.0 Output of PV_NORM = (output of CRP_IN)* PV_FAC + PV_OFF
DB*.DBD10.0
PV_PER
in
外围过程值
WORD -100.0 to +100.0(%) or phys.value 1
W#16#0000
DB*.DBD14.0REAL Nhomakorabea100%
DB*.DBD40.0
LMN_LLM PV_FAC PV_OFF LMN_FAC LMN_OFF I_ITLVAL DISV LMN LMN_PER QLMN_HLM QLMN_LLM LMN_P LMN_I LMN_D PV ER
in in in in in in in out out out out out out out out out
MAN GAIN TI TD TM_LAG DEADB_W
in in in in in in
手动值 增益 积分时间 微分时间 微分延时 死区
REAL REAL TIME TIME TIME REAL
0.0 2
DB*.DBD16.0 DB*.DBD20.0 DB*.DBD24.0 DB*.DBD28.0 DB*.DBD32.0 DB*.DBD36.0
输出值 输出值 高限报警输出 低限报警输出 比例输出 积分输出 微分输出 过程值 偏差信号
REAL WORD BOOL BOOL REAL REAL REAL REAL REAL
W#16#0000 LMN_PER=LMN*27648/10 FALSE FALSE 0.0 0.0 0.0 0.0 0.0
DB*.DBD44.0 DB*.DBD48.0 DB*.DBD52.0 DB*.DBD56.0 DB*.DBD60.0 DB*.DBD64.0 DB*.DBD68.0 DB*.DBD72.0 DB*.DBD76.0 DB*.DBD78.0 DB*.DBD78.1 DB*.DBD80.0 DB*.DBD84.0 DB*.DBD88.0 DB*.DBD92.0 DB*.DBD96.0
FALSE TRUE
COM_RST=TRUE(1)时PID复位位。 COM_RST=FALSE(0)时复位无效。 MAN_ON=1输出手动值。 MAN_ON=0输出自动值。 PVPER_ON=1输入经处理的PV_PER的值 。 PVPER_ON= 0 输入PV_IN的 值。 P_SEL=1比例作用启动。 P_SEL=0比例作用停止。 I_SEL=1积分作用启动。 I_SEL=0积分作用停止。
管脚名称 EN COM_RST MAN_ON
类型
作用 使能
数据类型 BOOL BOOL BOOL
有效值范围 FALSE / TRUE FALSE / TRUE FALSE / TRUE
默认值
说明 EN=TRUE(1)时启动PID。 EN=FALSE(0)时PID无效。
在DB块中的地址
in in
复位开关 手动/自动开关
TRUE TRUE FALSE FALSE FALSE T#1S 0.0
DB*.DBD0.3 DB*.DBD0.4 DB*.DBD0.5 DB*.DBD0.6
微分作用开关 循环时间 设定值
BOOL TIME REAL
D_SEL=1微分作用启动。 D_SEL=0微分作用停止。
DB*.DBD0.7 DB*.DBD2.0 DB*.DBD6.0
DB*.DBD0 DB*.DBD0.1
PVPER_ON
in
过程变量输入开关 BOOL
FALSE / TRUE
FALSE
DB*.DBD0.2
P_SEL I_SEL INT_HOLD I_ITL_ON D_SEL CYCLE SP_INT
in in in in in in in
比例作用开关 积分作用开关
>=CYCLE >=CYCLE >=CYCLE/2 >=0.0(%) or phys.value 1 LMN_LLM… 100.0(%) or phys.value2 -100.0…LMN_HLM (%) or phys.value 2
T#20S T#20S T#2S 0.0
LMN_HLM
in
输出上限副
输出下限副
REAL REAL REAL REAL REAL REAL REAL
0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 LMN=(output of LMNLIMIT)*LMN_FAC+ LMN_OFF Output of PR_IN=PV_PER*100/27648 Output of PV_NORM = (output of CRP_IN) * PV_FAC + PV_OFF
相关文档
最新文档