5第三章 数系的扩充与复数 (2)

合集下载

(完整word版)数系的扩充和复数的概念全面版

(完整word版)数系的扩充和复数的概念全面版

数系的扩充和复数的概念教学目标重点:复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等。

复数在现代科学技术中以及在数学学科中的地位和作用.难点:虚数单位i 的引进以及对复数概念的理解.知识点:了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、实部、虚部、实数、虚数、纯虚数、复数相等);理解虚数单位i 及i 与实数的运算规律能力点:探寻复数的形成过程,体会引入虚数单位i 和复数形式的合理性,以及等价转化思想、方程思想、分类讨论数学思想的运用。

教育点:通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,经历由实数系扩充到复数系的研究过程,感受人类理性思维的作用以及数与现实世界的联系.自主探究点:如何运用实数与虚数单位i 的加、乘运算得到复数代数形式及探索复数相等的充要条件. 考试点:用复数的基本概念解决简单的数学问题。

易错易混点:对复数代数形式的认识,及复数分类的把握。

拓展点:如何利用复数代数形式解题,理解复数的几何意义.一、 引入新课求下列方程的解:(1)24x = 2(2)40x -= (3)310x -= 2(4)20x -= 2(5)10x +=.学生分析各题的解:(1)2x =;(2)22x x ==-或;1(3)3x =;(4)22x x ==-或;(5)实数集内无解. 通过以上五题解的探讨,学生会发现方程(5)在实数集中遇到了无解现象.如何使方程(5)有解呢?类比引进2,就可以解决方程220x -=在有理数中无解的问题,就有必要扩充数集,今天我们来与大家一起学习“数系的扩充”。

【设计意图】通过类比,易引发学生的学习兴趣.使学生了解扩充数系要从引入新数开始,引出本课题.二、探究新知1.复习已学过的数系问题1:数,是数学中的基本概念。

到目前为止,我们学习了哪些数集?用符号如何表示?它们之间有怎样的包含关系?用图示法可以如何表示?答:自然数集、整数集、有理数集、实数集,符号分别表示为N ,Z ,Q ,R ; 其中它们之间的关系式:N Z Q R ; 用文氏图表示N ,Z ,Q ,R 的关系【设计意图】数集及其之间关系的回顾,特别是“图示法”的直观表示,旨在帮助学生对“数系的扩充”有个初步感受.我们将一个数集连同相应的运算及结构叫做一个数系。

数系的扩充与复数的引入 (2).

数系的扩充与复数的引入 (2).

课堂教学单元教案科目:高二数学课题:数系的扩充与复数的引入一.数学分析:(1)复数系是在实数系的基础上扩充儿得到的,为了帮助学生了解学习复数的必要性,了解实际需求和数学内部的矛盾在数系扩充中的作用,本章从一个思考问题开始,在问题情境中简单介绍了由实数系扩到复数系的过程,这样不仅可以激发学生的学习复数的欲望,而且也可以比较自然的引入复数的学习之中。

复数的概念是整个复数内容的基础,复数的有关概念都是围绕复数的代数形式展开的,虚数单位、实部、虚部、复数相等的充要条件、以及虚数,纯虚数等概念的理解都应促进对复数实质的理解,即复数实际上一有序的实数对。

类比实数可以用数轴上的点表示,把复数在直角坐标系中表示出来,就得到了复数的集合表示。

用复平面内的点或平面向量表示复数,不仅使抽象的复数得到直观形象的表示,而且也使数和形得到了有机的结合。

(2)复数代数形式的四个运算,及复数代数形式的加法,减法,乘法和除法,重点是加法和乘法。

复数加法和乘法的法则是规定的,是具有其合理性的;这种规定与实数的加法,乘法的法则是一致的,而且实数的加法,乘法的有关运算仍然成立的。

二.学情分析:1.知识掌握上,高二年级的学生已经学过实数的扩充,已经有一定基础,但是扩充的过程可能会有所遗忘,所以首先应该进行适当的引入复习,同时高二的学生已经掌握了一些分析思考的能力,所以教学中通过问题的提出到解决过程有意识地进一步应用、提高学生的这些能力;2.心理上,多数学生感觉到数学过于枯燥繁琐,而且刚刚学的一章内容“推理与证明”又是数学中的难点,所以学生对新的一块内容可能也带有异样情绪,因此在引入、学习时要能让学生们能够感兴趣并且愿意去了解;3.学生学习本节内容可能存在的知识障碍:学生学习本节内容可能会遇到一些障碍,如对复数的理解,复数的引入是否具有实际意义,复数的引入是否具有实际应用,复数相等条件的理解等。

所以教学中对复数概念的讲解中尽量以简单明白、深入浅出的分析为主,在引入后花少许时间对复数的实际意义、复数的实际应用作以解释。

高中数学 第三章 数系的扩充与复数的引入 3.2 复数代数形式的四则运算 3.2.1 复数代数形式的

高中数学 第三章 数系的扩充与复数的引入 3.2 复数代数形式的四则运算 3.2.1 复数代数形式的

高中数学第三章数系的扩充与复数的引入3.2 复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义教案2 新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章数系的扩充与复数的引入3.2 复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义教案2 新人教A版选修1-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章数系的扩充与复数的引入3.2 复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义教案2 新人教A版选修1-2的全部内容。

3.2.1复数代数形式的加、减运算及其几何意义教学过程一、推进新课1.复数的加法探究新知我们规定,复数的加法法则如下:设bi a z +=1,di c z +=2是任意两个复数,那么()()()()i d b c a di c bi a +++=+++提出问题问题1:两个复数的和是个什么数,值唯一确定吗?问题2:当b=0,d=0时,与实数加法法则一致吗?问题3:它的实质是什么?类似于实数的哪种运算方法?活动设计:学生独立思考,口答。

活动成果:1.仍然是个复数,且是一个确定的复数。

2.一致。

3.实质是实部与实部相加,虚部与虚部相加,类比于实数运算中的合并同类项。

设计意图:加深对复数加法法则的理解,且与实数类比,了解规定的合理性。

提出问题:实数加法有交换律、结合律,复数满足吗?并试着证明。

活动设计:学生先独立思考,然后小组交流.活动成果:满足,对任意的,,,321C z z z ∈有交换律:1221z z z z +=+结合律:()()321321z z z z z z ++=++证明:设bi a z +=1,di c z +=2,()()i d b c a z z +++=+21x O y()b a Z ,1 ()d c Z ,2 Z ()()i b d a c z z +++=+12显然,1221z z z z +=+同理可得,()()321321z z z z z z ++=++设计意图:引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,提高学生的建构能力及主动发现问题,探究问题的能力。

数系的扩充和复数的概念

数系的扩充和复数的概念
课后作业: 课本P55/习题3.1A组/第1,2,题
拓展延伸: 1.数系还能再扩充吗? 2.作为一个新数集,如何定义复
数的四则运算呢?
与君共勉 问题是数学的心脏。 数学是无穷的科学。 路漫漫其修远兮,吾将上下而求索。
欧拉 Leonhard Euler (1707-1783)
1777年 欧拉首次提出用i表示平方等于-1的新数
高斯 Johann Carl Friedrich Gauss
(1777—1855)
1801年 高斯系统使用了i这个符号
使之通行于世
数系的扩充 SHUXI DI KUOCHONG
1.新数 i 叫做虚数单位,并规定: (1)i 2 1; (2)实数可以与 i 进行四则运算,在进
实数集
纯虚数集
例1.请指出哪些是实数,哪些是虚数,哪
些是纯虚数.
4, 2 3i,
0,
1 4 i,
5 2i, 6i 2 3
解:实数有 4 , 0
虚数有2 3i,
பைடு நூலகம்
1 2
4 3
i,
5
纯虚数有
6i
;
2i, 6i ;
.
例2 实数m取什么值时,
复数 z m(m 1) (m 1)i 是
(1)实数(2)虚数(3)纯虚数 (4)0 (5)6+2i 解:(1)当 m 1 0,即 m 1 时,复数z 是实数.
2-3i的实部为 2 ,虚部为 -3 ;
0的实部为 0 ,虚部为 0 ;
1 4i 23
的实部为
1 2
,虚部为
4 3
;
5 2i 的实部为 5 ,虚部为 2 ;
6i的实部为 0 ,虚部为 6 。

高中数学《数系的扩充和复数的概念》教案

高中数学《数系的扩充和复数的概念》教案

高中数学《数系的扩充和复数的概念》教案一、教学目标1. 让学生了解数系的扩充过程,理解实数和复数的概念。

2. 培养学生运用数系知识解决实际问题的能力。

3. 提高学生对数学美的感受,培养学生的创新意识。

二、教学内容1. 数系的扩充过程:有理数、实数、复数。

2. 实数和复数的概念及其性质。

3. 复数的几何意义。

三、教学重点与难点1. 教学重点:数系的扩充过程,实数和复数的概念及其性质。

2. 教学难点:复数的几何意义,复数方程的求解。

四、教学方法1. 采用问题驱动法,引导学生探究数系的扩充过程。

2. 运用实例讲解法,让学生理解实数和复数的概念。

3. 利用数形结合法,揭示复数的几何意义。

五、教学过程1. 导入新课:通过复习实数的概念,引出数系的扩充过程。

2. 讲解数系的扩充过程:有理数、实数、复数。

3. 讲解实数和复数的概念:实数的定义、性质;复数的定义、性质。

4. 讲解复数的几何意义:复平面、复数的几何表示。

5. 巩固练习:解决一些与实数和复数有关的实际问题。

6. 课堂小结:总结本节课的主要内容和知识点。

7. 布置作业:布置一些有关实数和复数的练习题,巩固所学知识。

六、教学拓展1. 介绍复数在工程、物理等领域的应用,如电路分析中的复数表示法。

2. 引导学生探究复数的运算规则,如复数的乘法、除法、乘方等。

七、案例分析1. 分析实际问题,如利用复数解决几何问题、信号处理问题等。

2. 引导学生运用复数知识解决实际问题,提高学生的应用能力。

八、课堂互动1. 组织学生进行小组讨论,探讨复数的几何意义。

2. 开展课堂提问,检查学生对实数和复数概念的理解。

3. 引导学生进行互动交流,分享学习心得和解决问题的方法。

九、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况。

2. 作业完成情况:检查学生作业的完成质量,巩固所学知识。

3. 课后反馈:收集学生对课堂内容的反馈,了解学生的学习效果。

十、教学反思1. 反思教学内容:检查教学内容是否全面、深入,是否符合学生的实际需求。

人教A版选修2-2数学:第三章《数系的扩充与复数的引入》综合测试2(新人教A版选修2—2).docx

人教A版选修2-2数学:第三章《数系的扩充与复数的引入》综合测试2(新人教A版选修2—2).docx

高中新课标数学选修(2-2)第三章测试题一、选择题1.0a =是复数()z a bi a b =+∈R ,为纯虚数的( )A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件D.既不是充分也不必要条件 答案:B2.若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3 B.2C.1D.1-答案:D3.复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠ B.2a ≠且1a ≠ C.0a = D.2a =或0a =答案:D4.设1z ,2z 为复数,则下列四个结论中正确的是( )A.若22120z z +>,则2212z z >-B.12z z -C.22121200z z z z +=⇔== D.11z z -是纯虚数或零 答案:D5.设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数 答案:D6.若1i +是实系数方程20x bx c ++=的一个根,则方程的另一个根为( ) A.1i - B.1i -+ C.1i -- D.i 答案:A7.已知复数1cos z i θ=-,2sin z i θ=+,则12z z ·的最大值为( )A.32 D.3答案:A 8.已知m ∈R ,若6()64m mi i +=-,则m 等于( )A.2-B.C.D.4答案:B9.在复平面内,复数12ω=-+对应的向量为OA u u u r ,复数2ω对应的向量为OB u u u r .那么向量AB u u u r对应的复数是( )A.1 B.1- D.答案:D10.在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小;②123z z z ∈C ,,,若221221()()0z z z z -+-=,则13z z =; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±; ④z 是虚数的一个充要条件是z z +∈R ;⑤若a b ,是两个相等的实数,则()()a b a b i -++是纯虚数; ⑥z ∈R 的一个充要条件是z z =.A.0 B.1 C.2 D.3 答案:B11.复数()a bi a b +∈R ,等于它共轭复数的倒数的充要条件是( ) A.2()1a b += B.221a b += C.221a b -= D.2()1a b -=答案:B12.复数z 满足条件:21z z i +=-,那么z 对应的点的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线 答案:A 二、填空题13.若复数cos sin z i θθ=-·所对应的点在第四象限,则θ为第 象限角. 答案:一14.复数z i =与它的共轭复数z 对应的两个向量的夹角为 . 答案:60°15.已知2z i =-,则32452z z z -++= . 答案:2 16.定义运算a b ad bc c c =-,则符合条件2132i z zi-=+的复数z = . 答案:7455i -三、解答题17.已知复数(2)()x yi x y -+∈R ,的模为3,求yx的最大值. 解:23x yi -+=∵,22(2)3x y -+=∴,故()x y ,在以(20)C ,为圆心,3为半径的圆上,yx表示圆上的点()x y ,与原点连线的斜率. 如图,由平面几何知识,易知yx的最大值为3. 18.已知1z i a b =+,,为实数. (1)若234z z ω=+-,求ω;(2)若2211z az bi z z ++=--+,求a ,b 的值.解:(1)2(1)3(1)41i i i ω=++--=--, 2ω=∴;(2)由条件,得()(2)1a b a ii i+++=-,()(2)1a b a i i +++=+∴,121a b a +=⎧⎨+=⎩,,∴解得12a b =-⎧⎨=⎩,.19.已知2211z x x i =++,22()z x a i =+,对于任意x ∈R ,均有12z z >成立,试求实数a 的取值范围. 解:12z z >∵, 42221()x x x a ++>+∴,22(12)(1)0a x a -+->∴对x ∈R 恒成立.当120a -=,即12a =时,不等式成立; 当120a -≠时,21201124(12)(1)0a a a a ->⎧⇒-<<⎨---<⎩, 综上,112a ⎛⎤∈- ⎥⎝⎦,. 20.已知()z i z ω=+∈C ,22z z -+是纯虚数,又221116ωω++-=,求ω. 解:设()z a bi a b =+∈R ,2(2)2(2)z a bi z a bi--+=+++∴2222(4)4(2)a b bia b +-+=++. 22z z -+∵为纯虚数, 22400a b b ⎧+-=⎨≠⎩,.∴222211(1)(1)(1)(1)a b i a b i ωω++-=++++-++∴2222(1)(1)(1)(1)a b a b =++++-++ 222()44a b b =+++844b =++ 124b =+.12416b +=∴.1b =∴.把1b =代入224a b +=,解得a =.z i =∴.2i ω=∴.21.复数3(1)()1i a bi z i++=-且4z =,z 对应的点在第一象限内,若复数0z z ,,对应的点是正三角形的三个顶点,求实数a ,b 的值.解:2(1)(1)()2()221i i z a bi i i a bi a bi i++=+=+=---···,由4z =,得224a b +=. ①∵复数0,z ,z 对应的点是正三角形的三个顶点,z z z =-∴,把22z a bi =--代入化简,得1b =. ② 又Z ∵点在第一象限内,0a <∴,0b <.由①②,得1a b ⎧=⎪⎨=-⎪⎩.故所求a =1b =-.22.设z 是虚数1z z ω=+是实数,且12ω-<<.(1)求z 的值及z 的实部的取值范围.(2)设11zzμ-=+,求证:μ为纯虚数; (3)求2ωμ-的最小值.(1)解:设0z a bi a b b =+∈≠R ,,,, 则1a bi a bi ω=+++2222a b a b i a b a b ⎛⎫⎛⎫=++- ⎪ ⎪++⎝⎭⎝⎭.因为ω是实数,0b ≠,所以221a b +=,即1z =.于是2a ω=,即122a -<<,112a -<<.所以z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,;(2)证明:2222111211(1)1z a bi a b bi bi z a bi a b a μ------====-++++++.因为112a ⎛⎫∈- ⎪⎝⎭,,0b ≠,所以μ为纯虚数;(3)解:22222122(1)(1)b a a a a a ωμ--=+=+++1222111a a a a a -=-=-+++12(1)31a a ⎡⎤=++-⎢⎥+⎣⎦因为112a ⎛⎫∈- ⎪⎝⎭,,所以10a +>,故223ωμ-·≥431-=. 当111a a +=+,即0a =时,2ωμ-取得最小值1. 高中新课标数学选修(2-2)第三章测试题一、选择题1.实数x ,y 满足(1)(1)2i x i y ++-=,则xy 的值是( ) A.1 B.2C.2-D.1-答案:A2.复数cos z i θ=,[)02πθ∈,的几何表示是( ) A.虚轴B.虚轴除去原点C.线段PQ ,点P ,Q 的坐标分别为(01)(01)-,,, D.(C)中线段PQ ,但应除去原点 答案:C3.z ∈C ,若{}22(1)1M z z z =-=-|,则( )A.{}M =实数B.{}M =虚数C.{}{}M实数复数苘D.{}M ϕ=答案:A4.已知复数1z a bi =+,21()z ai a b =-+∈R ,,若12z z <,则( ) A.1b <-或1b > B.11b -<< C.1b > D.0b >答案:B5.已知复数z 满足2230z z --=的复数z 的对应点的轨迹是( ) A.1个圆 B.线段C.2个点D.2个圆答案:A6.设复数()z z ∈C 在映射f 下的象是zi ·,则12i -+的原象为( ) A.2i - B.2i + C.2i -+ D.13i +-答案:A7.设A ,B 为锐角三角形的两个内角,则复数(cot tan )(tan cot )z B A B A i =-+-对应的点位于复平面的( )A.第一象限 B.第二象限C.第三象限D.第四象限答案:B8.已知()22f z i z z i +=++,则(32)f i +=( ) A.9i B.93i +C.9i -D.93i --答案:B 9.复数2()12miA Bi m AB i-=+∈+R ,,,且0A B +=,则m =( )B.23 C.23-D.2答案:C10.(32)(1)i i +-+表示( ) A.点(32),与点(11),之间的距离 B.点(32),与点(11)--,之间的距离 C.点(32),与原点的距离 D.点(31),与点(21),之间的距离 答案:A11.已知z ∈C ,21z -=,则25z i ++的最大值和最小值分别是( )11 B.3和1C.和3答案:A12.已知1z ,2z ∈C ,12z z +=1z =2z =12z z -=( )A.1 B.12C.2答案:D 二、填空题13.若()1()f z z z =-∈C ,已知123z i =+,25z i =-,则12z f z ⎛⎫= ⎪ ⎪⎝⎭.答案:19172626i - 14.“复数z ∈R ”是“11z z=”的 . 答案:必要条件,但不是充分条件 15.A ,B 分别是复数1z ,2z 在复平面上对应的两点,O 为原点,若1212z z z z +=-,则AOB △为 . 答案:直角16.若n 是整数,则6(1)(1)nn i i -+-=· . 答案:8±或8i ±三、解答题17.已知复数3z z -对应的点落在射线(0)y x x =-≤上,1z +=z . 解:设()z a bi a b =+∈R ,,则33324z z a bi a bi a bi -=+-+=+, 由题意得4120ba b ⎧=-⎪⎨⎪>⎩,,①又由1z +=22(1)2a b ++=, ② 由①,②解得21a b =-⎧⎨=⎩,,2z i =-+∴.18.实数m 为何值时,复数216(815)55m z m i m i m m -⎛⎫=++++ ⎪++⎝⎭.(1)为实数; (2)为虚数; (3)为纯虚数;(4)对应点在第二象限.解:226(815)5m m z m m i m +-=++++.(1)z 为实数28150m m ⇔++=且50m +≠,解得3m =-; (2)z 为虚数2815050m m m ⎧++≠⇔⎨+≠⎩,,解得3m ≠-且5m ≠-;(3)z 为纯虚数226058150m m m m m ⎧+-=⎪⇔+⎨⎪++≠⎩,,解得2m =;(4)z 对应的点在第二象限226058150m m m m m ⎧+-<⎪⇔+⎨⎪++>⎩,,解得5m <-或32m -<<.19.设O 为坐标原点,已知向量1OZ u u u u r ,2OZ u u u u r分别对应复数12z z ,,且213(10)5z a i a =+-+,22(25)1z a i a=+--,a ∈R .若12z z +可以与任意实数比较大小,求1OZ u u u u r ,2OZ u u u u r 的值.解:213(10)5z a i a =--+,则31232[(10)(25)]51z z a a i a a+=++-+-+-的虚部为0, 22150a a +-=∴.解得5a =-或3a =. 又50a +≠∵,3a =∴.则138z i =+,21z i =-+,1318OZ ⎛⎫= ⎪⎝⎭u u u u r ,,2(11)OZ =-u u u u r ,. 1258OZ OZ =u u u u r u u u u r ∴·.20.已知z 是复数,2z i +与2zi-均为实数,且复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围.解:设()z x yi x y =+∈R ,,2(2)z i x y i +=++为实数,2y =-∴.211(22)(4)2255z x i x x i i i -==++---为实数, 4x =∴,则42z i =-.22()(124)8(2)z ai a a a i +=+-+-∵在第一象限, 212408(2)0a a a ⎧+->⎨->⎩,,∴解得26a <<. 21.已知关于x 的方程2(6)90()x i x ai a -+++=∈R 有实数根b . (1)求实数a ,b 的值;(2)若复数z 满足2z a bi z --=,求z 为何值时,z 有最小值并求出最小值. 解:(1)将b 代入题设方程,整理得2(69)()0b b a b i -++-=, 则2690b b -+=且0a b -=,解得3a b ==;(2)设()z x yi x y =+∈R ,,则2222(3)(3)4()x y x y -++=+, 即22(1)(1)8x y ++-=.∴点Z 在以(11)-,为圆心,22为半径的圆上, 画图可知,1z i =-时,min 2z =.。

2022版高中数学第三章数系的扩充与复数的引入3.2.2复数代数形式的乘除运算课件新人教A版选修2_

2.实数范围内整数指数幂的运算律在复数范围内仍然成立,即对
复数z,z1,z2和自然数n,m,有zm·zn=zm+n,(zm)n=zmn,(z1·
=z2)n
1 ·2 .
知识梳理
【做一做1-1】 复数z1=2+i,z2=1-i,那么z=z1·z2在复平面内对
应的点位于(
)
A.第一象限 B.第二象限
=(-8-8 3i)(2-2
=-16+16 3i-16
(4)(方法 1)
=
2i 4
-2i
3 − i)2]3=(2-2 3i)3
3i)
3i)
3i-48=-64.
1+i 8
1-i
=
4
1+i 2
1-i
= (-1)4=1.
1+i
(1+i)2
(方法 2)因为 1-i = (1-i)(1+i) =
所以
1+i 8
=
21-28i+3i-4i 2
25
(i-2)(i-1)
(4)
=
(1+i)(i-1)+i
-2-i+6i+3i 2
5
(5)原式 =
=
=
=
25-25i
= 1-i.
25
2
i -i-2i+2
i-1+i 2 -i+i
-5+5i
=
1-3i
-2+i
=
(1-3i)(-2-i)
(-2+i)(-2-i)
= −1+i.
5
(-1+ 3i)2 (-1+ 3i)

3.1.1_数系的扩充和复数的概念课件人教新课标

从数集A出发,希望新引进的数i和实数之间 仍然能像实数系那样进行加法和乘法运算,并希 望加法和乘法都满足交换律、结合律,以及乘法 对加法满足分配律.
把实数 a与新引入的数i相加,结果记作a +i; 把实数b与i相乘,结果记作bi; 把实数a与实数b和i相乘的结果相加,结果 记作a + bi.
加法和乘 法的运算律仍然成立 ,这些运算的结果 都可以写成 a + bi(a,b∈R)的形式,把这些数都添 加到数集 A中去.
数集扩充到有理数集
边长为1的正方形的对角线长度为多少?

1Hale Waihona Puke 1无理数是“推”出来 的.公元前六世纪,古希 腊毕达哥拉斯学派利用毕 达哥拉斯定理,发现了 “无理数”. “无理数” 的承认(公元前4世纪) 是数学发展史上的一个里 程碑.
数集扩充到有实数集
毕达哥拉斯 (约公元前560——480年)
数集扩充到实数集
负数是“欠”出来的. 它是由于借贷关系中量的 不同意义而产生的.我国 三国时期数学家刘徽(公 元250年前后)第一给出 了负数的定义、记法和加 减运算法则. 数集扩充到整数集
刘徽(公元250年前后)
分数(有理数)是“分” 出来的.早在古希腊时期, 人类已经对有理数有了非 常清楚的认识,而且他们 认为有理数就是所有的数.
这样的数都可以看作是a + bi(a,b∈R) 的特殊形式,所以实数系经过扩充后
得到的新数集应该是C = a + bi|a,b∈R .
复数的概念
我们把集合 C = a + bi|a,b∈R 中的数,即形
如a + bia,b∈R的数叫做复数(complex number),
其中i叫做虚数单位(imaginary unit).全体复数 所成的集合 C叫做复数集(set of complex numbers).

数系的扩充和复数的概念教案

数系的扩充和复数的概念教案一、教学目标1. 了解数系的扩充,掌握实数集、有理数集、无理数集和复数集的概念;2. 掌握复数的定义和表示方法;3. 理解复数加法和乘法的几何意义;4. 能够计算复数的模、共轭和商。

二、教学重难点1. 数系的扩充,包括实数集、有理数集、无理数集和复数集的概念;2. 复数的定义和表示方法;3. 复数加法和乘法的几何意义。

三、教学内容1. 数系的扩充(1)实数集:包括有理数和无理数两部分,用符号“R”表示。

(2)有理数集:可以表示为两个整数之比(分母不为0),用符号“Q”表示。

(3)无理数集:不能表示为两个整数之比,用符号“Q'”表示。

(4)复数集:由实部和虚部构成,形如a+bi,其中a和b均为实数,i是虚单位,用符号“C”表示。

2. 复数的定义与表示方法(1)定义:由一个实部a和一个虚部b构成的有序数组(a,b)称为一个复数z,即z=a+bi。

其中a称为z的实部,b称为z的虚部。

(2)表示方法:用复平面上的点表示。

3. 复数加法和乘法的几何意义(1)复数加法:设z1=a1+b1i,z2=a2+b2i,则z1+z2=(a1+a2)+(b1+b2)i。

即把两个复数看作向量,在复平面上用平行四边形法则相加。

(2)复数乘法:设z1=a1+b1i,z2=a2+b2i,则z1×z2=(a1a2-b1b2)+(a1b2+a2b1)i。

即把两个复数看作向量,在复平面上用角度叠加原理相乘。

4. 计算方法(1)模:|a+bi|=√(a²+b²)。

(2)共轭:若z=a+bi,则其共轭为z*=a-bi。

(3)商:设z1=a+bi,z2=c+di,则它们的商为(z1/z2)=(ac+bd)/(c²+d²)+((bc-ad)/(c²+d²))i。

四、教学过程Step 1 引入新知识介绍实数集、有理数集和无理数集,并引入复数集的概念。

数系的扩充和复数的概念


数集的每一次扩充,对数学学科本身来说,也解决了 在原有数集中某种运算不是永远可以实施的矛盾:
分数解决了在整数集中不能整除的矛盾; 负数解决了在正有理数集中不够减的矛盾; 无理数解决了开方开不尽的矛盾. 数集扩到实数集R以后,像x2=-1这样的方程还 是无解的.
讲解新课:
1.虚数单位:i (1)它的平方等于-1,即
z a bi bi
叫做 虚数
.
当a=0且b≠0时,
叫做 纯虚数 . .
当且仅当a=b=0时,z就是 0
6. 复数与实数、虚数、纯虚数及0的关系:
7. 两个复数相等的定义:如果两个复数的实部 和虚部分别相等,那么我们就说这两个复数相等. 这就是说,如果a, b, c, d R ,那么
a bi c di a c, b d
复数相等的定义是求复数值,在复数集中解方程 的重要依据.一般地,两个复数只能说相等或不相 等,而不能比较大小. 命题:“任何两个复数都不能比较大小”对吗?不对
1 1 例1请说出复数 2 3i,3 i, i, 3 5i 2 3
的实部和虚部,有没有纯虚数?
例2 复数-2i+3.14的实部和虚部是什么? 例3实数m取什么数值时,复数z=m+1+(m-1)i是: (1)实数? (2)虚数? (3)纯虚数? 例4已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x与y.
i 1
2
(2)实数可以与它进行四则运算,进行四则运算 时,原有加、乘运算律仍然成立.
:
2.
i i
与-1的关系:
方程x2=-1的两个根分别为
3. 的周期性: i
4 n 1 4 n 3
i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学选修2-2》数系的扩充与复数524500 广东省吴川市第一中学命题:冯奕尖 审稿:柯厚宝第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1、下面有四个命题:①a b ,是两个相等的实数,则()()a b a b i -++是纯虚数;②任何两个复数不能比较大小;③若1z ,2z ∈C ,且22120z z +=,则120z z ==;④两个共轭虚数的差为纯虚数.其中正确的有( )A.1个B.2个C.3个D.4个2、设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限 B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数3、2020(1i)(1i)+--的值是( )A.64B.32C.0D.4-4、已知3(z -=⋅-,那么复数z 在平面内对应的点位于( ) A.第一象限 B. 第二象限 C.第三象限 D.第四象限5、若12ω=-+,则421ωω++等于( )A.1B.0C.3+D.1-+6、复数22(2)(2)i z a a a a =-+--对应的点在虚轴上,则( )A.2a≠或1a≠B.2a≠且1a≠C.0a=D.2a=或0a=7、若1i+是实系数方程20x bx c++=的一个根,则方程的另一个根为( )A.1i--B.1i-+C.1i-D.i8、设i是虚数单位,复数tan45z i sin60,则2z等于( )A. 734-i B.134-iC. 734+i D.134+i9、定义运算a bad bcc d=-,则符合条件12121z ii i+=--的复数z对应的点在( ).A.第四象限B.第三象限C.第二象限D.第一象限10、投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)(n-mi)为实数的概率为( )A、13B、14C、16D、11211、i是虚数单位,若17(,)2ia bi ab Ri+=+∈-,则乘积ab的值是( )A.-15B.-3C.3D.1512、已知复数z满足2230z z--=的复数z的对应点的轨迹是( ) A.1个圆 B.线段 C.2个点 D.2个圆第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上.)13、若复数()2i bi ⋅+是纯虚数,则实数b= 。

14、若复数 z 满足z (1+i) =1-i (I 是虚数单位),则其共轭复数z =_____________ .15、设z =-1+(ii -+11)2010,则z =__________. 16、复平面内,已知复数z =x -31i 所对应的点都在单位圆内,则实数x 的取值范围是_______.三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.)17、(12分)已知复数22(56)(215)z m m m m i =+++--,当实数m 为何值时, (1)z 为实数; (2)z 为虚数; (3)z 为纯虚数.18、(12分)已知1z i =+,a ,b ∈R ,若2211z az bi z z ++=--+,求a ,b 的值.19、(12分)已知22{1,(2)(2)},M m m m m i =-++-{1,1,4},P i =-若,MP P =求实数m.20、(12分)已知z 是复数,2z i +与2zi-均为实数,且复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围.21、(12分)已知复平面内平行四边形ABCD ,A 点对应的复数为2i +,向量BA 对应的复数为12i +,向量BC 对应的复数为3i -.(1)求点,C D 对应的复数; (2)求平行四边形ABCD 的面积.22、(14分)设等比数列nz z z z ,,,,321 ,其中11=z ,bi a z +=2,ai b z +=3(,,0)a b R a ∈>.(1)求a ,b 的值;(2)求使021=+++n z z z 的最小正整数n 的值.(参考数据:31=)参考答案1.A ①()()i a b a b -++2i a =,∴0a b =≠时,()()i a b a b -++是纯虚数;②当两个复数都为实数时可以比较大小;③例如121,i z z ==,显然22120z z +=,但120z z ≠≠; ④正确.2.D ∵22549492532()488t t t +-=+-≥-,2222(1)110t t t ++=++≥>3.C 202021021010101010(1i)(1i)[(1i)][(1i)](2i)(2i)(2i)(2i)0+--=+--=--=-=4.A ∵12z ===+,10,022>>, ∴z 在平面内对应的点位于第一象限.5.B 可得321,10ωωω=++=,∴422110ωωωω++=++=6.D 因复数对应的点在虚轴上,所以220,02a a a a -=∴==或7.C 依题意得2(1)(1)(2)()0i b i c b i b c ++++=+++=,∴200b b c +=⎧⎨+=⎩,∴2,2,b c =-=即方程2220x x -+=,易得方程的另一个根为1i -. 8.B 3tan 45isin 601z =-=-,∴2221(tan 45isin 60)124z ⎛⎫=-=-=- ⎪⎝⎭. 9. D120121z i ii+=-- (1)(12)(12)0z i i i ⇒---+=,(1)5z i ∴-=设z x yi =+,(1)()(1)5z i x yi i ∴-=+-=,()()5x y y x i ++-=,50x y y x +=⎧⎨-=⎩即502x y ==> 10.C 因为22()()2()m ni n mi mn n m i +-=+-为实数,所以22n m =故m n =则可以取1、2⋅⋅⋅6,共6种可能,所以61666P ==⨯ 11.B17(17)(2)1325i i i i i +++==-+-,∴1,3,3a b ab =-==-. 12.A 由2230z z --=,得||3||1()z z ==-或舍,所以它表示以原点为中心,半径为3的圆.13. 0 (2i)2i i b b +=-+为纯虚数,0b ∴=14.i 设z =a +b i,则(a +b i )(1+i) =1-i,即a -b +(a +b )i =1-i,由⎩⎨⎧-=+=-11b a b a ,解得a =0, b =-1,所以z =-i,z =i15. -2 z =-1+(i-i 11+)2010=-1+i 2010=-1+i 4×502+2=-1+i 2=-1-1=-2. 16. -322322<<x ∵z 对应的点z (x ,-31)都在单位圆内, ∴|Oz |<1,即22)31(-+x <1. ∴x 2+91<1.∴x 2<98. ∴-322322<<x . 17.解:(1)若z 为实数,则22150m m --=,解得3m =-或5m =; (2)若z 为虚数,则22150m m --≠,解得3m ≠-或5m ≠;(3)若z 为纯虚数,则225602150m m m m ⎧++=⎪⎨--≠⎪⎩,,解得2m =-.18.解:1z i =+∵,22z i =∴,222(2)()2()11211z ax b i a ai b a i a b a a b i i z z i i i ++++++++===+-+=--+--+∴,211a a b +=⎧⎨+=⎩,,∴12a b =-⎧⎨=⎩,.∴19.解:由,M P P =知M 是P 的子集,从而可知22(2)(2)m m m m i -++-=-1或4 .由22(2)(2)m m m m i -++-=-1,得⎪⎩⎪⎨⎧=-+-=-021222m m m m ,解之得:m=1,由22(2)(2)m m m m i -++-=4,得 ⎪⎩⎪⎨⎧=-+=-420222m m m m ,解之得:m=2 ,综上可知:m=1或 m=2.20.解:设()z x yi x y =+∈R ,,2(2)z i x y i +=++为实数,2y =-∴.211(22)(4)2255z x i x x i i i -==++---为实数,4x =∴,则42z i =-. 22()(124)8(2)z ai a a a i +=+-+-∵在第一象限,212408(2)0a a a ⎧+->⎨->⎩,,∴解得26a <<.21.解:(1)∵向量BA 对应的复数为12i +,向量BC 对应的复数为3i -, ∴向量AC 对应的复数为(12i +)-(3i -)=23i -,又OC OA AC =+,∴点C 对应的复数为(2i +)+(23i -)=42i -.又BD BA BC =+=(12i +)+(3i -)=4i +,2(12)1OB OA BA i i i =-=+-+=-, ∴1(4)5OD OB BD i i =+=-++=,∴点D 对应的复数为5.(2)∵cos ,cos 5BA BC BA BC BA BC B B BA BC=∴===∴sin B =,∴sin 7S BA BC B ===.∴平行四边形ABCD 的面积为7.22.解:(1)由3122z z z ⋅=,得2()1()a bi b ai +=⨯+,222a b abi b ai -+=+, ∴222a b bab a ⎧-=⎨=⎩,又0a >,得12b =,于是a =.∴2a =,12b =. (2)由(1)得122q i =+,而120n z z z ++⋅⋅⋅+=, ∴i z z q 212312+==()12311230212312311=⎪⎪⎭⎫ ⎝⎛+-⋅-⇒=⎪⎪⎭⎫ ⎝⎛+⇒=⎪⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⨯=n n n n n i i i i i s又31=,且4()1i-=,∴min12n=.。

相关文档
最新文档