MIDAS入门-支座模拟

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MIDAS中支座的模拟

弹性连接刚性与刚性连接的区别

1、概念解释:

1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接由两个节点构成,两

节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大刚度的100000倍,

此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接的刚度过大,导致计

算奇异。

2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个刚性连接是由一个

主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从节点的相对位移由

刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间无相对位移,如果

约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动位移而导致主从节

点有相对的平动位移。

2、弹性连接定义多支座反力:

注:如图所示,可以把端横梁定义成弹性连接的刚性,这样

端部刚度越大,分配下部的支反

力越均匀,如左边显示,三个支座反力均相等;

而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反力最大,这样的结

果是错误,建议选用刚性连接的方法来定义单梁多支座。

3、刚性连接定义多支座反力:

注:定义多支座反力,尽量选用刚性连接来做。还有一个问题,用弹性连接的刚性容易出错,

因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型中有较大截面时,如

承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异;

4、建议:

1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有大刚度单元时,建

议采用刚性连接来处理,防止计算奇异。

2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;刚性连接就是两

个节点之间有“磁铁”左右,两者之间无刚度约束,而是自由度耦合的方式。

3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能激活,不能钝化。

4)在在利用midas做分析的时候,如果模拟满堂支架,建议刚度在10的6次方KN/m,如果

定义支座轴向刚度,大概在106~107次KN/m左右。

对于空间结构而言,墩柱与梁体连接条件,支座刚度的模拟至关重要。在我们做的“多支座节点模拟”技术资料里,重点说明了多支座模拟的过程。

首先“在支座下端建立节点,并将所有的支座节点按固结约束”,这是一种模拟实际情况的建模方法。意思是:在墩顶处结构是全约束的,在各个方向都不可能有位移和转角。

然后“复制支座节点到梁底标高位置生成支座顶部节点,并将支座节点与复制生成的顶部节点用“弹性连接”中的“一般类型”进行连接,并按实际支座刚度定义一般弹性连接的刚度”,这句话的意思是相当于建立一个支座单元,它的三个方向的刚度值则是由实际工程中支座的类型和尺寸来提供。

然后再建立支座顶部节点与主梁节点之间的联系。此时将利用Civil提供的“刚性连接”,以主梁节点作为主节点,支座顶部单元作为从节点,将其连接起来。这样做的意思是:将主梁节点与支座顶部节点形成一个受力的整体,目的也是为了真实模拟其受力情况。

在MIDAS中,在使用“弹性连接”中的一般类型时,会要求输入您说到的SDX,SDY,SDZ这三个值,它们分别是指:SDx:单元局部坐标系x轴方向的刚度。SDy:单元局部坐标系y轴方向的刚

度。SDz:单元局部坐标系z轴方向的刚度。另外,在弯桥中需要定义支座节点的局部坐标系和BETA角。

这三个值是由由实际桥梁工程使用的橡胶支座类型决定的,也就是说与支座的刚度系数指标有关。在桥梁工程中,一般使用较多的是板式支座和盆式支座。其中大桥盆式支座使用相对较多,在输入这种类型支座的刚度值时,一般要么很大,要么取0;中小桥多用板式支座,在输入刚度值时可以根据支座橡胶层厚度来计算即可。具体的计算式如下:

板式橡胶支座的刚度计算式:

单元局部坐标系X轴方向刚度:SDx=EA/L

单元局部坐标系y ,z轴方向刚度:SDy =SDz=GA / L

单元局部坐标系x轴方向转动刚度:SRx=GIp/L

单元局部坐标系y.轴方向转动刚度:SRy=EIy/L

单元局部坐标系y.轴方向转动刚度:SRz=EIz/L 式中:E、G为板式橡胶支座抗压、抗剪弹性模量;A为支座承压面积;Iy , Iz为支座承压面对局部坐标轴y、z的抗弯惯性矩;Ip 为支座抗扭惯性矩;L为支座净高。

固定盆式支座以较大的刚度约束板体的位移而放松对转动的约束,因此模拟在墩顶设置一个横、纵、竖二维抗压、抗剪的大值,各方向抗弯的小值.即SDx=SDy=SDz=无穷大,而SRx=SRy=SRz=0的一个弹性连接

五.支座〔边界条件〕

1.几中常用边界条件

a.桥墩底部固接

在模型>边界条件>一般支承中将六个自由度全部选中。

b.主梁支座

只约束竖向:在模型>边界条件>一般支承中仅选择Dz。

约束竖向和纵向:在模型>边界条件>一般支承中选择Dz和Dx。

约束竖向和横向:在模型>边界条件>一般支承中选择Dz和Dy。

约束竖向、纵向和横向:在模型>边界条件>一般支承中选择Dz、Dx、Dz。

c.主梁与桥墩的连接

一般来说在主梁的建模点和主梁底〔也需要建立一个节点〕之间用刚性连接连接〔使用模型>边界条件>刚性连接功能,主节点可选择为主梁建模点〕。

桥墩的顶点与主梁底的连接可用弹性连接连接,弹性连接的刚度可按厂家提供的支座产品说明书上的竖向和水平向刚度。

只约束竖向:在模型>边界条件>弹性连接中仅输入SDx。

约束竖向和纵向:在模型>边界条件>弹性连接中仅输入SDx和SDz〔或SDz〕。

约束竖向和横向:在模型>边界条件>弹性连接中仅输入SDx和SDyz〔或SDy〕。

约束竖向、纵向和横向:在模型>边界条件>弹性连接中输入SDz、SDx、SDz。

相关文档
最新文档