陕西省高二上学期期末数学试卷(理科)D卷

合集下载

陕西省高二数学上册期末理科试题与答案

陕西省高二数学上册期末理科试题与答案

陕西省高二数学上册期末理科试题与答案第I卷(选择题共60分)一、选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.命题且是真命题,则命题是()A. 假命题B. 真命题C. 真命题或假命题D. 不确定【答案】B命题且是真命题,则命题p和命题q都为真命题.命题且是真命题,由复合命题真值表可知,命题p和命题q都为真命题.本题考查含有逻辑连接词的复合命题的真假判断,属于基础题.2.不等式的解集为()A. B. C. D.【答案】D分析:直接利用一元二次不等式的解法即可.详解:解方程,得,不等式的解集为.点睛:本题考查一元二次不等式的解法,是基础题,解题时要认真审题,仔细解答.3.已知等差数列{a n}中,,则公差d的值为()A. B. 1 C. D.【答案】C由等差数列的通项公式进行计算即可得答案.等差数列{a n}中,,则即3=9+6d,解得d=-1本题考查等差数列通项公式的应用,属于简单题.4.命题“使得”的否定是()A. 都有B. 使得C. 使得D. 都有【答案】D特称命题的否定为全称命题,将存在量词变为全称量词,同时将结论进行否定,故命题“,使得”的否定是“,都有”,故选D.5.唐代诗人杜牧的七绝唐诗中有两句诗为:“今来海上升高望,不到蓬莱不成仙。

”其中后一句中“成仙”是“到蓬莱”的()A. 充分条件B. 必要条件C. 充要条件D. 既非充分又非必要条件【答案】A因为:不到蓬莱→不成仙,∴成仙→到蓬莱,“成仙”是“到蓬莱”的充分条件,选A. 点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.6.在正方体中,、分别为棱和棱的中点,则异面直线AC与MN所成的角为( )A. 30°B. 45°C. 60°D. 90°【答案】C连接BC1、D1A,D1C,∵M、N分别为棱BC和棱CC1的中点∴MN∥C1B.∵C1B∥D1A,∴MN∥D1A,∴∠D1AC为异面直线AC与MN所成的角.∵△D1AC为等边三角形,∴∠D1AC=60°.故选C.点睛: 本题主要考查异面直线所成的角.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.7.曲线与曲线的()A. 离心率相等B. 焦距相等C. 长轴长相等D. 短轴长相等【答案】B分别求出两个曲线的长轴,短轴,离心率,焦距,即可得到结果.曲线为焦点在y轴上的椭圆,长轴2a=10,短轴2b=8,离心率e=,焦距2c=6.曲线为焦点在y轴上的椭圆,长轴2a′=2,短轴2b′=2,离心率e′=,焦距2c′=6.∴两个曲线的焦距相等.故选:B.本题考查椭圆的标准方程和简单性质的应用,属于基础题.8.已知直线的方向向量为,平面的法向量为,若,,则直线与平面的位置关系是()A. 垂直B. 平行C. 相交但不垂直D. 直线在平面内或直线与平面平行【答案】D由,即可判断出直线l与平面α的位置关系.∵,∴⊥,∴直线l在平面α内或直线l与平面α平行.故选:D.本题考查平面法向量的应用、直线与平面位置关系的判定,考查推理能力与计算能力.9.已知双曲线:(,),右焦点到渐近线的距离为,到原点的距离为,则双曲线的离心率为()A. B. C. D.【答案】D由题意,双曲线,右焦点到渐近线的距离为,到原点的距离为,则双曲线焦点到渐近线的距离为,又,代入得,解得,故选D.10.在中,角所对的边分别为,且,若,则的形状是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形【答案】C结合,利用余弦定理可得,可得,由,利正弦定理可得,代入,可得,进而可得结论.在中,∵,∴,∵,∴,∵,∴,代入,∴,解得.∴的形状是等边三角形,故选C.本题考查了正弦定理余弦定理、等边三角形的判定方法,考查了推理能力与计算能力,属于中档题.11.已知椭圆上一点P与椭圆的左右焦点构成一个三角形,且,则的面积为()A. B. C. D.【答案】B先利用椭圆定义求出|PF1|+|PF2|和|F1F2|的值,然后利用余弦定理求出|PF1||PF2|的值,再代入三角形的面积公式即可.由椭圆可知,a=2,b=1,∴c=,∵P点在椭圆上,F1、F2为椭圆的左右焦点,∴|PF1|+|PF2|=2a=4,|F1F2|=2c=2,在△PF1F2中,cos∠F1PF2==,∴|PF1||PF2|=,又∵在△F1PF2中,=|PF1||PF2|sin∠F1PF2=;本题考查椭圆中焦点三角形的面积的求法,关键是应用椭圆的定义和余弦定理转化.12.设且,则()A. B. C. D.【答案】Ax,y∈R+且xy﹣(x+y)=1,可得xy=1+(x+y),化简解出即可得.∵x,y∈R+且xy﹣(x+y)=1,则xy=1+(x+y)≥1+2,化为:﹣2﹣1≥0,解得≥1+,即xy,xy=1+(x+y),即解得本题考查利用基本不等式求最值问题,属于基础题.第II卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分。

清华大学中学生标准学术能力(TDA)诊断性测试2024-2025学年高二上学期数学试卷和答案

清华大学中学生标准学术能力(TDA)诊断性测试2024-2025学年高二上学期数学试卷和答案

标准学术能力诊断性测试2024年9月测试数学试卷(A 卷)本试卷共150分,考试时间90分钟.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,a b ∈R ,则“22log log a b >”是“1122b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.集合(){}{}22ln 23,23,A x y x x B y y x x x A ==--==-+∈∣∣,则A B ⋂=R ð()A.(),1∞-- B.()(],13,6∞--⋃C.()3,∞+ D.()[),16,∞∞--⋃+3.已知复数z 满足5z z ⋅=,则24i z -+的最大值为()C. D.4.已知非零向量,a b 满足3a b = ,向量a 在向量b 方向上的投影向量是9b - ,则a 与b 夹角的余弦值为() A.33 B.13 C.33- D.13-5.设函数()f x 的定义域为R ,且()()()()42,2f x f x f x f x -++=+=-,当[]1,2x ∈时,()()()2,303f x ax x b f f =+++=-,则b a -=()A.9-B.6-C.6D.96.班级里有50名学生,在一次考试中统计出平均分为80分,方差为70,后来发现有3名同学的分数登错了,甲实际得60分却记成了75分,乙实际得80分却记成了90分,丙实际得90分却记成了65分,则关于更正后的平均分和方差分别是()A.82,73 B.80,73 C.82,67D.80,677.已知()sin 404cos50cos40cos θθ-=⋅⋅ ,且ππ,22θ⎛⎫∈- ⎪⎝⎭,则θ=()A.π3- B.π6- C.π6 D.π38.已知函数()2221x f x x =-++,则不等式()()2232f t f t +->的解集为()A.()(),13,∞∞--⋃+ B.()1,3- C.()(),31,∞∞--⋃+ D.()3,1-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对但不全得3分,有错选的得0分.9.已知实数,,a b c 满足0a b c <<<,则下列结论正确的是()A.11a c b c>-- B.a a c b b c +<+C.b c a c a b --> D.2ac b bc ab+<+10.已知函数()sin3cos3f x a x x =-,且()3π4f x f ⎛⎫≤⎪⎝⎭对任意的x ∈R 恒成立,则下列结论正确的是()A.1a =±B.()f x 的图象关于点π,04⎛⎫ ⎪⎝⎭对称C.将()f x 的图象向左移π12个单位,得到的图象关于y 轴对称D.当π23π,1236x ⎡⎤∈-⎢⎥⎣⎦时,满足()2f x ≤-成立的x 的取值范围是π7π,3636⎡⎤-⎢⎥⎣⎦11.在长方体1111ABCD A B C D -中,已知4,2AB BC ==,13,AA M N =、分别为1111B C A B 、的中点,则下列结论正确的是()A.异面直线BM 与AC 所成角的余弦值为7210B.点T 为长方形ABCD 内一点,满足1D T ∥平面BMN 时,1D T的最小值为5C.三棱锥1B B MN -的外接球的体积为14πD.过点,,D M N 的平面截长方体1111ABCD A B C D -所得的截面周长为+三、填空题:本题共3小题,每小题5分,共15分.12.若实数,x y 满足1232,34x y x y ≤+≤≤-+≤,则x y +的取值范围是__________.13.如图所示,在梯形ABCD 中,1,3AE AB AD =∥,3,BC BC AD CE =与BD 交于点O ,若AO x AD y AB =+ ,则x y -=__________.14.在四面体ABCD 中,3,,CD AD CD BC CD =⊥⊥,且AD 与BC 所成的角为30 .若四面体ABCD 的体积为2,则它的外接球表面积的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知复数12213i z =-+=--.(1)若12z z z =,求z ;(2)在复平面内,复数12,z z 对应的向量分别是,OA OB ,其中O 是原点,求AOB ∠的大小.16.(15分)在ABC 中,角,,A B C 的对边分别是,,a b c ,且cos cos 1a C b A c -+=.(1)求角A ;(2)已知b D =为BC 边上一点,且2,BD BAC ADC ∠∠==,求AD 的长.17.(15分)如图所示,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PA ⊥平面ABCD ,点Q 为PA 的三等分点,满足13PQ PA =.(1)设平面QCD 与直线PB 相交于点S ,求证:QS ∥CD ;(2)若3,2,60,AB AD DAB PA ∠==== ,求直线CQ 与平面PAD 所成角的大小.18.(17分)甲、乙两位同学进行投篮训练,每个人投3次,甲同学投篮的命中率为p ,乙同学投篮的命中率为()q p q >,且在投篮中每人每次是否命中的结果互不影响.已知每次投篮甲、乙同时命中的概率为15,恰有一人命中的概率为815.(1)求,p q 的值;(2)求甲、乙两人投篮总共命中两次的概率.19.(17分)已知函数()233x x f x a --=⋅+是偶函数,()246h x x x =-+.(1)求函数()e 2x y h a =-的零点;(2)当[],x m n ∈时,函数(()h f x 与()f x 的值域相同,求n m -的最大值.标准学术能力诊断性测试2024年9月测试数学(A卷)参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.12345678A B C C D B A C二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对但不全的得3分,有错选的得0分.91011AD BC BD三、填空题:本题共3小题,每小题5分,共15分.12.21,55⎡⎤-⎢⎥⎣⎦13.11114.73π-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)解:(1)()() ()()12224i13i24i26i4i127i13i13i13i19i5 zzz-+---++-++ =====-+-+---5z∴==(2)依题意向量()()2,4,1,3OA OB=-=--于是有()()()214310OA OB⋅=-⨯-+⨯-=-OA OB====AOB∠为OA 与OB 的夹角,2cos2OA OBAOBOA OB∠⋅∴==-[]0,πAOB∠∈,3π4AOB∠∴=16.(15分)解:(1)由正弦定理可得:cos sin cos sin cos 1sin a C b A C B A c C--+==()cos 1sin sin cos sin A C A C B ∴+=-,由()sin sin B A C =+可得:()cos sin sin sin cos sin A C C A C A C ⋅+=-+,cos sin sin sin cos sin cos cos sin A C C A C A C A C ⋅+=--,cos sin sin cos sin A C C A C∴⋅+=-sin 0C ≠ 可得:cos 1cos A A +=-,1cos 2A ∴=-,()0,πA ∈ ,2π3A ∴=(2),BAC ADC BCA ACD ∠∠∠∠== ,BAC ∴ 与ADC 相似,满足:AC BC CD AC =,设CD x =,则有3x =解得:1,3x x ==-(舍去),即:1CD =2π3ADC BAC ∠∠== ,在ADC 中,由余弦定理可得:2222πcos 32AD CD AC AD CD+-=⋅⋅,即:211221AD AD +--=⨯⨯解得:1,2AD AD ==-(舍去),AD ∴的长为117.(15分)解:(1)证明:因为平面QCD 与直线PB 相交于点S ,所以平面QCD ⋂平面PAB QS=因为四边形ABCD 为平行四边形,AB ∴∥CD ,AB ⊄ 平面,QCD CD ⊂平面,QCD AB ∴∥平面QCDAB ⊂ 平面PAB ,平面QCD ⋂平面,PAB QS AB =∴∥QS ,AB ∥,CD QS ∴∥CD(2)过点C 作CH AD ⊥于点H ,PA ⊥ 平面,ABCD PA ⊂平面PAD ,所以平面PAD ⊥平面ABCD ,因为平面PAD ⋂平面ABCD AD =,且CH AD ⊥,CH ∴⊥平面PAD连接,QH CQH ∠∴是直线CQ 与平面PAD 所成的角因为点Q 为PA 的三等分点,232,223PA QA PA =∴==,在Rt DCH 中,333sin602CH =⋅= 在ACD 中,利用余弦定理可得:222223cos120,19223AC AC +-=∴=⨯⨯ ,在Rt QAC 中,222(22)1933QC QA AC =+=+=在Rt QCH 中,3312sin 233CH CQH CQ ∠===,可得π6CQH ∠=,即直线CQ 与平面PAD 所成的角等于π618.(17分)解:(1)设事件A :甲投篮命中,事件B :乙投篮命中,甲、乙投篮同时命中的事件为C ,则C AB =,恰有一人命中的事件为D ,则D AB AB =⋃,由于两人投篮互不影响,且在投篮中每人每次是否命中的结果互不影响,所以A 与B 相互独立,,AB AB 互斥,所以:()()()()P C P AB P A P B ==⋅()(()()(()()()P D P AB AB P AB P AB P A P B P A P B =⋃=+=⋅+⋅可得:()()1581115pq p q p q ⎧=⎪⎪⎨⎪-+-=⎪⎩解得:1335p q ⎧=⎪⎪⎨⎪=⎪⎩或3315,,,1533p p q p q q ⎧=⎪⎪>∴==⎨⎪=⎪⎩(2)设i A :甲投篮命中了i 次;j B :乙投篮命中了j 次,,0,1,2,3i j =,()30285125P A ⎛⎫== ⎪⎝⎭()2213223223365555555125P A ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭()2223232323545555555125P A ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭()3028327P B ⎛⎫== ⎪⎝⎭()2211221221433333339P B ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭()2222112112233333339P B ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭设E :甲、乙两人投篮总共命中两次,则021120E A B A B A B =++由于i A 与j B 相互独立,021120,,A B A B A B 互斥,()()()()()()()()021*********P E P A B A B A B P A P B P A P B P A P B ∴=++=⋅+⋅+⋅8236454830412591259125271125=⨯+⨯+⨯=19.(17分)解:(1)()233x x f x a --=⋅+ 是偶函数,则()()f x f x -=,即11333399x x x x a a --⋅+=⋅+,()113309x x a -⎛⎫∴--= ⎪⎝⎭,由x 的任意性得119a =,即9a =()246h x x x =-+ ,()()()()()22e 2e 4e 618e 4e 12e 6e 2x xx x x x x y h a ∴=-=-⋅+-=-⋅-=-+,令()()e 6e 20x x -+=,则e 6x =或e 2x =-(舍去),即ln6x =,()e 2x y h a ∴=-有一个零点,为ln6(2)设当[],x m n ∈时,函数()f x 的值域为[],s t ,则函数()()h f x 的值域也为[],s t ,由(1)知()2933332x x x x f x ---=⋅+=+≥=当且仅当33x x -=,即0x =时等号成立,令()p f x =,则2p ≥,()2246(2)2h x x x x =-+=-+ 在区间[)2,∞+上单调递增,所以当[],p s t ∈时,()2,s h p ≥的值域为()(),h s h t ⎡⎤⎣⎦,即()()h s s h t t ⎧=⎪⎨=⎪⎩,则224646s s s t t t ⎧-+=⎨-+=⎩,即,s t 为方程246x x x -+=的两个根,解得23s t =⎧⎨=⎩,所以当[],x m n ∈时,()f x 的值域为[]2,3令()30x x λ=>,则()133,1x x y f x λλλ-==+=+>,3x λ= 在()0,∞+上单调递增,对勾函数1y λλ=+在()1,∞+上单调递增,由复合函数的单调性知,()f x 在()0,∞+上单调递增,()f x 是偶函数,()f x ∴在(),0∞-上单调递减令()3f x =,即333x x -+=,解得332x +=或332x =,即33log 2x +=或33log 2x -=,故n m -的最大值为3333535735log log log 222-+-=答案解析1.A【解析】由22log log a b >可得0a b >>,由1122b a⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭可得a b >,由a b >得不到0a b >>,故必要性不成立;由0a b >>可以得到a b >,故充分性成立,则“22log log a b >”是“1122b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”的充分不必要条件.2.B 【解析】集合(){}{}22ln 23230A x y x x x x x ==--=-->∣∣()(){}310{13},x x x x x x =-+>=<->∣∣或集合{}{}223,6B yy x x x A y y ==-+∈=>∣∣,{}()(]6,,13,6B y y A B ∞=≤∴⋂=--⋃R R ∣3.C【解析】复数z 满足5z z ⋅=,设22i,5z a b z z a b =+⋅=+=,()()2224i 24i (2)(4)z a b a b -+=-++=-++,则点()2,4-到圆225a b +=+=4.C【解析】设非零向量,a b 夹角为θ,向量a 在向量b 方向上的投影向量是39b - ,则cos ,39b a a b b θ⨯=-= ∣,解得3cos 3θ=-.5.D【解析】()()42f x f x -++= ,取()()1,312x f f =+=,()()()321211f f a b a b =-=-++=--,()()2f x f x +=- ,取()()0,2042x f f a b ===++,()()303,1423,2f f a b a b a +=---+++=-=- ,()()42f x f x -++= ,取2x =,则()21f =,则7b =,则729b a -=+=.6.B【解析】设更正前甲,乙,丙 的成绩依次为12350,,,,a a a a ,则12505080a a a +++=⨯ ,即507590655080a ++++=⨯ ,()222250(7580)(9080)(6580)807050a -+-+-++-=⨯ ,更正后平均分:()5016080908050x a =++++= ,()22222501(6080)(8080)(9080)807350s a ⎡⎤=-+-+-++-=⎣⎦ .7.A 【解析】()sin 40sin40cos cos40sin θθθ-=- 4cos50cos40cos 4sin40cos40cos θθ=⋅⋅=⋅⋅ 1cot40tan 4cos40θ⇒-=14cos40tan cot40θ-⇒=sin404sin40cos40cos40-=()sin 30102sin80cos40+-= 13cos102cos1022cos40+-=3313sin10cos10sin10cos102222cos40cos40--==()()sin 1060sin 50cos40cos40--===πππ,,223θθ⎛⎫∈-∴=- ⎪⎝⎭.8.C【解析】设()()21121x g x f x x =-=-++,()()2221112121x x x g x f x x x -⋅-=--=--+=--+++,()()2221102121x x x g x g x x x ⎛⎫⋅+-=-++--+= ⎪++⎝⎭,设()()1212121222,112121x x x x g x g x x x ⎛⎫⎛⎫>-=-+--+ ⎪ ⎪++⎝⎭⎝⎭()()()()()122121121222222021212121x x x x x x x x x x -⎛⎫=-+-=-+> ⎪++++⎝⎭,故()g x 为奇函数,且单调递增,()()()()()()22223212310230f t f t f t f t g t g t +->⇒-+-->⇒+->,()()()()()222302332g t g t g t g t g t +->⇒>--=-,故232t t >-,解得()(),31,t ∞∞∈--⋃+.9.AD【解析】A.0a b c <<<,可得a c b c -<-,故11a c b c>--,A 正确;B.设不等式成立,则()()a a c b c b b c b b b c++<++,可得ab ac ab bc +<+,即ac bc <,由0a b c <<<可得ac bc >,故假设不成立,B 错误;C.不妨假设211313210,,1332b c a c a b c a b --+--+=-<=-<=-<====--,故,C b c a c a b --<错误;D.设不等式成立,()()22,,,0ac b bc ab ac bc ab b a b c a b b a b c +<+-<--<-<<< ,()()a b c a b b -<-成立,故2ac b bc ab +<+成立,D 正确.10.BC【解析】A.()()sin3cos33sin 0,cos πf x a x x x ϕϕϕϕ⎛⎫=-=+=-=≤ ⎪⎝⎭()3π4f x f ⎛⎫≤ ⎪⎝⎭对任意x ∈R 恒成立,()f x ∴在3π4x =处取得极值,即3ππ3π42k ϕ⨯+=+,解得7π3ππ,sin 0,π,,sin 4422k ϕϕϕϕϕϕ=-+=-≤∴=-=-=- ,可求得1a =-,A 错误;B.()()3ππ3,0,44f x x f f x ⎛⎫⎛⎫=-=∴ ⎪ ⎪⎝⎭⎝⎭的图象关于点π,04⎛⎫ ⎪⎝⎭对称,B 正确;C.将()f x 的图象向左平移π12个单位,得到()π3ππ3331242g x x x x ⎛⎫⎛⎫=+⨯-=-=- ⎪ ⎪⎝⎭⎝⎭,函数图象关于y 轴对称,C 正确;D.()3π2342f x x ⎛⎫=-≤- ⎪⎝⎭,即3π1sin 342x ⎛⎫-≤- ⎪⎝⎭,7π3π11π2π32π646k x k ∴+≤-≤+,解得23π231π2ππ363363k x k +≤≤+,由题意知π23π,1236x ⎡⎤∈-⎢⎥⎣⎦,符合条件的k 的取值为1,0-,当1k =-时,π7π3636x -≤≤,均在定义域内,满足条件,当0k =时,23π31π3636x ≤≤,此时仅有23π36x =满足条件,所以满足()22f x ≤-成立的x 的取值范围为π7π23π,363636⎡⎤⎧⎫-⋃⎨⎬⎢⎣⎦⎩⎭,D 错误.11.BD【解析】A.MN ∥,AC BMN ∠∴为直线MN 与AC 所成角,在BMN 中,根据余弦定理可知222cos 2BM MN BN BMN BM MN∠+-=⋅,422BM MN BN ======,代入求得cos 10BMN A ∠=错误;B.取AD 的中点E ,取CD F ,取11A D 的中点S ,连接11,,,,EF D E D F AS SM ,SM ∥,AB AS ∥BM ,所以四边形ABMS 是平行四边形,AS ∥BM 且AS ∥11,D E D E ∴∥1BM D E ∴∥平面BMN ,同理可得1D F ∥平面BMN ,1DT ∥平面,BMN T ∈平面ABCD ,所以点T 的运动轨迹为线段EF ,在1ΔD EF 中,过点1D 作1D T EF ⊥,此时1D T 取得最小值,由题意可知,11D E D F EF ===,1111sin sin sin 105D EF BMN D T D E D EF ∠∠∠====,B 正确;C.取MN 的中点1O ,连接11B O ,则1111O N O M O B ==,过点1O 作1OO ∥1BB ,且111322OO BB ==,OM ∴为外接球的半径,在1Rt MB N 中,MN =,2R OM ∴==,34ππ,33V R C ∴==球错误;D.由平面11AA D D ∥平面11BB C C 得,过点,,D M N 的平面必与11,AA C C 有交点,设过点,,D M N 的平面与平面11AA D D 和平面11BB C C 分别交于,DO PM DO ∴∥,PM 同理可得DP ∥,ON 过点,,D M N 的平面截长方体1111ABCD A B C D -所得的截面图形为五边形DPMNO ,如图所示,以D 为坐标原点,以1,,DA DC DD 所在直线分别为,,x y z 轴建立空间直角坐标系,设,AO m CP n ==,则()()()()()0,0,0,2,0,,0,4,,1,4,3,2,2,3D O m P n M N ,()()()()0,2,3,1,0,3,2,0,,0,4,ON m PM n DO m DP n ∴=-=-== ,DP ∥,ON DO ∥PM ,()()2323m n n m ⎧=-⎪∴⎨=-⎪⎩,解得2m n ==,DO DP ∴==ON PM MN ====,所以五边形DPMNO 的周长为DO DP ON PM MN ++++==+,D 正确.12.21,55⎡⎤-⎢⎥⎣⎦【解析】令()()()()2323x y m x y n x y m n x m n y +=++-+=-++,2131m n m n -=⎧∴⎨+=⎩,解得()()2121,,235555m n x y x y x y ==-∴+=+--+,1232,34x y x y ≤+≤≤-+≤ ,则()()22441323,555555x y x y ≤+≤-≤--+≤-,24435555x y ∴-≤+≤-,即21,55x y ⎡⎤+∈-⎢⎣⎦.13.111【解析】建立如图所示的平面直角坐标系,设1AD =,则3BC =,()()()()220,0,3,0,,,1,,,33B C A m n D m n E m n ⎛⎫∴+ ⎪⎝⎭,所以直线BD 的方程为1n y x m =+,直线CE 的方程为()2329n y x m =--,联立两直线方程求得()()666655,,,,1,0,,11111111m n m n O AO AD AB m n +-⎛⎫⎛⎫∴=-==-- ⎪ ⎝⎭⎝⎭ ,6511,511m x my AO xAD y AB n ny -⎧=-⎪⎪=+∴⎨⎪-=-⎪⎩ ,解得651,,111111x y x y ==∴-=.14.73π-【解析】依题意,可将四面体ABCD 补形为如图所示的直三棱柱ADE FCB -,AD 与BC 所成的角为30 ,30BCF ∠∴= 或150,设,CB x CF y ==,外接球半径记为R ,外接球的球心如图点O ,11113sin 23324ABCD CBF V DC S xy BCF xy ∠⎛⎫∴=⋅⋅=⨯⨯== ⎪⎝⎭ ,解得8xy =,在2Rt OCO 中,2222222223922sin 4BF R OC OO CO BF BCF ∠⎛⎫⎛⎫==+=+=+ ⎪ ⎪⎝⎭⎝⎭,在BCF 中,由余弦定理可得2222cos BF BC CF BC CF BCF ∠=+-⋅⋅,要使外接球表面积最小,则R 要尽可能小,则BCF ∠应取30 ,(2222BF x y xy ∴=+≥-,当且仅当x y =时取等,(22min 99732444R BF xy ∴=+=+=-所以外接球表面积的最小值2min min 4π73πS R ==-.。

陕西省数学高二上学期理数期末考试试卷

陕西省数学高二上学期理数期末考试试卷

陕西省数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·武邑模拟) 已知倾斜角为的直线与直线垂直,则的值为()A .B .C .D .2. (2分)过点A(4,a)和点B(5,b)的直线与y=+m平行,则|AB|的值为()A . 6B .C . 2D . 不能确定3. (2分)方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的范围是()A . a<-2或a>B . - <a<2C . -2<a<0D . -2<a<4. (2分)如果直线x+2y-1=0和y=kx互相平行,则实数k的值为().A . 2B .C . -2D . -5. (2分)记动点P是棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上一点,记.当为钝角时,则的取值范围为()A . (0,1)B .C .D . (1,3)6. (2分) (2017高二下·金华期末) 设a、b是两条不同的直线,α、β是两个不同的平面,则下面四个命题中不正确的是()A . 若a⊥b,a⊥α,b⊄α,则b∥αB . 若a⊥b,a⊥α,b⊥β,则α⊥βC . 若a∥α,α⊥β,则α⊥βD . 若a⊥β,α⊥β,则a∥α7. (2分)已知变量x,y满足则的值范围是()A .B .C .D .8. (2分)如图,设D是边长为l的正方形区域,E是D内函数与所构成(阴影部分)的区域,在D中任取一点,则该点在E中的概率是()A .B .C .D .9. (2分) (2017高一下·定州期末) 下列命题正确的是()A . 两两相交的三条直线可确定一个平面B . 两个平面与第三个平面所成的角都相等,则这两个平面一定平行C . 过平面外一点的直线与这个平面只能相交或平行D . 和两条异面直线都相交的两条直线一定是异面直线10. (2分)若不论m取何实数,直线l:mx+y﹣1+2m=0恒过一定点,则该定点的坐标为()A . (﹣2,1)B . (2,﹣1)C . (﹣2,﹣1)D . (2,1)11. (2分) (2017高一下·安庆期末) 点P(m2 , 5)与圆x2+y2=24的位置关系是()A . 在圆外B . 在圆上C . 在圆内D . 不确定12. (2分)(2017·衡水模拟) 体积为的正三棱锥A﹣BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R:BC=2:3,点E为线段BD上一点,且DE=2EB,过点E作球O的截面,则所得截面圆面积的取值范围是()A . [4π,12π]B . [8π,16π]C . [8π,12π]D . [12π,16π]二、填空题 (共4题;共4分)13. (1分) (2018高三上·扬州期中) 已知x , y R,直线与直线垂直,则实数a的值为________.14. (1分)(2020·新沂模拟) 若数据的方差为,则 ________.15. (1分)(2018·绵阳模拟) 在一场比赛中,某篮球队的11名队员共有9名队员上场比赛,其得分的茎叶图如图所示.从上述得分超过10分的队员中任取2名,则这2名队员的得分之和超过35分的概率为________.16. (1分)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上不存在点P,使得∠APB为直角,则实数m的取值范围是________三、解答题 (共6题;共80分)17. (10分) (2019高一下·南通期末) 如图,在三棱柱ABC–A1B1C1中,AB=BC , D为AC的中点,O为四边形B1C1CB的对角线的交点,AC⊥BC1 .求证:(1)OD∥平面A1ABB1;(2)平面A1C1CA⊥平面BC1D.18. (15分) (2019·哈尔滨模拟) 某城市随机抽取一年(天)内天的空气质量指数的监测数据,结果统计如下:空气质量优良轻微污染轻度污染中度污染中度重污染重度污染天数(1)若某企业每天由空气污染造成的经济损失(单位:元)与空气质量指数(记为)的关系式为:试估计在本年内随机抽取一天,该天经济损失大于元且不超过元的概率;(2)若本次抽取的样本数据有天是在供暖季,其中有天为重度污染,完成下面列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关?非重度污染重度污染合计供暖季非供暖季合计附:19. (15分) (2018高二上·安庆期中) 已知动点到点的距离是它到点的距离的两倍.(1)求动点的轨迹的方程;(2)过坐标原点作直线与轨迹交于两点,若这两点间的距离为,求直线的方程.20. (15分)(2019·南昌模拟) 某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额(万元)的数据如下:加盟店个数(个)12345单店日平均营业额(万元)10.910.297.87.1(参考数据及公式:,,线性回归方程,其中, .)(1)求单店日平均营业额(万元)与所在地区加盟店个数(个)的线性回归方程;(2)根据试点调研结果,为保证规模和效益,在其他5个地区,该公司要求同一地区所有加盟店的日平均营业额预计值总和不低于35万元,求一个地区开设加盟店个数的所有可能取值;(3)小赵与小王都准备加入该公司的加盟店,根据公司规定,他们只能分别从其他五个地区(加盟店都不少于2个)中随机选一个地区加入,求他们选取的地区相同的概率.21. (10分)(2018·宁德模拟) 如图,矩形中,,,点是上的动点.现将矩形沿着对角线折成二面角,使得.(Ⅰ)求证:当时,;(Ⅱ)试求的长,使得二面角的大小为.22. (15分)已知点A(a,0)(a>4),点B(0,b)(b>4),直线AB与圆x2+y2﹣4x﹣4y+3=0相交于C、D 两点,且|CD|=2.(1)求(a﹣4)(b﹣4)的值;(2)求线段AB的中点的轨迹方程;(3)求△AOM的面积S的最小值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共80分)17-1、17-2、答案:略18-1、18-2、19-1、19-2、20-1、20-2、20-3、22-1、22-2、22-3、。

2023-2024学年北京市西城区高二(上)期末数学试卷【答案版】

2023-2024学年北京市西城区高二(上)期末数学试卷【答案版】

2023-2024学年北京市西城区高二(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.直线3x﹣4y+1=0不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线x2=6y的焦点到准线的距离为()A.12B.1C.2D.33.在空间直角坐标系O﹣xyz中,点A(4,﹣2,8)到平面xOz的距离与其到平面yOz的距离的比值等于()A.14B.12C.2D.44.在(2x+1x)3的展开式中,x的系数为()A.3B.6C.9D.12 5.正四面体ABCD中,AB与平面BCD所成角的正弦值为()A.√63B.√36C.√24D.√336.已知直线a,b和平面α,其中a⊄α,b⊂α,则“a∥b”是“a∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.设A,B为双曲线E:x 2a2−y2b2=1(a>0,b>0)的左、右顶点,M为双曲线E上一点,且△AMB为等腰三角形,顶角为120°,则双曲线E的一条渐近线方程是()A.y=x B.y=2x C.y=√2x D.y=√3x8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有()A.12种B.24种C.32种D.36种9.如图,在长方体ABCD﹣A1B1C1D1中,AB=3,BC=CC1=4,E为棱B1C1的中点,P为四边形BCC1B1内(含边界)的一个动点.且DP⊥BE,则动点P的轨迹长度为()A.5B.2√5C.4√2D.√1310.在直角坐标系xOy 内,圆C :(x ﹣2)2+(y ﹣2)2=1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,则实数m 的取值范围是( ) A .[−√2,√2]B .[−4−√2,−4+√2]C .[−2−√2,−2+√2]D .[−2+√2,2+√2]二、填空题共5小题,每小题5分,共25分.11.过点A (2,﹣3)且与直线x +y +3=0平行的直线方程为 . 12.在(2x +1)4的展开式中,所有项的系数和等于 .(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于 .14.若方程x 2m+2+y 24−m =1表示的曲线为双曲线,则实数m 的取值范围是 ;若此方程表示的曲线为椭圆,则实数m 的取值范围是 .15.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AB =2,E 为棱BB 1的中点,F 为棱CC 1(含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得B 1F ∥平面A 1ED ; ②不存在符合条件的点F ,使得BF ⊥DE ; ③异面直线A 1D 与EC 1所成角的余弦值为√55; ④三棱锥F ﹣A 1DE 的体积的取值范围是[23,2].其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程. 16.(10分)从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(15分)如图,在直三棱柱ABC﹣A1B1C1中,BA⊥BC,BC=3,AB=AA1=4.(1)证明:直线AB1⊥平面A1BC;(2)求二面角B﹣CA1﹣A的余弦值.18.(15分)已知⊙C经过点A(1,3)和B(5,1),且圆心C在直线x﹣y+1=0上.(1)求⊙C的方程;(2)设动直线l与⊙C相切于点M,点N(8,0).若点P在直线l上,且|PM|=|PN|,求动点P的轨迹方程.19.(15分)已知椭圆C:x 2a2+y2b2=1(a>b>0)的一个焦点为(√5,0),四个顶点构成的四边形面积等于12.设圆(x﹣1)2+y2=25的圆心为M,P为此圆上一点.(1)求椭圆C的离心率;(2)记线段MP与椭圆C的交点为Q,求|PQ|的取值范围.20.(15分)如图,在四棱锥P﹣ABCD中,AD⊥平面P AB,AB∥DC,E为棱PB的中点,平面DCE与棱P A相交于点F,且P A=AB=AD=2CD=2,再从下列两个条件中选择一个作为已知.条件①:PB=BD;条件②:P A⊥BC.(1)求证:AB∥EF;(2)求点P到平面DCEF的距离;(3)已知点M在棱PC上,直线BM与平面DCEF所成角的正弦值为23,求PMPC的值.21.(15分)设椭圆C:x 2a2+y2b2=1(a>b>0)左、右焦点分别为F1,F2,过F1的直线与椭圆C相交于A,B两点.已知椭圆C的离心率为12,△ABF2的周长为8.(1)求椭圆C的方程;(2)判断x轴上是否存在一点M,对于任一条与两坐标轴都不垂直的弦AB,使得MF1为△AMB的一条内角平分线?若存在,求点M的坐标;若不存在,说明理由.2023-2024学年北京市西城区高二(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分。

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷(含答案解析)

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷(含答案解析)

广东省部分学校2024-2025学年高二上学期第一次联考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知()()2,1,3,1,1,1a b =-=- ,若()a a b λ⊥-,则实数λ的值为()A .2-B .143-C .73D .22.P 是被长为1的正方体1111ABCD A B C D -的底面1111D C B A 上一点,则1PA PC ⋅的取值范围是()A .11,4⎡⎤--⎢⎥⎣⎦B .1,02⎡⎤-⎢⎥⎣⎦C .1,04⎡⎤-⎢⎥⎣⎦D .11,42⎡⎤--⎢⎥⎣⎦3.已知向量()4,3,2a =- ,()2,1,1b = ,则a 在向量b上的投影向量为()A .333,,22⎛⎫ ⎪⎝⎭B .333,,244⎛⎫ ⎪⎝⎭C .333,,422⎛⎫ ⎪⎝⎭D .()4,2,24.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为()AB C .3D 5.已知四棱锥P ABCD -,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a =,AD b =,AP c = ,则向量MN 用{},,a b c 为基底表示为()A .1132a b c++B .1162a b c-++C .1132a b c -+D .1162a b c--+ 6.在四面体OABC 中,空间的一点M 满足1146OM OA OC λ=++ .若,,MA MB MC共面,则λ=()A .12B .13C .512D .7127.已知向量()()1,21,0,2,,a t t b t t =--=,则b a - 的最小值为()AB C D8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC -中,PA PB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ 切开后,截面中均恰好看不见肉馅.则肉馅与整个粽子体积的比为().A .π9B .π18C .π27D .π54二、多选题9.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是()A .13DB =B .向量AE 与1AC uuu r 所成角的余弦值为5C .平面AEF 的一个法向量是()4,1,2-D .点D 到平面AEF 10.在正三棱柱111ABC A B C -中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λμλμ=+∈∈,则下列说法正确的是()A .当1λ=时,点P 在棱1BB 上B .当1μ=时,点P 到平面ABC 的距离为定值C .当12λ=时,点P 在以11,BC B C 的中点为端点的线段上D .当11,2λμ==时,1A B ⊥平面1AB P 11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则()A .122CG AB AA =+ B .直线CQ 与平面1111D C B A 所成角的正弦值为23C .点1C 到直线CQ 的距离是3D .异面直线CQ 与BD 三、填空题12.正三棱柱111ABC A B C -的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,当CN 的长为时,使1⊥MN AB .13.四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC V 的重心,则PG 与平面PAD 所成角θ的正弦值为.14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角的正切值均为5,则该五面体的所有棱长之和为.四、解答题15.如图,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.16.如图所示,直三棱柱11ABC A B C -中,11,92,0,,CA CB BCA AA M N ︒==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB的值.(3)求证:BN ⊥平面1C MN .17.如图,在四棱维P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.18.如图1,在边长为4的菱形ABCD 中,60DAB ∠=︒,点M ,N 分别是边BC ,CD 的中点,1AC BD O ⋂=,AC MN G ⋂=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P ABMND -.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成Q 的位置;若不存在,请说明理由.19.如图,四棱锥P ABCD -中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PFBD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE与线段BC交于M点,AH PM于点H,求线段CH长的最小值.参考答案:题号12345678910答案C BADDDCBBCDBCD题号11答案BC1.C【分析】利用两个向量垂直的性质,数量积公式即求得λ的值.【详解】 向量()()2,1,3,1,1,1a b =-=-若()a a b λ⊥-,则2()(419)(213)0a a b a a b λλλ⋅-=-⋅=++-++=,73λ∴=.故选:C .2.B【分析】建立空间直角坐标系,写出各点坐标,同时设点P 的坐标为(),,x y z ,用坐标运算计算出1PA PC ⋅,配方后可得其最大值和最小值,即得其取值范围.【详解】如图,以点D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,则1,0,0,()10,1,1C ,设(),,P x y z ,01x ≤≤,01y ≤≤,1z =,()1,,1PA x y ∴=--- ,()1,1,0PC x y =--,()()2222111111222PA PC x x y y x x y y x y ⎛⎫⎛⎫∴⋅=----=-+-=-+--⎪ ⎪⎝⎭⎝⎭,当12x y ==时,1PA PC ⋅ 取得最小值12-,当0x =或1,0y =或1时,1PA PC ⋅取得最大值0,所以1PA PC ⋅ 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.故选:B.3.A【分析】根据投影向量公式计算可得答案.【详解】向量a 在向量b上的投影向量为()()()2242312333cos ,2,1,12,1,13,,222b a b a a b b b b ⋅⨯+⨯-⎛⎫⋅⋅=⋅=⋅== ⎪⎝⎭r r rr r r r r r .故选:A.4.D【分析】建立空间直角坐标系,由点到平面的距离公式计算即可.【详解】以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴,建立如图所示的空间直角坐标系,则()2,,2G λ,()10,0,2D ,()2,0,1E ,()2,2,1F ,所以()12,0,1ED =- ,()0,2,0= EF ,()0,,1EG λ=.设平面1D EF 的法向量为(),,n x y z = ,则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩,取1x =,得()1,0,2n =r,所以点G 到平面1D EF的距离为EG n d n ⋅== ,故选:D .5.D【分析】利用空间向量的线性运算结合图形计算即可.【详解】由条件易知()11113232MN MC CD DN BC BA DP AD BA AP AD =++=++=++-()11113262b ac b a b c =-+-=--+.故选:D 6.D【分析】根据给定条件,利用空间向量的共面向量定理的推论列式计算即得.【详解】在四面体OABC 中,,,OA OB OC不共面,而1146OM OA OB OC λ=++ ,则由,,MA MB MC ,得11146λ++=,所以712λ=.故选:D 7.C【分析】计算出b a -=≥ .【详解】因为()()1,21,0,2,,a t t b t t =--=,所以b a -=当0t =时,等号成立,故ba -.故选:C.8.B【分析】设1PFCF ==,易知PA PB AB AC BC =====,且23FG =,设肉馅球半径为r ,CG x =,根据中点可知P 到CF 的距离4d r =,sin 4dPFC r PF∠==,根据三角形面积公式及内切圆半径公式可得1x =,结合余弦定理可得1cos 3PFC ∠=,进而可得3PC =,sin 3PFC ∠=,可得内切球半径且可知三棱锥为正三棱锥,再根据球的体积公式及三棱锥公式分别求体积及比值.【详解】如图所示,取AB 中点为F ,PF DE G ⋂=,为方便计算,不妨设1PF CF ==,由PA PB AB AC BC ====,可知3PA PB AB AC BC =====,又D 、E 分别为所在棱靠近P 端的三等分点,则2233FG PF ==,且AB PF ⊥,AB CF ⊥、PF CF F = ,PF ,CF ⊂平面PCF ,即AB ⊥平面PCF ,又AB ⊂平面ABC ,则平面PCF ⊥平面ABC ,设肉馅球半径为r ,CG x =,由于H 、I 、J 分别为所在棱中点,且沿平面HIJ 切开后,截面中均恰好看不见肉馅,则P 到CF 的距离4d r =,sin 4d PFC r PF∠==,12414233GFC r S r =⋅⋅⋅=△,又2132GFC rS x ⎛⎫=++⋅ ⎪⎝⎭ ,解得:1x =,故22241119cos 223213CF FG CG PFC CF FG +-+-∠===⋅⋅⋅⋅,又2222111cos 21132P PF CF PC PC F F C P F C +-+⋅-∠=⋅=⋅⋅,解得PC =,sin 3PFC ∠=,所以:4sin 31rPFC ∠==,解得6r =,343V r =π=球,由以上计算可知:P ABC -为正三棱锥,故111sin 4332ABC V S d AB AC BAC r =⋅⋅=⋅⋅⋅∠⋅粽11432332627=⋅⋅⋅⋅⋅⋅=,=.故选:B.9.BCD【分析】先写出需要的点的坐标,然后利用空间向量分别计算每个选项即可.【详解】由题可知,2,0,0,()0,0,0D,()2,2,1E,()1,0,2F,()12,2,2B,()10,2,2C,所以1DB==A错误;()0,2,1AE=,()12,2,2AC=-,所以111·cos,AE ACAE ACAE AC=B正确;()0,2,1AE=,()1,0,2AF=-,记()4,1,2n=-,则0,0AE AFn n==,故,AE AFn n⊥⊥,因为AE AF A⋂=,,AE AF⊂平面AEF,所以()4,1,2n=-垂直于平面AEF,故选项C正确;B =2,0,0,所以点D到平面AEF的距离·21DA ndn===,故选项D正确;故选:BCD10.BCD【分析】对于A,由1CP BP BC BBμ==-即可判断;对于B,由[]11,0,1B P BP BB BCλλ=-=∈和11//B C平面ABC即可判断;对于C,分别取BC和11B C的中点D和E,由BP BD=+1BBμ即1DP BBμ=即可判断;对于D,先求证1A E⊥平面11BB C C,接着即可求证1B P⊥平面1A EB,进而即可求证1A B⊥平面1AB P.【详解】对于A,当1λ=时,[]1,0,1CP BP BC BBμμ=-=∈,又11CC BB=,所以1CP CCμ=即1//CP CC,又1CP CC C=,所以1C C P、、三点共线,故点P在1CC上,故A错误;对于B ,当1μ=时,[]11,0,1B P BP BB BC λλ=-=∈,又11B C BC =,所以111B P B C λ= 即111//B P B C ,又1111B B C P B = ,所以11B C P 、、三点共线,故点P 在棱11B C 上,由三棱柱性质可得11//B C 平面ABC ,所以点P 到平面ABC 的距离为定值,故B 正确;对于C ,当12λ=时,取BC 的中点11,D B C 的中点E ,所以1//DE BB 且1DE BB =,BP BD =+[]1,0,1BB μμ∈ ,即1DP BB μ= ,所以DP E D μ= 即//DP DE,又DP DE D ⋂=,所以D E P 、、三点共线,故P 在线段DE 上,故C 正确;对于D ,当11,2λμ==时,点P 为1CC 的中点,连接1,A E BE ,由题111A B C △为正三角形,所以111A E B C ⊥,又由正三棱柱性质可知11A E BB ⊥,因为1111BB B C B = ,111BB B C ⊂、平面11BB C C ,所以1A E ⊥平面11BB C C ,又1B P ⊂平面11BB C C ,所以11A E B P ⊥,因为1111B C BB CC ==,所以11B E C P =,又111π2BB E B C P ∠=∠=,所以111BB E B C P ≌,所以111B EB C PB ∠=∠,所以1111111π2PB C B EB PB C C PB ∠+∠=∠+∠=,设BE 与1B P 相交于点O ,则1π2B OE ∠=,即1BE B P ⊥,又1A E BE E = ,1A E BE ⊂、平面1A EB ,所以1B P ⊥平面1A EB ,因为1A B ⊂平面1A EB ,所以11B P A B ⊥,由正方形性质可知11A B AB ⊥,又111AB B P B = ,11B P AB ⊂、平面1AB P ,所以1A B ⊥平面1AB P ,故D 正确.故选:BCD.【点睛】思路点睛:对于求证1A B ⊥平面1AB P ,可先由111A E B C ⊥和11A E BB ⊥得1A E ⊥平面11BB C C ,从而得11A E B P ⊥,接着求证1BE B P ⊥得1B P ⊥平面1A EB ,进而11B P A B ⊥,再结合11A B AB ⊥即可得证1A B ⊥平面1AB P .11.BC【分析】A 选项,建立空间直角坐标系,写出点的坐标,得到122AB AA CG +≠ ;B 选项,求出平面的法向量,利用线面角的夹角公式求出答案;C 选项,利用空间向量点到直线距离公式进行求解;D 选项,利用异面直线夹角公式进行求解.【详解】A 选项,以A 为坐标原点,1,,DA AB AA所在直线分别为,,x y z 轴,建立空间直角坐标系,则()()()()()()10,0,0,0,1,0,0,0,1,1,1,2,0,1,2,1,1,0A B A G Q C ----,()()()110,1,1,1,1,1,1,0,0B C D --,()()()10,2,2,0,1,0,0,0,1CG AB AA =-==,则()()()1220,2,00,0,20,2,2AB AA CG +=+=≠,A 错误;B 选项,平面1111D C B A 的法向量为()0,0,1m =,()()()0,1,21,1,01,2,2CQ =---=-,设直线CQ 与平面1111D C B A 所成角的大小为θ,则2sin cos ,3CQ m CQ m CQ m θ⋅===⋅,B 正确;C 选项,()10,0,1CC =,点1C 到直线CQ 的距离为3d ==,C 正确;D 选项,()()()1,0,00,1,01,1,0BD =--=--,设异面直线CQ 与BD 所成角大小为α,则cos cos ,6CQ BD CQ BD CQ BDα⋅=====⋅,D 错误.故选:BC 12.18/0.125【分析】根据正三柱性质建立空间直角坐标系,利用向量垂直的坐标表示可得结果.【详解】取11B C 的中点为1M ,连接1,MM AM ,由正三棱柱性质可得11,,AM MM BM MM AM BM ⊥⊥⊥,因此以M 为坐标原点,以1,,AMBM MM 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如下图所示:易知()11,0,0,0,,2,0,0,022A B M ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,设CN 的长为a ,且0a >,可得10,,2N a ⎛⎫- ⎪⎝⎭;易知1110,,,,,2222MN a AB ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭若1⊥MN AB ,则1112022MN AB a ⋅=-⨯+= ,解得18a =,所以当CN 的长为18时,使1⊥MN AB .故答案为:1813.23【分析】建立空间直角坐标系,求出平面PAD 的一个法向量m 及PG,由PG 与平面PAD 所成角θ,根据sin cos ,m PG m PG m PGθ⋅==⋅即可求解.【详解】因为PD ⊥底面ABCD ,底面ABCD 是正方形,所以,,DA DC DP 两两垂直,以D 为坐标原点,,,DA DC DP的方向分别为,,x y z 轴的正方向,建立如图所示空间直角坐标系,则()0,0,0D ,()0,0,1P ,()3,0,0A ,()3,3,0B ,()0,3,0C ,则重心()2,2,0G ,因而()2,2,1PG =- ,()3,0,0DA = ,()0,0,1DP =,设平面PAD 的一个法向量为(),,m x y z =,则300m DA x m DP z ⎧⋅==⎪⎨⋅==⎪⎩ ,令1y =则()0,1,0m = ,则22sin cos ,133m PG m PG m PG θ⋅====⨯⋅,故答案为:23.14.117m【分析】先根据线面角的定义求得5tan tan EMO EGO ∠=∠,从而依次求EO ,EG ,EB ,EF ,再把所有棱长相加即可得解.【详解】如图,过E 做EO ⊥平面ABCD ,垂足为O ,过E 分别做EG BC ⊥,EM AB ⊥,垂足分别为G ,M ,连接OG ,OM ,由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为EMO ∠和EGO ∠,所以5tan tan EMO EGO ∠=∠.因为EO ⊥平面ABCD ,⊂BC 平面ABCD ,所以EO BC ⊥,因为EG BC ⊥,EO ,EG ⊂平面EOG ,EO EG E = ,所以⊥BC 平面EOG ,因为OG ⊂平面EOG ,所以BC OG ⊥,同理,OM BM ⊥,又BM BG ⊥,故四边形OMBG 是矩形,所以由10BC =得5OM =,所以EO 5OG =,所以在直角三角形EOG 中,EG =在直角三角形EBG 中,5BG OM ==,8EB ==,又因为55255515EF AB =--=--=,所有棱长之和为2252101548117⨯+⨯++⨯=.故答案为:117m15.(2)当2AE =时,直线1A D 与平面1D EC 【分析】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立空间直角坐标系,求得平面1D EC 的一个法向量,平面1DCD 的一个法向量,利用向量法可求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)设AE m =,可求得平面1D EC 的一个法向量,直线的方向向量1DA,利用向量法可得sin θ=.【详解】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立如图所示的空间直角坐标系,当点E 在棱AB 的中点时,则1(0,0,1),(1,1,0),(0,2,0),(0,0,0),(1,0,0)E C D A D ,则1(1,1,1),(1,1,0),(1,0,0)ED EC DA =--=-=,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·0n ED x y z n EC x y ⎧=--+=⎪⎨=-+=⎪⎩ ,令1x =,则1,2y z ==,所以平面1D EC 的一个法向量为(1,1,2)n =,又平面1DCD 的一个法向量为(1,0,0)DA =,所以·cos ,·DA n DA n DA n=== 所以平面1D EC 与平面1DCD(2)设AE m =,则11(0,0,1),(1,,0),(0,2,0),(0,0,0),(1,0,1)E m C D A D ,则11(1,,1),(1,2,0),(02),(1,0,1)ED m EC m m DA =--=--≤≤=,设平面1D EC 的一个法向量为(,,)n x y z =,则1·0·(2)0n ED x my z n EC x m y ⎧=--+=⎪⎨=-+-=⎪⎩ ,令1y =,则2,2x m z =-=,所以平面1D EC 的一个法向量为(2,1,2)n m =-,设直线1A D 与平面1D EC 所成的角为θ,则11||sin ||||n DA n DA θ===令4[2,4]m t -=∈,则sin θ=当2t =时,sin θ取得最小值,最小值为5.16.(2)10(3)证明见解析【分析】(1)建立空间直角坐标系,求出相关点坐标,根据空间两点间距离公式,即得答案;(2)根据空间向量的夹角公式,即可求得答案;(3)求出1C M ,1C N,BN 的坐标,根据空间位置关系的向量证明方法,结合线面垂直的判定定理,即可证明结论.【详解】(1)如图,建立以点O 为坐标原点,CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z轴的空间直角坐标系.依题意得(0,1,0),(1,0,1)B N ,∴BN == (2)依题意得,()()()()111,0,2,0,1,0,0,0,0,0,1,2A B C B ,∴1(1,1,2)BA =- ,1(0,1,2)CB =,113BA CB =⋅,1BA1CB所以11111cos ,BA CB BA CB BA CB ⋅=⋅(3)证明:()()()10,0,2,0,1,0,1,0,1C B N ,11,,222M ⎛⎫⎪⎝⎭.∴111,,022C M ⎛⎫= ⎪⎝⎭ ,()11,0,1C N =- ,()1,1,1BN =-,∴1111(1)10022C M BN ⋅=⨯+⨯-+⨯= ,1110(1)(1)10C N BN ⋅=⨯+⨯-+-⨯=,∴1C M BN ⊥ ,1C N BN ⊥,即11,C M BN C N BN ⊥⊥,又1C M ⊂平面1C MN ,1C N ⊂平面1C MN ,111= C M C N C ,∴BN ⊥平面1C MN .17.(2)存在点M ,使得//BM 平面PCD ,14AM AP =.【分析】(1)取AD 的中点为O ,连接,PO CO ,由面面垂直的性质定理证明⊥PO 平面ABCD ,建立空间直角坐标系求解直线PB 与平面PCD 所成角的正切值即可;(2)假设在PA 上存在点M ,使得()01PM PA λλ=≤≤,由线面平行,转化为平面的法向量与直线的方向向量垂直,求解参数即可.【详解】(1)取AD 的中点为O ,连接,PO CO ,因为PA PD =,所以PO AD ⊥,又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PO ⊂平面PAD ,所以⊥PO 平面ABCD ,又AC CD =,所以CO AD ⊥,PA PD ⊥,2AD =,所以1PO =,AC CD ==2CO =,所以以O 为坐标原点,分别以,,OC OA OP 所在的直线为,,x y z 轴建立空间直角坐标系,0,0,1,()2,0,0C ,()0,1,0A ,()1,1,0B ,()0,1,0D -,所以()2,0,1PC =- ,()0,1,1PD =--,()1,1,1PB =- ,设平面PCD 的一个法向量为 =s s ,则00PC m PD m ⎧⋅=⎪⎨⋅=⎪⎩,200x z y z -=⎧⎨--=⎩,令1,x =则2,2z y ==-,所以()1,2,2m =-,设直线PB 与平面PCD 所成角为θ,sin cos ,m PB m PB m PB θ⋅====,所以cos 3θ==,所以tan θ所以直线PB 与平面PCD所成角的正切值2.(2)在PA 上存在点M ,使得()01PM PA λλ=≤≤,所以()0,1,1PA =- ,所以()0,,PM PA λλλ==-,所以()0,,1M λλ-,所以()1,1,1BM λλ=---,因为//BM 平面PCD ,所以BM m ⊥ ,即()()121210λλ---+-=,解得34λ=,所以存在点M ,使得//BM 平面PCD ,此时14AM AP =.18.(1)总有平面PBD ⊥平面PAG ,证明详见解析(2)存在,Q 是PA 的靠近P 的三等分点,理由见解析.【分析】(1)通过证明BD ⊥平面PAG 来证得平面PBD ⊥平面PAG .(2)建立空间直角坐标系,利用平面QDN 与平面PMN 所成角的余弦值来列方程,从而求得Q 点的位置.【详解】(1)折叠前,因为四边形ABCD 是菱形,所以AC BD ⊥,由于,M N 分别是边BC ,CD 的中点,所以//MN BD ,所以MN AC ⊥,折叠过程中,,,,,MN GP MN GA GP GA G GP GA ⊥⊥⋂=⊂平面PAG ,所以MN ⊥平面PAG ,所以BD ⊥平面PAG ,由于BD ⊂平面PBD ,所以平面PBD ⊥平面PAG .(2)存在,理由如下:当平面PMN ⊥平面MNDB 时,由于平面PMN 平面MNDB MN =,GP ⊂平面PMN ,GP MN ⊥,所以GP ⊥平面MNDB ,由于AG ⊂平面MNDB ,所以GP AG ⊥,由此以G 为空间坐标原点建立如图所示空间直角坐标系,依题意可知())(),2,0,,0,1,0,P D B N PB --=- ()A,(PA = ,设()01PQ PA λλ=≤≤ ,则(()(),0,3,0,GQ GP PQ GP PA λ=+=+=+-= ,平面PMN 的法向量为()11,0,0n = ,()(),DQ DN ==,设平面QDN 的法向量为()2222,,n x y z = ,则()2222222200n DQ x y z n DN y ⎧⋅=-++=⎪⎨⎪⋅=+=⎩ ,故可设()21n λλ=--+ ,设平面QDN 与平面PMN 所成角为θ,由于平面QDN 与平面PMN所成角的余弦值为13,所以1212cos n n n n θ⋅==⋅解得13λ=,所以当Q 是PA 的靠近P 的三等分点时,平面QDN 与平面PMN 所成角的余弦值为13.19.(1)证明见解析(2)8(3)5【分析】(1)根据条件建立合适的空间直角坐标系,利用空间向量证明线面关系即可;(2)利用空间向量研究线面夹角,结合二次函数的性质计算最大值即可;(3)设BM tBC = ,利用空间向量基本定理及三点共线的充要条件得出AH ,利用向量模长公式及导数研究函数的单调性计算最值即可.【详解】(1)由于四边形ABCD 是菱形,且60ABC ∠= ,取CD 中点G ,则AG CD ⊥,又PA ⊥平面ABCD ,可以A 为中心建立如图所示的空间直角坐标系,则()()()()()2,0,0,,,0,0,1,B C D P G -,所以()()()1,,2,0,1PC BD BP =-=-=- ,由()01BE PF BD PCλλ==<≤,可知,,BE BD PF PC EF EB BP PF BD BP PC λλλλ==∴=++=-++ ()42,0,1λλ=--,易知()AG = 是平面PAB 的一个法向量,显然0EF AG ⋅= ,且EF ⊄平面PAB ,即//EF 平面PAB;(2)由上可知()()()1,,DP PF DF λλλλ+==+-=+- ,设平面PBC 的一个法向量为(),,n x y z =r,则200n BP x z n PC x z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1x =,则2,3z y ==,2n ⎛⎫= ⎪ ⎪⎝⎭,设直线DF 与平面PBC 所成角为α,则sin cos ,n DF n DF n DF α⋅==⋅ ,易知35λ=时,()2min 165655λλ-+=,即此时sin α取得最大值8;(3)设()(](),0,0,12,0BM t BC t t AM AB BM t ==-∈⇒=+=- ,由于,,H M P 共线,不妨设()1AH xAM x AP =+- ,易知AM AP ⊥,则有()()22010AH PM AH AM AP x AM x AP ⋅=⋅-=⇒--= ,所以22114451x t t AM ==-++ ,则()()2CH CA AH t x x =+=--- ,即()()2222454454655445t CH t t x t x t t --=-+-++=+-+ 记()(]()2450,1445t f t t t t --=∈-+,则()()()2228255445t t f t t t --+'=-+,易知22550t t -+>恒成立,所以()0f t '<,即()f t 单调递减,所以()()min 9155f t f CH ≥=-⇒==.。

2023-2024学年广西桂林市高二(上)期末数学试卷(含答案)

2023-2024学年广西桂林市高二(上)期末数学试卷(含答案)

2023-2024学年广西桂林市高二(上)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在空间直角坐标系O−xyz 中,点(1,1,2)到坐标原点O 的距离为( )A.2B.3C.6D.112.一个科技小组中有4名女同学、5名男同学,现从中任选1名同学参加学科竞赛,则不同的选派方法数为( )A. 4 B. 5C. 9D. 203.椭圆x 29+y 24=1的长轴长是( )A. 2B. 3C. 4D. 64.已知在10件产品中有2件次品,现从这10件产品中任取3件,用X 表示取得次品的件数,则P(X =1)=( )A. C 12C 310B. C 12C 28C 310C. C 23C 18C 310D. C 12C 13C 3105.圆C 1:x 2+y 2=1与圆C 2:(x−3)2+y 2=9的位置关系是( )A. 外切B. 内含C. 相交D. 外离6.已知m =(1,2,4),n =(2,1,x)分别为直线a ,b 的一个方向向量,且a ⊥b ,则x =( )A. 1B. −1C. 2D. −27.设小明乘汽车、火车前往某目的地的概率分别为0.6,0.4.汽车和火车正点到达目的地的概率分别为0.7,0.9,则小明正点到达目的地的概率为( )A. 0.78B. 0.82C. 0.87D. 0.498.已知点P(3,4),A ,B 是圆C :x 2+y 2=4上的两个动点,且满足|AB|=2,M 为线段AB 的中点,则|PM|的最大值为( )A. 5−3B. 5+3C. 3D. 7二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

9.某服装公司对1−5月份的服装销量进行了统计,结果如下: 月份编号x12345销量y(万件)5096142185227若y 与x 线性相关,其线性回归方程为y =bx +7.1,则下列说法正确的是( )A. 线性回归方程必过(3,140)B. b=44.3C. 相关系数r<0D. 6月份的服装销量一定为272.9万件10.某市对历年来新生儿体重情况进行统计,发现新生儿体重X~N(3.5,0.25),则下列结论正确的是( )A. 该正态分布的均值为3.5B. P(X>3.5)=12C. P(4<X≤4.5)≥12D. P(X>4.5)=P(X≤3)11.已知双曲线M:x24−y29=1,则下列说法正确的是( )A. M的离心率e=132B. M的渐近线方程为3x±2y=0C. M的焦距为6D. M的焦点到渐近线的距离为312.如图,在棱长为2的正方体ABCD−A1B1C1D1中,E,F分别为DD1,BB1的中点,则下列选项正确的是( )A. 直线FC1与直线AE平行B. 直线FC1与底面ABCD所成的角为30°C. 直线FC1与直线AE的距离为2305D. 直线FC1到平面AB1E的距离为23三、填空题:本题共4小题,每小题5分,共20分。

西安市高二上学期期末数学试卷(理科)D卷(模拟)

西安市高二上学期期末数学试卷(理科)D卷(模拟)

西安市高二上学期期末数学试卷(理科)D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列命题中:①命题“,使得”,则是假命题.②“若,则互为相反数”的逆命题为假命题.③命题“”,则“”.④命题“若,则”的逆否命题是“若,则”.其中正确命题是()A . ②③B . ①②C . ①④D . ②④2. (2分)已知双曲线(a>0,b>0)的一条渐近线方程为y=x,则双曲线的离心率为()A .B .C .D .3. (2分)已知椭圆+=1的离心率为,椭圆上一点P到两焦点距离之和为12,则b=()A . 8B . 6C . 5D . 44. (2分) (2016高一上·历城期中) 若y=(m﹣1)x2+2mx+3是偶函数,则f(﹣1),f(﹣),f()的大小关系为()A . f()>f()>f(﹣1)B . f()<f(﹣)<f(﹣1)C . f(﹣)<f()<f(﹣1)D . f(﹣1)<f()<f(﹣)5. (2分)(2019·广西模拟) 过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是()A .B .C .D .6. (2分) (2016高二下·信宜期末) 设p:(3x2+ln3)′=6x+3;q:(3﹣x2)ex的单调增区间是(﹣3,1),则下列复合命题的真假是()A . “p∨q”假B . “p∧q”真C . “¬q”真D . p∨q真7. (2分) (2017高二上·河南月考) 抛物线的焦点坐标为()A .B .C .D .8. (2分) (2018高二上·大连期末) 的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知,则CD的长为()A .B .C .D .9. (2分) (2016高一下·玉林期末) 过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则的面积为()A .B .C .D .10. (2分) M是△ABC所在平面内一点,,D为AC中点,则的值为()A .B .C . 1D . 211. (2分)双曲线2x2-y2=8的实轴长是()A . 2B . 2C . 4D . 412. (2分) (2019高二上·集宁月考) 在△ABC中,N是AC边上一点,且=,P是BN上的一点,若=m +,则实数m的值为()A .B .C . 1D . 3二、填空题. (共4题;共5分)13. (1分) (2016高二上·大连期中) 设F1 , F2分别是椭圆 =1的左,右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为________14. (2分) (2018高二上·浙江月考) 若是双曲线的左,右焦点,点是双曲线上一点,若,则 ________,的面积 ________.15. (1分)经过点P(3,2)且以=(1,﹣2)为方向向量的直线l的点方向式为________16. (1分) (2016高二上·友谊期中) 给出下列命题:①直线l的方向向量为 =(1,﹣1,2),直线m的方向向量 =(2,1,﹣),则l与m垂直;②直线l的方向向量 =(0,1,﹣1),平面α的法向量 =(1,﹣1,﹣1),则l⊥α;③平面α、β的法向量分别为 =(0,1,3), =(1,0,2),则α∥β;④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量 =(1,u,t)是平面α的法向量,则u+t=1.其中真命题的是________.(把你认为正确命题的序号都填上)三、解答题. (共5题;共55分)17. (10分) (2018高二上·寿光月考) 已知抛物线:的焦点与椭圆:()右焦点重合,且点在椭圆上.(1)求椭圆的方程及离心率;(2)若倾斜角为的直线过椭圆的左焦点,且与椭圆相交于、两点,求的面积.18. (15分)(2013·上海理) 已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)﹣b 是奇函数”.(1)将函数g(x)=x3﹣3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;(2)求函数h(x)= 图象对称中心的坐标;(3)已知命题:“函数 y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)﹣b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).19. (5分)已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线x2=4的焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点,满足直线PA与直线PB的倾斜角互补,证明直线AB的斜率为.20. (15分) (2016高二上·桐乡期中) 如图,三棱锥P﹣ABC中,D,E分别是BC,AC的中点.PB=PC=AB=2,AC=4,BC=2 ,PA= .(1)求证:平面ABC⊥平面PED;(2)求AC与平面PBC所成的角;(3)求平面PED与平面PAB所成锐二面角的余弦值.21. (10分)(2018·呼和浩特模拟) 已知椭圆的中心在原点,其中一个焦点与抛物线的焦点重合,点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左右焦点分别为,过的直线与椭圆相交于两点,若的面积为,求以为圆心且与直线相切的圆的方程.四、填空题 (共3题;共12分)22. (1分)设P(x,y)是椭圆上的一点,则2x﹣y的最大值是________23. (1分)曲线的极坐标方程为ρcosθ=2,它的直角坐标方程是________.24. (10分) (2019高二下·吉林月考) 己知圆的参数方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(2)圆,是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题. (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题. (共5题;共55分) 17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、21-2、四、填空题 (共3题;共12分) 22-1、23-1、24-1、24-2、。

2024-2025学年江西省南昌县莲塘第一中学高二上学期11月期中考试数学试卷(含答案)

2024-2025学年江西省南昌县莲塘第一中学高二上学期11月期中考试数学试卷(含答案)

2024-2025学年江西省南昌县莲塘第一中学高二上学期11月期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知z =1−i ,则z (1−z )=( )A. −1−iB. −1+iC. 1−iD. 1+i2.已知椭圆方程为x 236+y 264=1,则该椭圆的长轴长为( )A. 6B. 12C. 8D. 163.已知椭圆C:x 23+y 22=1的左、右焦点分别为F 1,F 2,过F 2的直线l 交C 于A 、B 两点,则△AF 1B 的周长为( )A. 2B. 4C. 23 D. 434.已知双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的离心率为2,则渐近线方程是( )A. y =±12xB. y =±2xC. y =±3xD. y =±33x 5.已知抛物线的焦点在直线x−2y−4=0上,则此抛物线的标准方程是( )A. y 2=16xB. x 2=−8yC. y 2=16x 或x 2=−8yD. y 2=16x 或x 2=8y6.“a =3”是“直线l 1:ax−2y +3=0与直线l 2:(a−1)x +3y−5=0垂直”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.已知动圆C 与圆C 1:(x−3)2+y 2=4外切,与圆C 2:(x +3)2+y 2=4内切,则动圆圆心C 的轨迹方程为( )A. 圆B. 椭圆C. 双曲线D. 双曲线一支8.一个工业凹槽的截面是一条抛物线的一部分,它的方程是x 2=4y,y ∈[0,10],在凹槽内放入一个清洁钢球(规则的球体),要求清洁钢球能擦净凹槽的最底部,则清洁钢球的最大半径为( )A. 12B. 1C. 2D. 52二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西省高二上学期期末数学试卷(理科)D 卷
姓名:________
班级:________
成绩:________
一、 选择题: (共 12 题;共 24 分)
1. (2 分) (2016 高一下·中山期中) 如图是 2012 年在某大学自主招生考试的面试中,七位评委为某考生打 出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( ) 79 844647 93
A . 84,4.84
B . 84,1.6
C . 85,1.6
D . 85,4
2. (2 分) 已知抛物线
的准线与双曲线
为直角三角形,则 的值为( )
交于 , 两点,点 为抛物线的焦点,若
A.
B.
C.
D. 3. (2 分) (2018 高一下·枣庄期末) 下表是某厂
月份用水量(单位:百吨)的一组数据:
月份 用水量
由散点图可知,用水量 与月份 之间有较好的线性相关关系,其线性回归直线方程是
,则
第1页共9页


() A. B. C. D. 4. (2 分) 已知焦点在 x 轴上的双曲线的渐近线方程是
A. B.2 C. D.4 5. (2 分) (2018 高二下·黑龙江期中) 已知椭圆 时,椭圆的离心率为( )
A.
, 则双曲线的离心率是 ( )
过点
,当
取得最小值
B.
C.
D. 6. (2 分) 在区域 D: A.
内随机取一个点,则此点到点 A(1,2)的距离大于 2 的概率是( )
第2页共9页


B. C.
D. 7. (2 分) (2017·济南模拟) 命题 p:将函数 y=cosx•sinx 的图象向右平移 个单位可得到 y= cos2x 的图象;命题 q:对∀ m>0,双曲线 2x2﹣y2=m2 的离心率为 ,则下列结论正确的是( ) A . p 是假命题 B . ¬p 是真命题 C . p∨q 是真命题 D . p∧q 是假命题
8. (2 分) (2018 高二上·黑龙江期末) 设抛物线
的焦点为 ,过点
的直线与抛物线相
交于
两点,与抛物线的准线相较于点 ,
,则

的面积之
()
A.
B.
C.
D.
9. (2 分) (2015 高三上·邢台期末) 过双曲线 且 l 与此双曲线的两条渐近线的交点分别为 B,C,若
=1(a>0,b>0)的右焦点 F 作斜率为﹣1 的直线,
=
,则此双曲线的离心率为( )
A. B.2
第3页共9页


C. D. 10. (2 分) (2015 高二下·广安期中) 如图,在三棱锥 P﹣ABC 中,D,E 分别是 BC,AB 的中点,PA⊥平面 ABC,∠BAC=90°,AB≠AC,AC>AD,PC 与 DE 所成的角为 α,PD 与平面 ABC 所成的角为 β,二面角 P﹣BC﹣A 的 平面角为 γ,则 α,β,γ 的大小关系是( )
A . α<β<γ B . α<γ<β C . β<α<γ D . γ<β<α 11. (2 分) (2018 高二上·黑龙江期末) 已知正三棱柱 ABC-A1B1C1 的侧棱长与底面边长相等,则 AB1 与侧 面 ACC1A1 所成角的正弦等于( ).
A. B. C.
第4页共9页


D.
12. (2 分) 已知双曲线 C 的中心在原点,焦点在坐标轴上, 线,则 C 的方程为( )
是 C 上的点,且
是 C 的一条渐近
A.
B.
C.

D.

二、 填空题 (共 6 题;共 6 分)
13. (1 分) (2017 高一下·丰台期末) 从某企业生产的某种产品中抽取 100 件样本,测量这些样本的一项质 量指标值,由测量结果得如下频数分布表:
质量指标 值分组 频数
[75,85) [85,95) [95,105) [105,115) [115,125]
6
26
38
22
8
则样本的该项质量指标值落在[105,125]上的频率为________.
14. (1 分) (2017·静安模拟) “x<0”是“x<a”的充分非必要条件,则 a 的取值范围是________
15. (1 分) (2018·北京) 已知直线 l 过点(1,0)且垂直于 x 轴,若 l 被抛物线 4,则抛物线的焦点坐标为________.
截得的线段长为
16. (1 分) (2012·湖南理) 如果执行如图所示的程序框图,输入 x=﹣1,n=3,则输出的数 S=________
第5页共9页


17. (1 分) (2017·上海) 设双曲线 ﹣ =1(b>0)的焦点为 F1、F2 , P 为该双曲线上的一点,若 |PF1|=5,则|PF2|=________.
18. (1 分) (2012·江西理) 椭圆 + =1(a>b>0)的左、右顶点分别是 A,B,左、右焦点分别是 F1 , F2 . 若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为________.
三、 解答题 (共 4 题;共 35 分)
19. (10 分) 设命题 :“若
,则
有实根”.
(1) 试写出命题 的逆否命题;
(2) 判断命题 的逆否命题的真假,并写出判断过程.
20. 考)
( 10
分)
(2017
高二上·牡丹江月
(1) 已知椭圆的离心率为 ,短轴一个端点到右焦点的距离为 4,求椭圆的标准方程。


(2) 已知双曲线过点
,一个焦点为
,求双曲线的标准方程。


21. (10 分) 如图所示,在直角梯形 ABCD 中,AB∥CD,∠ABC=90°,CD=BC=1,点 E 为 AD 边上的中点,过点
第6页共9页


D 作 DF∥BC 交 AB 于点 F,现将此直角梯形沿 DF 折起,使得 A﹣FD﹣B 为直二面角,如图乙所示.
(1) 求证:AB∥平面 CEF;
(2) 若二面角的余弦值为﹣
,求 AF 的长.
22. (5 分) (2015 高二下·福州期中) 已知椭圆 E 的焦点在 x 轴上,长轴长为 4,离心率为 . (Ⅰ)求椭圆 E 的标准方程; (Ⅱ)已知点 A(0,1)和直线 l:y=x+m,线段 AB 是椭圆 E 的一条弦且直线 l 垂直平分弦 AB,求实数 m 的值.
第7页共9页


一、 选择题: (共 12 题;共 24 分)
1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、
二、 填空题 (共 6 题;共 6 分)
13-1、答案:略 14-1、 15-1、
参考答案
第8页共9页


16-1、 17-1、 18-1、
三、 解答题 (共 4 题;共 35 分)
19-1、答案:略 19-2、答案:略 20-1、答案:略 20-2、答案:略 21-1、答案:略 21-2、答案:略 22-1、答案:略
第9页共9页



相关文档
最新文档