薄膜组件与逆变器配套选型(薄膜电池接地)

合集下载

逆变器选型与布置设计

逆变器选型与布置设计

逆变器选型与布置设计逆变器选型与布置设计:逆变器是将直流电能转换为交流电能的设备,广泛应用于太阳能光伏发电系统、风能发电系统和电动车等领域。

逆变器选型与布置设计是保证系统正常运行和性能优化的关键步骤。

在这里,我将为您详细介绍逆变器选型与布置设计的相关内容。

一、逆变器选型:1. 了解系统要求:在选择逆变器之前,首先需要了解光伏发电系统的总装机容量、输出电压要求、并网条件等系统要求。

根据这些要求,进行逆变器的选型。

2. 功率选择:根据光伏系统的总装机容量和预计发电功率,选择合适的逆变器功率。

一般来说,逆变器的额定功率应略大于光伏阵列的峰值功率,以确保逆变器能够正常运行。

3. 并网要求:了解所在地区电网的并网要求,如并网电压范围、频率范围、功率因数调整等。

选择符合电网要求的逆变器。

4. 品牌和可靠性:选择知名度高、质量可靠的逆变器品牌,能够提供可靠的售后服务和保修。

5. 保护功能:逆变器需要具备多种保护功能,如过温保护、短路保护、过载保护等。

确保选择的逆变器具备完善的保护功能,提高光伏系统的安全性。

6. 成本考虑:除了功能和性能要求,还要考虑逆变器的成本。

根据项目的预算,选择性价比较高的逆变器。

二、逆变器布置设计:1. 环境条件:选定逆变器后,需要考虑逆变器的布置环境条件。

逆变器应该远离高温、潮湿、尘土等环境,以确保其正常运行和寿命。

2. 通风散热:逆变器在工作过程中会产生一定的热量,因此应该选择通风良好的位置进行布置,以方便逆变器的散热,避免过热引起故障。

3. 安装位置选择:逆变器应该离光伏电池板与电网的距离尽量短,减少输电损耗。

同时,布置位置应该便于观察和维护。

4. 接线布置:逆变器的电缆布置应尽量短,减少电缆的损耗和距离带来的问题。

同时,应注意电缆的密封和固定,避免受潮、机械损坏等。

5. 接地设计:逆变器的接地设计要符合电气安全规范,确保系统的接地可靠。

与电池、电网、机壳等部件应合理接地。

6. 避雷保护:逆变器应与系统的避雷装置相连,避免雷击引起的损坏。

薄膜电容器选型与应用

薄膜电容器选型与应用

薄膜电容器选型与行业应用————光伏逆变器行业变频器行业 风电行业 交流滤波电容 其他场合一、光伏行业DC-link电容DC-link电容(大功率27μF-30μF/KW 薄膜电容)二、变频器行业DC-link电容输入电压等级 DC-Link 电容 吸收电容 LC 交流滤波电容 220V.AC-440V.AC 薄膜电容电压Un=700V.DC 0.1-2μF/1200V.DC Un=450V.AC 660V.AC-690V.AC薄膜电容电压 Un=1100V.DC 0.47-2.5μF/1600V.DC Un=850V.AC 1140V.AC薄膜电容电压 Un=2000V.DC0.47-3μF/3000V.DCUn=1140V.AC2000μF/1200VDCSVG客户的选型420/470 uf –1100/1200V .DC500/1200/2000/3000 uf –1200V .DC功率P DC-Link 电容 吸收电容 交流滤波电容500KW 园柱SCREW 型400μF-500μF/1100V .DC 27-30只并联 采用6只 方块铜片型0.47-1.5μF/1600V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC 250KW 园柱SCREW 型200-420 多只并联总容量在6000uf采用3只 方块铜片型0.47-1.5μF/1600V .DC金属盒三角接法SCREW 型 3×200μF/450V .AC 100K 园柱SCREW 型 420uf 6只并联方块铜片型 1μF/1200V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC50K 方块导针型 10μF-50μF 多只并联方块铜片型0.47μF/1200V .DC20μF/450V .AC (自己采用三角接法),会选园柱SCREW 型的备注 采用容量小,多只并联,这样同等容量流过DC-LINK 电容有效电流大, I 总rms≥nI 输出电流容量选取不是容量越大越好,主要通过IGBT 开关频率和功率选取容量 选择交流电容设计电容的有效电流多少,这主要载波频率有关系逆变器输出总功率对应470UF电容折算数量6kv/250A =1.5兆瓦10kv/200A/400A/600A/800A/1000A,=2/4/6/8/10兆瓦1.5MW2MW4MW6MW8MW 10MW180只198只429只648只864只1080只――-依470 uf –1100/1200V.DC折算出的电容数量;---风电变流器行业容量选取可参照此案,但务必对电压考虑裕量; 三、IGBT 保护电容(snubber)IGBT 实际工作电流每 100A 使用容量大约 1UF。

光伏逆变器种类及选型指导

光伏逆变器种类及选型指导

光伏逆变器种类及选型指导光伏逆变器专用于太阳能光伏发电领域的逆变器,是光伏系统中不可缺少的核心部件,其最大的作用在于将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。

并网逆变器作为光伏电池与电网的接口装置,将光伏电池的电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用,为了实现最佳方式的太阳能转换,这势必要求逆变器多样化,这是由于建筑的多样性导致太阳能电池板安装的多样性,同时为了使太阳能的转换效率最高同时又兼顾建筑的外形美观的缘故。

目前通用的太阳能逆变方式为:集中逆变器、组串逆变器,多组串逆变器和组件逆变(微型逆变器)。

集中逆变器集中逆变器设备功率在50KW到630KW之间,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。

体积较大,室内立式安装。

一般用与大型光伏发电站(>10kW)的系统中,大量并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,让它非常接近于正弦波电流。

其最大特点是系统的功率高,成本低。

但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。

同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。

最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。

组串逆变器组串逆变器已成为目前国际市场上最流行的逆变器。

其是基于模块化概念基础上的,每个光伏组串(1kW-5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。

很多大型光伏电厂都使用的是组串逆变器。

其优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳点与逆变器不匹配的情况,从而增加了发电量。

集中式逆变器和组串式逆变器选型对比

集中式逆变器和组串式逆变器选型对比

集中式逆变器和组串式逆变器选型对比国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8kW以下可接入220V;8kW-400KW可接入380V;400kW-6MW可接入10kV。

根据逆变器的特点,光伏电站逆变器选型方法:220V项目选用单相组串式逆变器,8kW-500kW选用三相组串式逆变器,500kW以上的项目,可以根据实际情况选用组串式逆变器和集中式逆变器。

1、逆变器方案对比:集中式逆变器:功率在100kW到2500kW之间,随着电力电子技术的发展,组串式逆变器越做越大,现在500KW以下的集中式逆变器基本退本市场。

功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,后级一般接双分裂工频升压隔离变压器,防护等级一般为IP20。

体积较大,室内立式安装。

组串式逆变器:功率在1kW到80kW,小功率逆变器开关管一般采用小电流的MOSFET,中功率逆变器一般采用集成多个分立器件的功率模块,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。

体积较小,可室外臂挂式安装。

2、系统主要器件对比:集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。

组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。

3、主要优缺点和适应场合:1、集中式逆变器一般用于荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。

主要优势有:(1)逆变器数量少,可以集中安装,便于管理;(2)逆变器元器件数量少,故障点少,可靠性高;(3)谐波含量少,直流分量少,电能质量高;(4)逆变器集成度高,功率密度大,成本低;(5)逆变器各种保护功能齐全,电站安全性高;(6)有功率因素调节功能和低电压穿越功能,电网调节性好。

主要缺点有:(1)直流汇流箱故障率较高,影响整个系统。

光伏逆变器的选型原则

光伏逆变器的选型原则

光伏逆变器的选型原则主要包括以下几点:
逆变器的功率匹配:逆变器的额定功率应与光伏电池组的总容量相匹配,以确保最大化发电效率。

通常情况下,逆变器的额定功率应略大于光伏电池组的总容量。

逆变器的效率和质量:选择高效率和高质量的逆变器可以提高光伏系统的发电效率和可靠性。

逆变器的效率越高,转换损耗越小,发电效率越高。

逆变器的输入电压范围:逆变器的输入电压范围应与光伏电池组的输出电压范围相匹配。

这样可以确保逆变器能够正常工作,并最大限度地利用光伏电池组的发电能力。

逆变器的可靠性和耐用性:选择具有良好的可靠性和耐用性的逆变器可以减少维护和更换的成本。

一些关键指标,如逆变器的寿命、温度范围、防水防尘等级等,都是评估逆变器可靠性的重要因素。

逆变器的监控和通信功能:选择具有良好的监控和通信功能的逆变器可以实时监测光伏系统的运行状态,及时发现和解决问题。

一些高级功能,如远程监控、数据存储和分析等,可以提升系统的管理和维护效率。

逆变器的成本和性价比:在满足以上要求的前提下,选择价格合理、性价比高的逆变器可以降低系统的总投资成本。

需要综合考虑逆变器的品牌声誉、售后服务等因素。

总之,光伏逆变器的选型原则是根据光伏电池组的容量、效率要求、电压范围、可靠性和耐用性、监控和通信功能、成本和性价比等因素综合考虑,选择合适的逆变器以实现最佳的发电效果和经济效益。

逆变器选型标准

逆变器选型标准

逆变器选型标准
逆变器选型标准主要包括以下几个方面:
1.匹配光伏组件:逆变器的额定电压、电流和功率需要与光伏组件的输出特性匹配,以充分利用光伏组件的发电潜力。

2.适应环境:逆变器需要适应不同的环境条件,包括温度、湿度和海拔等。

在选型时需要考虑当地的环境条件。

3.高效稳定:逆变器需要保持高效和稳定的工作状态,以确保光伏电站的最大发电量和长期可靠性。

4.网络连接:逆变器需要与电网连接,因此需要选择适合当地电网的逆变器。

此外,逆变器需要具有网络监控功能,方便对光伏电站的运行状态进行实时监控。

5.安全可靠:逆变器需要保证安全可靠,以防止意外故障和火灾等安全事故。

因此,逆变器的质量和可靠性是选型时的重要考虑因素。

6.成本效益:逆变器的价格和性能是选型时需要考虑的重要因素。

需要综合考虑逆变器的性能、质量、可靠性和价格等因素,选择最适合的逆变器型号。

7.技术要求:逆变器的转换效率、稳定性和其他技术指标也需要考虑。

转换效率高的逆变器可以减少能量损失,提高系统发电效率。

8.并网光伏逆变器选型时,应注意以下几个方面的指标:具有
实时监测功能、具有最大功率跟踪功能(MPPT)、逆变器输出
效率要高、逆变器的输出波形要符合上网要求。


综上所述,逆变器选型时需要综合考虑以上几个方面的因素,选择适合项目需求的逆变器型号。

光伏发电系统如何选材(组件、逆变器、支架……)

光伏发电系统如何选材(组件、逆变器、支架……)在太阳能光伏发电系统中,我们会用到组件、逆变器、支架、汇流箱、线缆、接头等。

当你在买光伏器材时,你知道要注意什么?要你真的会选材吗?为你让你们买到好的东西,让你们的利益得到最大化。

今天,小盒子就来和你们讲讲,在选型光伏逆变器时,到底应该怎么选?备注:下文部分节选于泰联新能源杨秀忠在光伏会议上的经验分享。

光伏组件的选择选择优质合格的光伏组件:光伏组件并不都是大家所想象的那种品质完好、效率较高、电性能一致性较好,拥有25年使用寿命的优良组件,这些组件在市场上当然占据绝大多数,是为A类组件,当然有的品牌的分级标准更加严苛和细致,A之内还有A1、A2、A3等,A1级一般颜色和电性能都高度一致,是质量最好的级别。

A2一般会有较明显的色差。

A3级则比A2级多一些划痕但不影响使用,但是无论哪等,A类组件都是确定有质保、能工作、有收益保证的组件。

光伏组件在出厂检测时,总是会有一些一致化程度较差或有一些瑕疵的组件被当做等外品处理,这些等外品再根据质量和瑕疵的强弱,又会分为B类或者C类,其中电池片有一定瑕疵(如水痕、指纹等),电性能尚佳,色差较严重,效率低于A级的组件,根据其色差和品相的程度可细分为B1、B2、B3等级别;C级组件一般指电池片有物理上的损伤,如崩边缺角,或有部分断裂但经过统一形式的切割后重新串联起来的组件……都是传说中的“降级组件”,也就是说,本来目标是生产A类品,只是最后的检测结果达不到A类的标准,所以当“降级”处理。

这类降级组件,首先从质量角度就有问题,发电量自然无法与A 类组件相比;其次,因为存在瑕疵,后续的功率和衰减率也无法保证能符合国家规定,最关键的,这类组件根本无法保证能有25年的使用寿命。

如果你买到的是B类组件,出现问题去厂商追责,还是有可能成功的,大部分大厂牌对B类组件也会提供质保;但是假设你买到的组件是C类,基本都是没质保,出了问题也要自己抗。

新能源光伏发电系统中逆变器的选型与参数配置

新能源光伏发电系统中逆变器的选型与参数配置随着可再生能源的快速发展和广泛应用,光伏发电系统逐渐成为了一种主要的电力供应方式。

在光伏发电系统中,逆变器是一个关键的组件,它将光伏电池板产生的直流电转换成交流电,以满足家庭、工业和商业等用电需求。

逆变器的选型和参数配置对光伏发电系统的效率和可靠性起到了至关重要的作用。

首先,逆变器的选型应考虑系统的容量和工作环境。

光伏发电系统的容量通常由光伏电池板的数量和功率决定。

当确定了系统的容量后,可根据光伏电池板的特性曲线和工作环境的温度、湿度等因素,选择具有相应容量和适应工作环境的逆变器。

逆变器应具备高转换效率、长寿命和良好的可靠性。

其次,逆变器的参数配置应根据具体需求进行调整。

参数配置包括输入电压范围、输出电压、频率和保护功能等。

输入电压范围应考虑光伏电池板的输出电压波动范围,保持逆变器工作在最佳转换效率点。

输出电压和频率应与用电设备相匹配,以确保设备正常工作。

同时,逆变器还应具备过压、欠压、过流、短路等保护功能,以确保系统的安全性和稳定性。

在选型和参数配置时,还应考虑逆变器的交互性和监控功能。

现代逆变器通常具备远程监控和诊断功能,可以实时监测和管理系统运行状态。

通过连接到云平台,用户可以随时随地对光伏发电系统进行监控和管理,提高系统的可控性和可管理性。

此外,逆变器的质量和品牌也是选型的重要因素。

优质的逆变器通常具备更高的转换效率和可靠性,能够提供更长的使用寿命和更好的售后服务。

在选择逆变器时,可参考用户评价和专业的第三方测试数据,选择具有良好口碑和信誉的品牌。

值得一提的是,逆变器的设计和安装应符合标准和规范。

光伏发电系统涉及电气安全和防雷等方面的要求,逆变器的设计和安装应符合相关标准,确保系统的安全和可靠性。

此外,逆变器的维护和保养也是确保系统正常运行的关键。

定期检查和清洁逆变器,及时替换老化或故障的部件,可以延长逆变器的使用寿命和提高系统的效率。

总结而言,新能源光伏发电系统中逆变器的选型和参数配置对系统的性能和可靠性至关重要。

光伏组件选型及布局设计

光伏组件选型及布局设计随着可再生能源的快速发展,光伏发电系统逐渐成为一种受欢迎的能源解决方案。

光伏组件作为光伏发电系统的核心部分,其选型和布局设计对系统的发电效率和可靠性至关重要。

本文将详细介绍光伏组件的选型原则和布局设计方法。

一、光伏组件选型1. 晶体硅组件 vs 薄膜硅组件晶体硅组件和薄膜硅组件是目前市场上最常见的两种光伏组件类型。

晶体硅组件具有高转换效率、长寿命和较好的稳定性,适用于大规模光伏电站和商业光伏系统。

薄膜硅组件则具有较低的转换效率,但其价格相对较低,适用于分布式光伏发电系统和特殊场景。

2. 光伏组件的转换效率和温度特性选用高转换效率的光伏组件可以提高系统的发电效率。

此外,考虑到光伏组件的温度特性也很重要。

通常情况下,组件温度越高,其转换效率越低。

因此,在高温环境下运作的系统可以考虑选用具有良好温度特性的组件。

3. 光伏组件的可靠性和维护成本光伏组件的可靠性直接影响光伏发电系统的长期运行和维护成本。

选择具有良好质量保证和可靠生产商的光伏组件可以减少故障和维修频率,并降低维护成本。

二、光伏组件布局设计1. 组件阵列的朝向和倾角光伏组件的朝向和倾角是影响系统发电量的重要因素。

对于纬度较低的地区,建议采用南向朝向,倾角则根据地区纬度和季节特点进行调整。

对于高纬度地区,可以考虑调整朝向为西南或西北。

通过合理调整朝向和倾角,最大程度地捕捉太阳辐射,提高系统的发电效率。

2. 避免遮挡和阴影在光伏组件布局过程中,应避免任何遮挡物或阴影对光伏组件的照射。

即使是部分光伏组件被遮挡或受到阴影,也会对整个系统的发电效率产生负面影响。

因此,在布局设计中应注意避开周围建筑物、树木、山脉等可能导致阴影的物体。

3. 组件间距和排列方式合理的组件间距和排列方式可以最大程度地利用光伏资源,提高发电效率。

通常情况下,组件间距可根据光伏组件的尺寸和地形特点进行调整。

在水平地面上,常见的布局方式有单列、双列和多列。

对于斜坡地面,可采用阶梯式布局以适应地形变化。

光伏电站设备选型标准

光伏电站设备选型标准应考虑多个因素,包括电站规模、地理位置、气候条件、电网要求、经济性等。

以下是一些关键的设备选型标准:1. 光伏电池板(PVC):电池板是光伏电站的核心设备,其性能直接影响电站的发电效率和寿命。

在选择电池板时,应考虑制造商的声誉、产品质量、质保期限、生产工艺、功率输出、转换效率、耐候性、颜色等因素。

一般来说,晶体硅电池板在性能和性价比方面表现较好,而薄膜电池板在小型户用光伏系统中应用较多。

根据电站的地理位置和气候条件,应选择适合当地环境条件的电池板,例如在高纬度地区应选择抗冰雹等自然灾害能力较强的电池板。

2. 逆变器(Inverter):逆变器是将直流电转换为交流电的设备,是光伏电站的重要控制和保护设备。

在选择逆变器时,应考虑功率等级、转换效率、噪声水平、热管理、体积、可靠性、认证等因素。

此外,还应考虑逆变器的输入特性,即电池板的最大功率输出特性,选择合适的逆变器以充分利用电站的发电潜力。

在选择逆变器品牌时,应考虑其市场份额、技术实力、售后服务等因素。

3. 配电柜(Distribution Cabinet):配电柜是光伏电站的电能分配和保护设备,包括直流汇流箱、交流配电柜等。

应根据电站的规模和需求选择合适的配电设备,确保电能分配的合理性和安全性。

在选择配电设备时,应考虑其结构、电气性能、防护等级、噪声水平等因素。

此外,还应考虑设备的兼容性,确保电站系统稳定运行。

4. 电缆(Cables):电缆是光伏电站的传输介质,包括直流电缆和交流电缆。

在选择电缆时,应考虑电缆的规格、绝缘材料、线径、耐压等级、温度等级等因素。

此外,还应考虑电缆的敷设方式,如架空或地下敷设,以确保电缆的安全和稳定运行。

5. 监控系统(Monitoring System):监控系统是光伏电站的重要辅助设备,用于实时监测电站的运行状态和发电数据。

在选择监控系统时,应考虑其功能、稳定性、可靠性、易用性等因素。

此外,还应考虑系统的安全性,确保电站数据的安全性和保密性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于薄膜组件与逆变器配套选型要求
1、对于1000V光伏系统,MPPT工作范围为400-800V,当输入电压升至(600V 左右)打开逆变器,工作电压降至(400V左右)停止工作,括号内为参考值,以实际调试为准。

500V~600V应为MPPT最佳工作点即此范围内工作效率最高。

通常选择40~50W/m2辐照下为逆变器的启停点,根据本产品在50W/m2辐照下IV特性中的开压与工作电压,如图(1)所示,可计算出本光伏方阵(9串)的逆变器实际启停时的电压参考值。

由于非晶硅电池的开压与工作电压之比大于晶硅电池,一般晶硅逆变器开启电压在400V左右,而非晶硅逆变器开启电压则大于500V,至于逆变器的停机电压两者则相近。

图(1)
2、相应加宽MPPT跟踪步进电压。

由图(2)可看出:由于晶硅电池组件的填充因子FF较高,近似电流源,功率峰值尖; 非晶硅薄膜电池组件的FF相对较低,功率峰值附近曲线较平缓。

图(2)
当MPPT以相同ΔU检测电流瞬间变化时,非晶硅薄膜电池ΔI数值比晶硅电池的值小得多,导致非晶硅组件MPPT追踪相对滞后,甚至失去方向的判断能力,导致故障。

常见故障(1)当辐照度连续剧烈波动时,会导致逆变器功率追踪不到位,如某逆变器会报出方阵电压波动太大的故障;
常见故障(2)易出现在开启阶段,此时输入功率曲线可能有多个波峰波谷,相对较小ΔU会造成MPPT停留在前1个较大的波峰,无法进入之后最大功率峰,
如某逆变器在自动启动阶段输出功率不会随输入功率快速上升,手动复位后,输出正常。

解决方法是调宽MPPT步频电压ΔU,它能解决MPPT追踪滞后问题,突破输入功率曲线多峰谷的困扰,由于非晶硅的最大功率曲线区域较宽,ΔU增大并不会降低最大功率的跟踪精度,因而适合非晶硅产品的特性,提高光伏发电效率。

具体实例,某屋顶光伏电站在早晚时候,组件斜面的底部会被遮阴件而造成输入功率曲线有两个以上峰值,当时有两台100kW的相型号的国外逆变器都是一直工作在430V附件判断出峰值,却无法找到最佳的电压功率点,导致系统输出功率偏低。

分析得出MPPT的电压步频ΔU(原值为2V)是争对晶硅而非适用于非晶硅,最后将ΔU设置为5V后,该类的逆变器的MPPT最终可以轻松找到非晶硅方阵的最大功率点约500V左右,问题得到解决。

3、关于非晶硅薄膜电池负极接地与逆变器匹配问题及改进措施
1)关于非晶硅薄膜电池负极接地目的:
(1)泄放静电,防止对地共模电压超过系统电压;
(2)抑制光伏方阵电池板的对地分布电容对逆变器控制电路的共模干扰;
(3)建立电池板正电场,是一种避免电池寿命受影响的措施之一。

2)电池负极接地负面影响及逆变器匹配问题:
(1)增加直流漏电的可能性以及产生正极人员触电的安全隐患;
(2)必须采用内部或外部变压器隔离(含升压变压器)进行逆变并网,接地线路上需加直流漏电保护器以保护人身安全。

3)关于负极接地改进措施:
由于上述原因,组件负极接地并不是防雷接地,而是以防静电为主,因此可以采用间接接地方法。

具体方法是:采用在直流汇流柜内将负极母排通过阻值在100kΩ至1MΩ之间、功率在50W以上的大电阻(注意电阻两端爬电电压须大于1500V)串接不大于10mA的复位式直流漏电保护器后接地,若再串接微安表可进行实时漏电流检测。

采用大阻值电阻间接接地,避免了直接接地造成与无变压器隔离型逆变器的不兼容的问题。

由于通过该接地电阻的实际电流很小,不会因此造成无变压器隔离型逆变器直流漏电报警,同时接地线路上的直流漏电保护器设置值很小能起到
人员安全保护作用。

同时采用大阻值电阻泄放电池板静电方面并不存在问题,当正极对地绝缘电阻大于10MΩ时,电池板建立正电场也没问题。

间接接地唯一不足是在抑制电池板分布电容对逆变器的共模干扰方面降低了,而这个问题可以通过减小分布电容(如采用无边框组件)和逆变器内部电路提高抗干扰能力来解决,而目前大多数逆变器都能适合。

福建钧石能源有限公司电站部
2011年5月27日。

相关文档
最新文档