基于matlab程序实现人脸识别

合集下载

基于MATLAB的人脸识别系统的研究毕业论文

基于MATLAB的人脸识别系统的研究毕业论文

长沙民政职业技术学院毕业实践报告 题目:基于MATLAB 勺人脸识别系统的研扌旨导老师: ______ 谭刚林 ______________________ 系 另寸: 电子信息工程系 __________________ 班 级: ______________ 电子1133 ____________学号:1119013333 1119013334 1119013335 姓 名: 刘盼符思遥樊阳辉类型:2014年5月5日基于MATLAB勺人脸识别系统的研究符思遥、刘盼、樊阳辉指导老师:谭刚林苏宏艮马勇赞【摘要】人脸检测与识别技术是计算机视觉和模式识别等学科的研究热点之一,是进行身份认证最友好直接的手段,在出入境安全检查、内容检索、证件验证、门禁系统等领域都具有十分广泛的应用前景。

多年来,人脸识别技术中的很多问题都被深入地研究,而且大量的算法已经成功应用于人脸识别。

本文在研究了人脸检测和身份识别的关键技术和相关理论的基础上,重点讨论了在光照和背景不同的条件下,彩色静止图像的人脸检测和身份识别问题,它包括基于肤色分割的人脸粗检测、基于人眼检测的几何归一化和基于二维主成分分析法(2DPCA的身份识别。

本文主要工作如下:首先对彩色图像进行光照补偿,其次通过肤色检测获得可能的脸部区域并二值化,再用形态学开闭运算对图像进行滤波处理并通过一定规则确定人脸区域,然后运用水平垂直投影定位人眼坐标以此对人脸进行几何归一化,识别部分运用2DPCA勺图像映射方法对灰度图进行特征匹配,最后输出识别结果并进行语音播报。

实验结果表明,结合肤色和面部几何特征的算法能够对人脸进行较快速和准确的定位,同时2DPCAT法运用于身份识别也能达到较高的识别率。

本毕业设计对实际应用具有一定的参考价值,该系统的操作流程和输入输出方式是以实际应用为出发点,可应用于公安机关证件验证以及日常家庭的自动门禁系统等。

【关键词】人脸检测;肤色分割;人眼检测;2DPCA特征提取1绪论 (1)1.1选题的背景 (1)1.2人脸识别系统 (2)1.3人脸识别的典型方法 (2)2基于YCbCr颜色空间的肤色分割 (3)2.1三种色彩空间 (3)2.1.1 RGB色彩空间 (3)3基于2DPCA特征提取的身份识别 (4)3.1 2DPCA算法实验结果与分析 (5)3.1.1实验用数据库 (5)3.1.2实验结果与分析 (5)3.1.3 结论 (7)4人脸检测与识别系统设计与实现 (7)4.1系统环境 (7)4.2人脸检测与识别系统框图 (7)4.3系统功能模块 (8)4.4实验结果分析 (9)5总结与展望 (10)5.1总结 (10)5.2展望 (10)参考文献 (12)1绪论1.1选题的背景近年来随着计算机技术和互联网的发展,信息技术的安全变得越来越重要,生物特征识别技术得到广泛研究与开发,如人脸识别、指纹识别、掌形识别等。

如何使用Matlab进行人脸检测和人脸识别

如何使用Matlab进行人脸检测和人脸识别

如何使用Matlab进行人脸检测和人脸识别人脸检测和人脸识别是计算机视觉领域中的重要技术应用,可以广泛用于人脸识别系统、人脸支付、安全监控等众多领域。

本文将介绍如何使用Matlab进行人脸检测和人脸识别。

1. 背景介绍人脸检测和人脸识别技术的出现,为计算机系统实现对人脸的自动分析和识别提供了可能。

人脸检测是指从一幅图像或视频序列中确定是否存在人脸,并找出人脸的位置和大小。

而人脸识别则是在检测到的人脸图像上进行特征提取和模式匹配,以实现对人脸的身份识别。

2. 人脸检测在Matlab中,可以使用Viola-Jones算法进行人脸检测。

该算法通过构造Haar特征与Adaboost集成学习算法相结合,能够在较短的时间内实现高效的人脸检测。

具体操作如下:2.1 加载图像首先,在Matlab中加载需要进行人脸检测的图像。

可以使用imread函数进行图像加载,并将其转换为灰度图像进行处理。

例如:```Matlabimage = imread('face.jpg');gray_image = rgb2gray(image);```2.2 构建人脸检测器在Matlab中,可以使用vision.CascadeObjectDetector对象构建人脸检测器。

该对象可以通过Viola-Jones算法进行人脸检测。

具体代码如下:```MatlabfaceDetector = vision.CascadeObjectDetector();bbox = step(faceDetector, gray_image);```2.3 显示检测结果最后,可以使用insertObjectAnnotation函数将检测到的人脸位置在原始图像上标记出来。

代码示例如下:```Matlabdetected_image = insertObjectAnnotation(image, 'rectangle', bbox, 'Face');imshow(detected_image);```3. 人脸识别在Matlab中,可以使用基于人脸特征的Eigenface、Fisherface和LBPH等算法进行人脸识别。

基于Matlab的人体指纹识别程序设计(课程设计)

基于Matlab的人体指纹识别程序设计(课程设计)

等级: 课 程 设 计课程名称课题名称 基于Matlab的人体指纹识别程序设计专 业班 级学 号姓 名指导老师年 月 日课程设计任务书课题名称 基于Matlab的人体指纹识别程序设计姓 名 专业 班级 学号指导老师课程设计时间教研室意见 意见: 审核人:一、任务及要求1)根据所学的知识和能力,利用Matlab软件设计程序实现根据指纹的大小、形状等特征,识别出不同的指纹;2)利用按键标志当前指纹识别的状态,例如录入状态、识别状态、清楚状态。

设计要求:1)对指纹识别的过程进行分析,掌握指纹识别系统算法的工作原理;2)进行指纹识别程序的方案设计;3)进行指纹识别程序的模块设计;4)要有必要的算法设计说明;5)写出课程设计报告。

报告中应包括原理框图、参数曲线分析、操作方法、算法分析、软件调试等,调试过程中遇到的问题,改进方法和总结体会;6)答辩。

二、进度安排周一:集中布置课程设计任务和相关事宜,查资料确定指纹识别程序设计总体方案。

周二~周五:完成人体指纹识别程序设计及仿真。

周六~周日:设计报告撰写,周日进行答辩和设计结果检查。

三、参考资料目 录1第1章 绪论............................................................................11.1 Matlab介绍 ......................................................................11.2 Matlab优势特点 ..................................................................11.3 指纹识别.........................................................................11.4 指纹识别技术的主要优点...........................................................2第2章 设计任务及要求...................................................................22.1 设计任务.........................................................................22.2 设计要求.........................................................................第3章 系统方案设计.....................................................................333.1 系统方案设计.....................................................................33.2 系统框图.........................................................................4第4章 系统软件设计.....................................................................44.1 主函数...........................................................................54.2 归一化和切割.....................................................................4.3 二值化...........................................................................794.4 细化.............................................................................4.5 中心点提取.......................................................................4.6 求特征点.........................................................................14164.7 指纹匹配.........................................................................17第5章 系统仿真及调试...................................................................20总 结..................................................................................错误!未定义书签。

基于MATLAB的人脸识别考勤系统

基于MATLAB的人脸识别考勤系统

电子技术‖77‖基于MATLAB的人脸识别考勤系统◆杨天成本文的主要研究内容是人脸识别技术。

在研究中了解人脸识别技术在国内外的研究现状及发展前景,掌握了部分MA TLAB 的图像处理功能,并按照人脸图像采集、图像预处理、人脸特征提取与识别这条技术路线开发实现了一个简易人脸识别系统。

本次设计中的核心部分是人脸的检测与识别,此人脸识别可应用于企业员工考勤签到上。

本设计分为图像采集、数据库信息存储与显示、人脸识别、数据库信息清除、退出程序几部分组成。

采集图像模块的目的就是采集所要存储的人脸图片,将其存入数据库中,为后面的人脸识别算法提供相应的训练素材。

模块代码如下:if chos==1, clc ;[namefile ,pathname]=uigetfile ('*.pgm','Select image');%读取.pgm 文件 if name fi le~=0[img ,map]=imread (strcat (pathname ,name fi le ));imshow (img ); elsewarndlg ('放入的图片必须是已采集的',' Warning ') end end其中的name fl ie ,和pathname 分别指的是文件名和查找文件的路径。

当点击“采集图像”时,系统会根据操作指令弹出要采集的图片,选择确定后,会将这个图片的路径以及图片名相关信息保存到变量pathname 和name fi le 里。

当采集到图片后要将采集的图片保存到数据库中,此目的是为了给后期人脸识别时提供相应的训练素材。

但是需要注意的是在进行保存图片时要对保存的图片划分类别,同一个人的不同照片要划分到同一类中。

设第一个人的所有图片组成的类别为1,第二个人的所有图片组成的类别就为2,由此以此类推。

每一类的图片种类越多,越能保证后期识别的成功率。

同时为了能够保证录入的信息正确,可以点击“数据库信息”就会显示出数据库中存入了多少张照片以及分了多少类别。

LDA人脸识别的matlab程序

LDA人脸识别的matlab程序

以下是LDA的m文件函数:你稍稍改改就能用了!function[eigvector,eigvalue,elapse]=LDA(gnd,options,data) %LDA:LinearDiscriminantAnalysis%%[eigvector,eigvalue]=LDA(gnd,options,data)%%Input:%data-Datamatrix.Eachrowvectoroffeaisadatapoint.%gnd-Colunmvectorofthelabelinformationforeach%datapoint.%options-StructvalueinMatlab.Thefieldsinoptions%thatcanbeset:%%Regu-1:regularizedsolution,%a*=argmax(a'X'WXa)/(a'X'Xa+ReguAlpha*I)%0:solvethesinularityproblembySVD%Default:0%%ReguAlpha-Theregularizationparameter.Valid%whenRegu==1.Defaultvalueis0.1.%%ReguType-'Ridge':Tikhonovregularization%'Custom':Userprovided%regularizationmatrix%Default:'Ridge'%regularizerR-(nFeaxnFea)regularization%matrixwhichshouldbeprovided%ifReguTypeis'Custom'.nFeais%thefeaturenumberofdata%matrix%Fisherface-1:Fisherfaceapproach%PCARatio=nSmp-nClass%Default:0%%PCARatio-Thepercentageofprincipal%componentkeptinthePCA%step.Thepercentageis%calculatedbasedonthe%eigenvalue.Defaultis1%(100%,allthenon-zero%eigenvalueswillbekept.%IfPCARatio>1,thePCAstep%willkeepexactlyPCARatioprinciple%components(doesnotexceedthe%exactnumberofnon-zerocomponents).%%%Output:%eigvector-Eachcolumnisanembeddingfunction,foranew%datapoint(rowvector)x,y=x*eigvector%willbetheembeddingresultofx.%eigvalue-ThesortedeigvalueofLDAeigen-problem.%elapse-Timespentondifferentsteps%%Examples:%%fea=rand(50,70);%gnd=[ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];%options=[];%options.Fisherface=1;%[eigvector,eigvalue]=LDA(gnd,options,fea);%Y=fea*eigvector;%%%SeealsoLPP,constructW,LGE%%%%Reference:%%P.N.Belhumeur,J.P.Hespanha,andD.J.Kriegman,揈igenfaces%vs.fisherfaces:recognitionusingclassspecificlinear%projection,?IEEETransactionsonPatternAnalysisandMachine%Intelligence,vol.19,no.7,pp.711-720,July1997.%%DengCai,XiaofeiHe,YuxiaoHu,JiaweiHan,andThomasHuang, %"LearningaSpatiallySmoothSubspaceforFaceRecognition",CVPR'2007 %%DengCai,XiaofeiHe,JiaweiHan,"SRDA:AnEfficientAlgorithmfor%LargeScaleDiscriminantAnalysis",IEEETransactionsonKnowledgeand %DataEngineering,2007.%%version2.1--June/2007%version2.0--May/2007%version1.1--Feb/2006%version1.0--April/2004%%WrittenbyDengCai(dengcai2AT%if~exist('data','var')globaldata;endif(~exist('options','var'))endif~isfield(options,'Regu')|~options.RegubPCA=1;if~isfield(options,'PCARatio')options.PCARatio=1;endelsebPCA=0;if~isfield(options,'ReguType')options.ReguType='Ridge';endif~isfield(options,'ReguAlpha')options.ReguAlpha=0.1;endendtmp_T=cputime;%======Initialization[nSmp,nFea]=size(data);iflength(gnd)~=nSmperror('gndanddatamismatch!');endclassLabel=unique(gnd);nClass=length(classLabel);Dim=nClass-1;ifbPCA&isfield(options,'Fisherface')&options.Fisherface options.PCARatio=nSmp-nClass;endifissparse(data)data=full(data);endsampleMean=mean(data,1);data=(data-repmat(sampleMean,nSmp,1));bChol=0;ifbPCA&(nSmp>nFea+1)&(options.PCARatio>=1) DPrime=data'*data;DPrime=max(DPrime,DPrime');[R,p]=chol(DPrime);ifp==0bPCA=0;bChol=1;endend%====================================== %SVD%====================================== ifbPCAddata=data'*data;ddata=max(ddata,ddata');[eigvector_PCA,eigvalue_PCA]=eig(ddata);eigvalue_PCA=diag(eigvalue_PCA);clearddata;maxEigValue=max(abs(eigvalue_PCA));eigIdx=find(eigvalue_PCA/maxEigValue<1e-12);eigvalue_PCA(eigIdx)=[];eigvector_PCA(:,eigIdx)=[];[junk,index]=sort(-eigvalue_PCA);eigvalue_PCA=eigvalue_PCA(index);eigvector_PCA=eigvector_PCA(:,index);%======================================= ifoptions.PCARatio>1idx=options.PCARatio;ifidx<length(eigvalue_PCA)eigvalue_PCA=eigvalue_PCA(1:idx);eigvector_PCA=eigvector_PCA(:,1:idx);endelseifoptions.PCARatio<1sumEig=sum(eigvalue_PCA);sumEig=sumEig*options.PCARatio;sumNow=0;foridx=1:length(eigvalue_PCA)sumNow=sumNow+eigvalue_PCA(idx);ifsumNow>=sumEigbreak;endendeigvalue_PCA=eigvalue_PCA(1:idx);eigvector_PCA=eigvector_PCA(:,1:idx);end%======================================= eigvalue_PCA=eigvalue_PCA.^-.5;data=(data*eigvector_PCA).*repmat(eigvalue_PCA',nSmp,1); elseddata=data*data';ddata=max(ddata,ddata');[eigvector,eigvalue_PCA]=eig(ddata);eigvalue_PCA=diag(eigvalue_PCA);clearddata;maxEigValue=max(eigvalue_PCA);eigIdx=find(eigvalue_PCA/maxEigValue<1e-12);eigvalue_PCA(eigIdx)=[];eigvector(:,eigIdx)=[];[junk,index]=sort(-eigvalue_PCA);eigvalue_PCA=eigvalue_PCA(index);eigvector=eigvector(:,index);%======================================= ifoptions.PCARatio>1idx=options.PCARatio;ifidx<length(eigvalue_PCA)eigvalue_PCA=eigvalue_PCA(1:idx);eigvector=eigvector(:,1:idx);endelseifoptions.PCARatio<1sumEig=sum(eigvalue_PCA);sumEig=sumEig*options.PCARatio;sumNow=0;foridx=1:length(eigvalue_PCA)sumNow=sumNow+eigvalue_PCA(idx);ifsumNow>=sumEigbreak;endendeigvalue_PCA=eigvalue_PCA(1:idx);eigvector=eigvector(:,1:idx);end%======================================= eigvalue_PCA=eigvalue_PCA.^-.5;eigvector_PCA=(data'*eigvector).*repmat(eigvalue_PCA',nFea,1); data=eigvector;cleareigvector;endelseif~bCholDPrime=data'*data;%options.ReguAlpha=nSmp*options.ReguAlpha;switchlower(options.ReguType)case{lower('Ridge')}fori=1:size(DPrime,1)DPrime(i,i)=DPrime(i,i)+options.ReguAlpha;endcase{lower('Tensor')}DPrime=DPrime+options.ReguAlpha*options.regularizerR;case{lower('Custom')}DPrime=DPrime+options.ReguAlpha*options.regularizerR; otherwiseerror('ReguTypedoesnotexist!');endDPrime=max(DPrime,DPrime');endend[nSmp,nFea]=size(data);Hb=zeros(nClass,nFea);fori=1:nClass,index=find(gnd==classLabel(i));classMean=mean(data(index,:),1);Hb(i,:)=sqrt(length(index))*classMean;endelapse.timeW=0;elapse.timePCA=cputime-tmp_T;tmp_T=cputime;ifbPCA[dumpVec,eigvalue,eigvector]=svd(Hb,'econ');eigvalue=diag(eigvalue);eigIdx=find(eigvalue<1e-3);eigvalue(eigIdx)=[];eigvector(:,eigIdx)=[];eigvalue=eigvalue.^2;eigvector=eigvector_PCA*(repmat(eigvalue_PCA,1,length(eigvalue)).*eigvector);elseWPrime=Hb'*Hb;WPrime=max(WPrime,WPrime');dimMatrix=size(WPrime,2);ifDim>dimMatrixDim=dimMatrix;endifisfield(options,'bEigs')ifoptions.bEigsbEigs=1;elsebEigs=0;endelseif(dimMatrix>1000&Dim<dimMatrix/10)|(dimMatrix>500&Dim<dimMatrix/20)|(dimMatrix>250&Dim<dimMatri x/30)bEigs=1;elsebEigs=0;endendifbEigs%disp('useeigstospeedup!');option=struct('disp',0);ifbCholoption.cholB=1;[eigvector,eigvalue]=eigs(WPrime,R,Dim,'la',option);else[eigvector,eigvalue]=eigs(WPrime,DPrime,Dim,'la',option);endeigvalue=diag(eigvalue);else[eigvector,eigvalue]=eig(WPrime,DPrime); eigvalue=diag(eigvalue);[junk,index]=sort(-eigvalue);eigvalue=eigvalue(index);eigvector=eigvector(:,index);ifDim<size(eigvector,2)eigvector=eigvector(:,1:Dim);eigvalue=eigvalue(1:Dim);endendendfori=1:size(eigvector,2)eigvector(:,i)=eigvector(:,i)./norm(eigvector(:,i)); endelapse.timeMethod=cputime-tmp_T;elapse.timeAll=elapse.timePCA+elapse.timeMethod;。

基于Labview_Matlab的人脸识别系统设计与实现

基于Labview_Matlab的人脸识别系统设计与实现
隧道超近间距。新隧道与两条既有隧道 中心线的距离均为 17.5m,相邻隧道衬砌间的 最小净距仅为 5m。
超浅埋段长。隧道通过金家街小学操场 及教学楼和简易房。K0+49.97- K0+253, 地表杂填土厚 0.9~4.8m,基岩顶面距隧道顶 部 1.5~6.2m。 2.4 地面建筑及危房覆盖率高
在 K0+173~K0+253 里程上,沿隧道轴 线宽 80m 范围内居民密集,地面建筑多为 1-6 层砖混结构旧房及简易平房砌筑结构,为七十 年代初期建筑。
(2)爆破后沿岩体的切割面(或称爆裂面)应 具有一定的平整度,并能保持原岩体自身的稳 定性, 从而保证爆破效果及隧道内的安全, 即 光面和稳定控制爆破。 3.2 控制爆破基准
根据《爆破安全规程》( G B 6 7 2 2 - 8 6 ) 对
(1l) 其中 为混合成分的比例因子,即用高斯 混合模型来对概率分布矩阵 B 建模 和 分 别为高斯混合模型的均值和协方差矩阵
图像。
2.4 特征提取
首先对合法人员进行图像采集建立以每
人 5 幅不同表情像的归一化图像为标准的图
像库, 再对库进行 H M M 训练, 就是要为每个
类别确定一组经过优化的 H M M 参数, 每个模
型可以用单幅或多幅图像进行训练,训练步骤
如下:
(1)对人脸进行Gabor小波变换,求出特征
结,并将其作为观测向量,即
1 引言
随着城市交通及地铁隧道的大量修建,穿 越密集建筑物(住宅区)进行小净距浅埋隧道施 工已成为建筑施工企业和工程技术人员亟待 攻克的科技难题。大连市椒金山新建隧道采 用暗挖法施工, 通过优化控制爆破方案, 合理 选择爆破参数对获取理想震动效果,控制地面 沉降,减少围岩扰动及地表建筑物影响起到了 关键作用。该隧道的控制爆破施工是在交通 不中断、相邻隧道净间距小、洞顶覆盖层薄 的困难条件下进行的,本项目控制爆破技术的 成功应用标志着我国超长小净距隧道控制爆 破施工的一个重大突破。

人脸识别PCA算法matlab实现和详细步骤讲解

人脸识别PCA算法matlab实现和详细步骤讲解

人脸识别% FaceRec.m% PCA 人脸识别修订版,识别率88%% calc xmean,sigma and its eigen decompositionallsamples=[];%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));% imshow(a);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M=200endendsamplemean=mean(allsamples); % 平均图片,1 × Nfor i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片”end;% 获取特征值及特征向量sigma=xmean*xmean'; % M * M 阶矩阵[v d]=eig(sigma);d1=diag(d);% 按特征值大小以降序排列dsort = flipud(d1);vsort = fliplr(v);%以下选择90%的能量dsum = sum(dsort);dsum_extract = 0;p = 0;while( dsum_extract/dsum < 0.9)p = p + 1;dsum_extract = sum(dsort(1:p));endi=1;% (训练阶段)计算特征脸形成的坐标系base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));% base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)% 详见《基于PCA 的人脸识别算法研究》p31% xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%while (i<=p && dsort(i)>0)% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1)% 详见《基于PCA 的人脸识别算法研究》p31% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%end% 以下两行add by gongxun 将训练样本对坐标系上进行投影,得到一个 M*p 阶矩阵allcoor allcoor = allsamples * base; % allcoor 里面是每张训练人脸图片在M*p 子空间中的一个点,即在子空间中的组合系数,accu = 0; % 下面的人脸识别过程中就是利用这些组合系数来进行识别% 测试过程for i=1:40for j=6:10 %读入40 x 5 副测试图像a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));b=a(1:10304);b=double(b);tcoor= b * base; %计算坐标,是1×p 阶矩阵for k=1:200mdist(k)=norm(tcoor-allcoor(k,:));end;%三阶近邻[dist,index2]=sort(mdist);class1=floor( (index2(1)-1)/5 )+1;class2=floor((index2(2)-1)/5)+1;class3=floor((index2(3)-1)/5)+1;if class1~=class2 && class2~=class3class=class1;elseif class1==class2class=class1;elseif class2==class3class=class2;end;if class==iaccu=accu+1;end;end;end;accuracy=accu/200 %输出识别率特征人脸% eigface.mfunction [] = eigface()% calc xmean,sigma and its eigen decompositionallsamples=[];%所有训练图像for i=1:40for j=1:5a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg'));% imshow(a);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数据代表一张图片,其中M=200endendsamplemean=mean(allsamples); % 平均图片,1 × Nfor i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片”end;% 获取特征值及特征向量sigma=xmean*xmean'; % M * M 阶矩阵[v d]=eig(sigma);d1=diag(d);% 按特征值大小以降序排列dsort = flipud(d1);vsort = fliplr(v);%以下选择90%的能量dsum = sum(dsort);dsum_extract = 0;p = 0;while( dsum_extract/dsum < 0.9)p = p + 1;dsum_extract = sum(dsort(1:p));endp = 199;% (训练阶段)计算特征脸形成的坐标系%while (i<=p && dsort(i)>0)% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化,详见《基于PCA 的人脸识别算法研究》p31% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程%endbase = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2));% 生成特征脸for (k=1:p),temp = reshape(base(:,k), 112,92);newpath = ['d:\test\' int2str(k) '.jpg'];imwrite(mat2gray(temp), newpath);endavg = reshape(samplemean, 112,92);imwrite(mat2gray(avg), 'd:\test\average.jpg');% 将模型保存save('e:\ORL\model.mat', 'base', 'samplemean');人脸重建% Reconstruct.mfunction [] = reconstruct()load e:\ORL\model.mat;% 计算新图片在特征子空间中的系数img = 'D:\test2\10.jpg'a=imread(img);b=a(1:112*92); % b 是行矢量1×N,其中N=10304,提取顺序是先列后行,即从上到下,从左到右b=double(b);b=b-samplemean;c = b * base; % c 是图片a 在子空间中的系数, 是1*p 行矢量% 根据特征系数及特征脸重建图% 前15 个t = 15;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t1.jpg'); % 前50 个t = 50;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t2.jpg'); % 前100 个t = 100;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t3.jpg'); % 前150 个t = 150;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t4.jpg'); % 前199 个t = 199;temp = base(:,1:t) * c(1:t)';temp = temp + samplemean';imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t5.jpg');基于2DPCA与(2D)2PCA的人脸识别(第二版)。

Matlab中的人脸识别与人脸特征提取

Matlab中的人脸识别与人脸特征提取

Matlab中的人脸识别与人脸特征提取近年来,随着计算机技术的快速发展和应用的普及,人脸识别技术逐渐进入了我们的生活。

无论是在安全领域的门禁系统、身份验证应用,还是在娱乐领域的人脸美化软件,人脸识别都发挥着重要的作用。

而在人脸识别技术的实现中,人脸特征提取是一个关键的环节。

本文将介绍在Matlab中实现人脸识别和人脸特征提取的方法与技巧。

在Matlab中,有许多经典的人脸识别算法可供选择,其中最为常见且被广泛应用的是基于主成分分析(PCA)的人脸识别算法。

PCA是一种经典的降维算法,它通过线性变换将高维数据映射到低维空间中,从而捕捉数据的主要特征。

在人脸识别中,我们可以将每张人脸的像素矩阵视为一个高维数据向量,利用PCA算法将其映射到一个低维特征空间中。

在特征空间中,每张人脸都可以表示为一个特征向量,就像每个人都有自己独特的“人脸特征码”一样。

要在Matlab中实现基于PCA的人脸识别,首先需要收集一组包含多个人脸的图像数据集作为训练样本。

然后,将每个人脸的像素矩阵展开成一个列向量,并将这些列向量按列排成一个矩阵,构成一个大的数据矩阵。

接下来,通过对数据矩阵进行协方差矩阵分解和特征值分解,可以得到一组特征向量。

这些特征向量被称为“特征脸”,它们是训练样本中人脸数据的主要变化方向。

最后,通过计算待识别人脸与训练样本中每个人脸的特征向量的距离,并找出距离最小的特征向量所对应的人脸,即可完成人脸识别的过程。

除了PCA算法,还有其他一些在Matlab中常用的人脸识别算法,如线性判别分析(LDA)算法、小波变换、局部二值模式(LBP)等。

这些算法在原理和实现上各有特点,可以根据实际需求选择合适的算法进行人脸识别。

在人脸识别之前,首先需要对输入的人脸图像进行预处理。

通常的预处理步骤包括灰度化、直方图均衡化和人脸检测。

灰度化是将彩色图像转换为灰度图像,降低了计算复杂度,同时保留了图像的关键信息。

直方图均衡化可以增强图像的对比度,使得人脸特征更加明显。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于m a t l a b程序实现
人脸识别
TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-
基于m a t l a b程序实现人脸识别
1.人脸识别流程
基于YCbCr颜色空间的肤色模型进行肤色分割。

在YCbCr色彩空间内对肤色进行了建模发现,肤色聚类区域在Cb—Cr子平面上的投影将缩减,与中心区域显着不同。

采用这种方法的图像分割已经能够较为精确的将人脸和非人脸分割开来。

人脸识别流程图
2.人脸识别程序
(1)人脸和非人脸区域分割程序
function result = skin(Y,Cb,Cr)
%SKIN Summary of this function goes here
% Detailed explanation goes here
a=;
b=;
ecx=;
ecy=;
sita=;
cx=;
cy=;
xishu=[cos(sita) sin(sita);-sin(sita) cos(sita)];
%如果亮度大于230,则将长短轴同时扩大为原来的倍
if(Y>230)
a=*a;
b=*b;
end
%根据公式进行计算
Cb=double(Cb);
Cr=double(Cr);
t=[(Cb-cx);(Cr-cy)];
temp=xishu*t;
value=(temp(1)-ecx)^2/a^2+(temp(2)-ecy)^2/b^2; %大于1则不是肤色,返回0;否则为肤色,返回1 if value>1
result=0;
else
result=1;
end
end
(2)人脸的确认程序
function eye = findeye(bImage,x,y,w,h)
%FINDEYE Summary of this function goes here
% Detailed explanation goes here
part=zeros(h,w);
%二值化
for i=y:(y+h)
for j=x:(x+w)
if bImage(i,j)==0
part(i-y+1,j-x+1)=255;
else
part(i-y+1,j-x+1)=0;
end
end
end
[L,num]=bwlabel(part,8);
%如果区域中有两个以上的矩形则认为有眼睛
if num<2
eye=0;
else
eye=1;
end
end
(3)人脸识别主程序
clear all;
%读入原始图像
I=imread('');
gray=rgb2gray(I);
ycbcr=rgb2ycbcr(I);%将图像转化为YCbCr空间
heighth=size(gray,1);%读取图像尺寸
width=size(gray,2);
for i=1:heighth %利用肤色模型二值化图像
for j=1:width
Y=ycbcr(i,j,1);
Cb=ycbcr(i,j,2);
Cr=ycbcr(i,j,3);
if(Y<80)
gray(i,j)=0;
else
if(skin(Y,Cb,Cr)==1)%根据色彩模型进行图像二值化 gray(i,j)=255;
else
gray(i,j)=0;
end
end
end
end
se=strel('arbitrary',eye(5));%二值图像形态学处理
gray=imopen(gray,se);
figure;imshow(gray)
[L,num]=bwlabel(gray,8);%采用标记方法选出图中的白色区域
stats=regionprops(L,'BoundingBox');%度量区域属性
n=1;%存放经过筛选以后得到的所有矩形块
result=zeros(n,4);
figure,imshow(I);
hold on;
for i=1:num %开始筛选特定区域
box=stats(i).BoundingBox;
x=box(1);%矩形坐标X
y=box(2);%矩形坐标Y
w=box(3);%矩形宽度w
h=box(4);%矩形高度h
ratio=h/w;%宽度和高度的比例
ux=uint16(x);
uy=uint8(y);
if ux>1
ux=ux-1;
end
if uy>1
uy=uy-1;
end
if w<20 || h<20|| w*h<400 %矩形长宽的范围和矩形的面积可自行设定continue
elseif ratio<2 && ratio> && findeye(gray,ux,uy,w,h)==1
%根据“三庭五眼”规则高度和宽度比例应该在(,2)内;
result(n,:)=[ux uy w h];
n=n+1;
end
end
if size(result,1)==1 && result(1,1)>0 %对可能是人脸的区域进行标记
rectangle('Position',[result(1,1),result(1,2),result(1,3),result(1,4)],'Ed geColor','r');
else
%如果满足条件的矩形区域大于1,则再根据其他信息进行筛选
a=0;
arr1=[];arr2=[];
for m=1:size(result,1)
m1=result(m,1);
m2=result(m,2);
m3=result(m,3);
m4=result(m,4);
%得到符合和人脸匹配的数据
if m1+m3<width && m2+m4<heighth && m3<*width
a=a+1;
arr1(a)=m3;arr2(a)=m4;
%rectangle('Position',[m1,m2,m3,m4],'EdgeColor','r');
end
end
%得到人脸长度和宽度的最小区域
arr3=[];arr3=sort(arr1,'ascend');
arr4=[];arr4=sort(arr2,'ascend');
%根据得到的数据标定最终的人脸区域
for m=1:size(result,1)
m1=result(m,1);
m2=result(m,2);
m3=result(m,3);
m4=result(m,4);
%最终标定人脸
if m1+m3<width && m2+m4<heighth && m3<*width
m3=arr3(1);
m4=arr4(1);
rectangle('Position',[m1,m2,m3,m4],'EdgeColor','r');
end
end
end
(4)程序说明
人脸识别程序主要包含三个程序模块,人脸识别主程序由三部分构成。

第一部分:将图像转化为YCbCr颜色空间,根据色彩模型进行图像二值化,二值化图像进行形态学处理、开运算,显示二值图像;第二部分:采用标记方法选取出图中的白色区域,度量区域属性,存放经过筛选以后得到的所有矩形块,筛选特定区域,存储人脸的矩形区域;第三部分:对于所有人脸的矩形区域,如果满足条件的矩形区域大于1则再根据其他信息进行筛选,标记最终的人脸区域。

图像分割程序中,利用肤色可以较为精确的将人脸和非人脸区域分割开来,得到较为精确的二值化图像。

人脸的确认程序,以存储的所有矩形区域作为研究对象,当区域内有眼睛存在时,才认为此区域为人脸区域
3运行结果
(1)第一幅图
原始图像
肤色分割的二值化图像
人脸识别图像
(2)第二幅图
原始图像
肤色分割的二值化图像
人脸识别图像(3)第三幅图
原始图像
肤色分割的二值化图像
人脸标定。

相关文档
最新文档