统计学方法总结2spss做卡方检验的方法

合集下载

医学统计学之卡方检验SPSS操作

医学统计学之卡方检验SPSS操作

医学统计学之卡方检验SPSS操作卡方检验(Chi-Square Test)是一种常用的统计方法,用于比较两个或多个分类变量的分布是否存在差异。

该方法主要用于处理分类数据,例如比较男女性别和吸烟与否对癌症发生的关系。

在SPSS(Statistical Package for the Social Sciences)软件中,进行卡方检验的操作主要分为数据准备、假设设定和计算步骤。

第一步:数据准备首先,需要在SPSS中导入数据。

假设我们需要在一个样本中比较男女性别和吸烟与否的关系,我们可以将性别和吸烟状况作为两个分类变量,分别用“Male”和“Female”表示性别,“Smoker”和“Non-smoker”表示吸烟状况。

将这些数据输入到SPSS中的一个数据表中。

第二步:假设设定接下来,需要设置假设。

在卡方检验中,我们通常有一个原假设和一个备择假设:-原假设(H0):两个或多个分类变量之间没有显著差异。

-备择假设(H1):两个或多个分类变量之间存在显著差异。

在本例中,原假设可以是“性别和吸烟状况之间没有显著差异”,备择假设可以是“性别和吸烟状况之间存在显著差异”。

第三步:计算步骤进行卡方检验的计算步骤如下:1.打开SPSS软件并导入数据。

2. 选择“分析(Analyse)”菜单,然后选择“非参数检验(Nonparametric Tests)”子菜单,最后选择“卡方(Chi-Square)”选项。

3.在弹出的对话框中选择两个分类变量(性别和吸烟状况),并将它们添加到变量列表中。

4.点击“确定(OK)”按钮,开始进行卡方检验的计算。

5.SPSS将计算卡方统计量的值和相关的P值。

如果P值小于指定的显著性水平(通常为0.05),则可以拒绝原假设,接受备择假设。

这样,就完成了卡方检验的SPSS操作。

需要注意的是,卡方检验是一种只能说明变量之间是否存在关系的方法,不能用于确定因果关系。

此外,在进行卡方检验之前,需要确保样本符合一些假设,例如每个单元格的期望频数应该大于5、如果不满足这些假设,可以考虑使用其他适用的统计方法。

SPSS非参数检验之一卡方检验

SPSS非参数检验之一卡方检验

SPSS非参数检验之一卡方检验一、卡方检验的概念和原理卡方检验是一种常用的非参数检验方法,用于检验两个或多个分类变量之间的关联性。

它利用实际观察频数与理论频数之间的差异,来判断两个变量是否独立。

卡方检验的原理基于卡方分布,在理论上,如果两个变量是独立的,那么它们的观测频数应该等于理论频数。

卡方检验通过计算卡方值来度量观察频数与理论频数之间的差异程度,进而判断两个变量是否独立。

卡方值的计算公式为:卡方值=Σ((观察频数-理论频数)²/理论频数)其中,观察频数为实际观察到的频数,理论频数为理论上计算得到的频数。

二、卡方检验的步骤卡方检验的步骤包括以下几个方面:1.建立假设:首先需要建立原假设和备择假设。

原假设(H0)是两个变量之间独立,备择假设(H1)是两个变量之间存在关联。

2.计算理论频数:根据原假设和已知数据,计算出各组的理论频数。

3.计算卡方值:利用卡方值的计算公式,计算观察频数与理论频数之间的差异。

4.计算自由度:自由度的计算公式为自由度=(行数-1)*(列数-1)。

5.查表或计算P值:根据卡方值和自由度,在卡方分布表中查找对应的临界值,或者利用计算机软件计算P值。

6.判断结果:判断P值与显著性水平的关系,如果P值小于显著性水平,则拒绝原假设,认为两个变量存在关联;如果P值大于显著性水平,则接受原假设,认为两个变量是独立的。

三、卡方检验在SPSS中的应用在SPSS软件中,进行卡方检验的操作相对简单。

下面以一个具体的案例来说明:假设我们有一份数据,包括了男性和女性在健康习惯(吸烟和不吸烟)方面的调查结果。

我们想要检验性别与吸烟习惯之间是否存在关联。

1.打开SPSS软件,导入数据。

2.选择"分析"菜单,点击"拟合度优度检验"。

3.在弹出的对话框中,将两个变量(性别和吸烟习惯)拖入"因子"栏目中。

4.点击"统计"按钮,勾选"卡方拟合度"。

(参考资料)SPSS卡方检验教程

(参考资料)SPSS卡方检验教程
例6 见第231页例9-6。group:组别,1=高氟区,2=干 预区,3=低氟区;effect:1=患龋,2=未患龋;freq: 频数 。(SPSS软件操作步骤与例1相同)
(三)完全随机设计的多个样本率比较的假设检验
例6
患龋率
Pearson
P值
卡方值
(二)配对设计的两样本率比较的假设检验
例4 方法一 (SPSS菜单:Crosstabs)
交叉表
(二)配对设计的两样本率比较的假设检验
例4 方法一 (SPSS菜单:Crosstabs)
行 列
(二)配对设计的两样本率比较的假设检验
例4 方法一 (SPSS菜单:Crosstabs)
McNemar
(二)配对设计的两样本率比较的假设检验
实习五
分类变量资料的统计推断 第226~235页
一、率的抽样误差与标准误
(一)定义
在抽样研究中,由于抽样造成的样本率与总体率之间的 差异或者样本率之间的差异,称为率的抽样误差。
(二)计算:率的抽样误差大小用率的标准误来衡量。
σp =
π (1 − π )
n
一般情况下,由于我们研究的是样本,π未知,所以常用p 代替π ,得到率的标准误的估计值:
例4 方法一 (SPSS菜单:Crosstabs)
精确概率法
(二)配对设计的两样本率比较的假设检验
例4 方法二 (SPSS菜单:Nonparametric Tests)推荐
2个相关 样本
(二)配对设计的两样本率比较的假设检验
例4 方法二 (SPSS菜单:Nonparametric Tests)推荐
(一)完全随机设计的两样本率比较的假设检验
例2 见第544页计算分析题1。group:组别,1=新防护衣, 2=旧防护衣;effect:患病情况,1=患病,0=未患病;freq: 频数 。(SPSS软件操作步骤同例1)

卡方检验SPSS操作

卡方检验SPSS操作

卡方检验SPSS操作卡方检验是一种统计方法,用于比较观察频数与期望频数之间的差异是否显著。

它适用于比较两个或多个分类变量之间的关系,并确定这些变量是否相互独立。

在SPSS中,可以使用交叉表和卡方检验命令来执行卡方检验。

首先,打开SPSS软件并导入待分析的数据文件。

然后,选择“数据”菜单中的“交叉表”选项。

在弹出的交叉表对话框中,将要分析的变量拖拽到“行”和“列”的方框中。

假设我们要比较性别和喜好电影类型之间的关系,那么将性别拖拽到“行”,将电影类型拖拽到“列”。

接下来,在交叉表对话框中,点击“统计”按钮。

在弹出的统计对话框中,选择“卡方”选项,并点击“继续”按钮。

然后,点击“确定”按钮生成交叉表。

SPSS将显示交叉表的结果,包括观察频数、期望频数、卡方值和p值等。

在卡方检验中,我们通过观察频数和期望频数之间的差异来判断两个变量是否相关。

如果差异较大,卡方值较大,p值较小,则说明两个变量之间存在显著关系。

不管是使用交叉表还是描述统计方法进行卡方检验,都需要注意以下几点:1.样本数据应该是随机抽取的,并且足够大。

2.对于交叉表中的每个单元格,期望频数应当大于等于5,以确保卡方检验的可靠性。

3.卡方检验只能检验两个或多个分类变量之间的关系,不能用于比较连续变量。

4.如果卡方检验结果显著,表明两个变量之间存在关联,但不能确定关联的性质或因果关系。

卡方检验在数据分析中有着广泛的应用,可以用于医学研究、市场调查、社会科学等领域。

通过SPSS软件的操作,可以便捷地进行卡方检验,并获取检验结果。

SPSS卡方检验,免费

SPSS卡方检验,免费

二、确切概率法:数据输入
二、确切概率法:指定频数
二、确切概率法:进行确切概率计算
二、确切概率法:概率计算方法选择
二、确切概率法:统计方法选择
二、确切概率法:结果解读
二、确切概率法:这么计算对吗?
二、确切概率法:这么计算对吗?
三、配对卡方检验:实例

பைடு நூலகம்
实例:两位放射科医生对一批矽肺片独自 做出矽肺分级诊断,结果如下表,请问他 们的诊断结果是否基本一致,诊断水平有 无差别。 医生乙诊断结果
2 2 服从卡方分布,计算 出值后,查表判断这么大的 是否为小概率
一、四格表卡方检验:实例

实例:某医生用国产呋喃硝胺治疗十二指 肠溃疡,以甲氰咪胍作对照组,请问两方 法治疗效果有无差别(《医学统计学》p37)
处理 呋喃硝胺 甲氰咪胍 未愈合 8 20 愈合 54 44 合计 62 64
合计
四、分层卡方检验:数据输入
四、分层卡方检验:指定频数变量
四、分层卡方检验:按某一变量分层
四、分层卡方检验:统计方法选择
四、分层卡方检验:结果解读(一)
四、分层卡方检验:结果解读(二)
四、分层卡方检验:结果解读(三)
结束语



行列表卡方检验要求理论频数不宜太小, 否则就会导致分析的偏倚。 一般认为行列表中不宜有1/5以上的理论频 数小于5或有一个理念频数小于1。 当行列表两变量单向或双向有序,比较组 间有无差别时,则宜用Ridit分析、秩和检验、 行列表评分卡方检验、等级相关分析等。
A:表示实际频数,即实际观察到的例数。T:理论频数,即如果假设 检验成立,应该观察到的例数。 :求和符号。 R:行数, C:列 数。自由度: R 1 C 1 2 A T 如果假设检验成立,A与T不应该相差太大。理论上可以证明 T

用SPSS对问卷资料进行卡方检验

用SPSS对问卷资料进行卡方检验

用SPSS‎对问卷资料‎进行卡方检‎验1.调查结果如‎果按类别统‎计的人数或‎个数(即计数数据‎),有两种检验‎方法:一种是比率‎检验法,一种是χ2‎检验法。

比率检验法‎只适合两项‎分类问题(含单因素问‎题和双因素‎问题)。

2.一切计数数‎据均可运用‎χ2检验。

有时为了研‎究简便,遇到两项分‎类问题时,也可转化为‎将数据转换‎为比率检验‎法。

3.SPSS中‎的χ2检验‎可进入“分析”-“非参数检验‎”中进行处理‎。

3.关于多项分‎类问题,用χ2检验‎法。

如果问卷中‎属于多项分‎类资料,如学生成绩‎“好、中、差”、身体状况“上、中、下”等,用χ2检验‎法。

分两种情况‎:如果是单因‎素问题,用配合度检‎验(例1);如果是双因‎素问题,用独立性检‎验(例2)。

例1.“你认为教师‎最重要的能‎力是:A.自学能力 B.教学能力 C.科研能力”问卷结果如‎下表。

问:对这三种能‎力的看法是‎否有差异?哪种能力最‎重要?(只考察教师‎能力,属多项分类‎问题中的单‎因素问题,用χ2检验‎中的配合度‎检验。

)例2:关于学制改‎革向家长调‎查:“你对新学制‎的态度是:A.赞成 B.反对C不知‎道”。

结果如下表‎(人数与比例‎):(看不同阶层‎家长对学制‎的态度,属多项分类‎问题中的双‎因素问题,用χ2检验‎中的独立性‎检验。

)4.两项分类问‎题与比率检‎验问卷中,对于非此即‎彼的两项分‎类资料,可转换成相‎对比率,进行比率的‎显著性或比‎率的差异性‎显著性检验‎。

分为两种情‎况:如果是单因‎素问题,用比率的显‎著性检验(例3);如果是双因‎素问题,进行两样本‎差异的显著‎性检验(例4、例5、例6)。

例3:今年高考某‎校升学率为‎45%,甲班共45‎人,23人考入‎大学,甲班的升学‎率为51.1%。

试问甲班的‎升学率水平‎是否明显高‎于全校平均‎水平?(这类教学效‎果评价属两‎项分类问题‎中的单因素‎问题,用比率的显‎著性检验)例4:对不同专业‎学生“专业思想”的差异调查‎,问卷结果见‎下表。

SPSS卡方检验步骤

SPSS卡方检验步骤
T o tal
effect
阴转人数 阳性数
30
14
9
36
39
50
T o tal 44 45 89
Chi-Square Tests
Pearson Chi-Square Continuity Correctiona
Value 20.979b
19.068
df 1 1
Asymp. Sig. (2 -si d e d) .000
A 47 52 99
血型 B
66 54 120
AB 20 19 39
O 106 62 168
T o ta l 239 187 426
Chi-Square Tests
Pearson Chi-Square
Value 6.755a
df 3
Asymp. Sig. (2 -si d e d) .080
X2=20.687,p=0.000,按a=0.05水 准,拒绝H0,接受H1,差异有统计 学意义,可认为试验组有效率高于对 照组。
P440 第5题 配对设计卡方检验 步骤: 1、定义变量
11
步骤: 2、输入数据
12
步骤: 3、变量加权
13
步骤: 3、变量加权:按频数加权
14
步骤: 4、分析:选 Analyze
35
X2=20.979,p=0.000,按a=0.0167水 准,拒绝H0,接受H1,差异有统计 学意义,可认为甲、乙两种疗法对尿 路感染治疗效果有差别,甲疗法优于 乙疗法。
36
甲、丙检 验结果
group * effect Crosstabulation
Count
group 甲 丙
T o tal

spss卡方检验

spss卡方检验

spss卡方检验SPSS卡方检验SPSS(统计软件包 for the Social Sciences)是一种功能强大的统计软件,在社会科学、商业智能和市场调研等领域得到广泛应用。

其中,卡方检验是SPSS中常用的统计方法之一。

本文将介绍SPSS 中使用卡方检验进行数据分析的基本步骤、原理和注意事项。

一、卡方检验的基本概念卡方检验,又称为卡方拟合优度检验,用于比较观察样本与理论预期分布之间的差异。

它基于卡方统计量,可以用于分析分类数据的关联性和独立性。

卡方检验的结果可以帮助研究人员判断观察数据与理论模型之间的差异程度以及独立性。

二、SPSS中进行卡方检验的步骤1. 收集数据并导入到SPSS中。

2. 在SPSS中选择“分析”菜单,点击“描述统计”下的“交叉表”。

3. 在交叉表对话框中,选择需要比较的两个变量。

4. 点击“统计”按钮,选择“卡方”选项。

5. 点击“继续”按钮,然后点击“OK”按钮生成交叉表结果。

三、SPSS卡方检验的原理SPSS中的卡方检验基于卡方统计量,该统计量用于衡量观察值与理论期望值之间的差异。

卡方统计量的计算公式如下:\\[ X^2 = \\sum \\frac{(O-E)^2}{E} \\]其中,O表示观察值,E表示理论期望值。

卡方统计量服从自由度为(k-1) × (m-1)的卡方分布,其中k表示列数,m表示行数。

通过计算卡方统计量,可以得到卡方值和P值。

如果P值小于设定的显著性水平(通常为0.05),则认为观察值与理论期望值存在显著差异,拒绝原假设。

四、卡方检验的应用场景卡方检验通常用于以下几种情况:1. 检验分类变量之间的关联性。

例如,研究某一地区的居民性别与吸烟习惯之间的关系。

2. 检验分类变量与某一特定属性的关联性。

例如,研究某个产品的用户满意度与不同年龄段之间的关系。

3. 检验分类变量的分布是否服从某一特定的理论分布。

例如,研究某一地区的选民支持率是否符合某个政党的预期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通过看网上的spss教程,发现用spss做卡方检验有俩种方法,特简单介绍下,若有错漏请补充,安江。

以比较两个组别(实验组与对照组)的男女差异为例。

方法一、
①如下图所示设置三个变量(组别、性别、人数)
②再给“组别”以及“性别”变量添加值

输入数据(我是随机的)
是原始数据,而是频数表数据,所以要进行预处理)
⑤依次打开:分析(analyze)--描述统计(descriptive)--交叉表(crosstabs),打开交叉表对话框,按图所示将“组别”“性别”分别添加进“行”“列”中,点击交叉表对话框里的“统计量”(statistics),勾选“卡方”以及“McNemar”,点击交叉表对话框里的“单元格”(cell),勾选“行”。

⑥点击“确定”,出现最后结果。

会出现三张表,主要看第三张表的pearson卡方检验,渐进sig(双侧)值大于0.05,因此认为不同的性别对两组无显著的差别。

最后还得看一下第三张表下面的a中小于5的理论频数不能超过20%,超过了则本次检验不正确,需要(1)增加样本含量,(2)进行合理合并或删除分类。

方法二、
貌似方法二只适用于俩个变量的,列如比较若干组的人数差异性①如下图所示设置两个变量(组别、人数)
②再给“组别”变量添加值
输入数据(我是随机的)
④加权处理不知道需不需要,教程上并没有,不过方法一中的解释如果正确,那么次方法也是需要预处理的。

⑤找到非参数检验->旧对话框->卡方检验,将其单击单击打开,将“人数”添加到“检验变量列表”中,点击“选项”,勾选“描述性”
⑥点击“确定”,出现最后结果。

会出现三张表,主要看第三张表的渐进显著性值小于0.05,因此认为人数对组别有显著的差别。

最后还得看一下第三张表下面的a中小于5的理论频数不能超过20%,超过了则本次检验不正确,需要(1)增加样本含量,(2)进行合理合并或删除分类。

相关文档
最新文档