统计学常用检验方法
定性资料常用的统计学方法

定性资料常用的统计学方法一、χ2检验χ2检验(chi-square test)是一种主要用于分析分类变量数据的假设检验方法,该方法主要目的是推断两个或多个总体率或构成比之间有无差别。
(一)四格表资料的χ2检验例17:为了解吲达帕胺片治疗原发性高血压的疗效,将70名高血压患者随机分为两组,试验组用吲达帕胺片加辅助治疗,对照组用安慰剂加辅助治疗,观察结果见表4 -5-1,试分析吲达帕胺片治疗原发性高血压的有效性。
表4 -5-1 两种疗法治疗原发性高血压的疗效1.四格表χ2检验的原理:对于四格表资料,χ2检验的基本公式为:式中,A为实际频数(actual frequency),T为理论频数(theoreticalfrequency)。
理论频数T根据检验假设H0:π1=π2确定,其中π1和π2分别为两组的总体率。
计算理论频数T的公式为:式中Tij 为第i行第j列的理论频数,ni+和n+j分别为相应行与列的周边合计数,n为总例数。
现以例17为例说明χ2检验的步骤:(1)建立检验假设并确定检验水准。
H0:π1=π2,即试验组与对照组的总体有效率相等H1:π1≠π2,即试验组与对照组的总体有效率不等α=0.05(2)计算检验统计量。
按式(4 -5-2)计算T11,然后利用四格表的各行列的合计数计算T12、T21和T22,即T11=(44×41)/70=25.77,T12=44-25.77=18.23T21=41-25.77=15.23,T22=26-15.23=10.77按式(4 -5-3)计算χ2值(3)确定P值,作出推断结论。
以ν=1查χ2分布界值表,得P<0.005。
按α=0.05水准,拒绝H,接受H1,可以认为两组治疗原发性高血压的总体有效率不等,即可以认为吲达帕胺片治疗原发性高血压优于对照组。
2.四格表资料χ2检验的专用公式:在对两样本率比较时,当总例数n≥40且所有格子的T≥5时,可用χ2检验的通用公式(4 -5-1)。
常用医学统计方法

概述
医学统计方法是研究和应用在医学研究中的统计学方法。它们帮助研究者解析和推断数据,从而得出科 学结论。
费雪检验
费雪检验是一种常用的统计检验方法,用于比较两个或多个样本的均值。它 可以帮助我们确定差异是否显著,并进行推断和假设检验。
t检验
t检验是用于比较两个样本均值的统计检验方法。它可以帮助我们确定两个样 本之间是否存在显著差异,并提供相关的推断和置信区间。
Logistic回归分析
Logistic回归分析用于建立一个二分类问题的回归模型。它可以帮助我们预测一个事件的概率,并理解各 个因素对事件发生的影响。
生存分析
生存分析用于研究时间和事件的关系。它广泛应用于医学领域,用于估计患 者的生存时间并分析其与其他因素的关联。
方差分析
方差分析用于比较三个或更多个样本的均值差异。它是一种常用的统计方法, 可用于分析多个组之间的显著性差异。
CHI方检验
CHI方检验(卡方检验)是用于比较两个或多个分类变量之间的差异是否显著 的统计方法性回归分析
多元线性回归分析用于建立多个自变量与一个因变量之间的关系模型。它可 以帮助我们理解和预测多个因素对一个结果的影响。
常用医学统计方法
本演示将介绍常用医学统计方法,包括:费雪检验、t检验、方差分析、CHI方 检验、多元线性回归分析、Logistic回归分析、生存分析、抽样及偏倚矫正、 置信区间与显著性水平、因子分析、线性判别分析、重抽样技术、逻辑模型、 社会生物统计学方法、非参数统计学方法、分层分析、实验设计、重复测量 分析和交叉设计。
统计学常用概念:T检验、F检验、卡方检验、P值、自由度

统计学常⽤概念:T检验、F检验、卡⽅检验、P值、⾃由度1,T检验和F检验的由来⼀般⽽⾔,为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率,我们会利⽤统计学家所开发的⼀些统计⽅法,进⾏统计检定。
通过把所得到的统计检定值,与统计学家建⽴了⼀些随机变量的概率分布(probability distribution)进⾏⽐较,我们可以知道在多少%的机会下会得到⽬前的结果。
倘若经⽐较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信⼼的说,这不是巧合,是具有统计学上的意义的(⽤统计学的话讲,就是能够拒绝虚⽆假设null hypothesis,Ho)。
相反,若⽐较后发现,出现的机率很⾼,并不罕见;那我们便不能很有信⼼的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现⽬前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的⼀种估计⽅法。
专业上,p值为结果可信程度的⼀个递减指标,p值越⼤,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提⽰样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均⽆关联,我们重复类似实验,会发现约20个实验中有⼀个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效⼒有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界⽔平。
3,T检验和F检验⾄於具体要检定的内容,须看你是在做哪⼀个统计程序。
举⼀个例⼦,⽐如,你要检验两独⽴样本均数差异是否能推论⾄总体,⽽⾏的t检验。
统计学中的假设检验方法

统计学中的假设检验方法统计学是一门应用广泛的学科,它通过收集、整理和分析数据来揭示事物之间的关系和规律。
在统计学中,假设检验方法是一种重要的工具,用于验证研究者对总体特征或参数的假设。
本文将介绍假设检验方法的基本原理、应用场景以及一些常见的假设检验方法。
假设检验方法的基本原理是基于概率论和数理统计的理论,通过对样本数据进行统计推断,从而对总体特征或参数进行推断。
在进行假设检验时,我们首先需要提出一个原假设(null hypothesis)和一个备择假设(alternative hypothesis)。
原假设通常是我们希望证伪的假设,而备择假设则是我们希望得到支持的假设。
在假设检验中,我们通过计算样本数据的统计量来判断原假设是否成立。
常用的统计量包括均值、方差、比例等。
根据样本数据的统计量,我们可以计算出一个p值(p-value),它表示在原假设成立的情况下,观察到的样本数据或更极端情况出现的概率。
如果p值小于预先设定的显著性水平(通常为0.05),则我们拒绝原假设,接受备择假设。
假设检验方法在各个领域中都有广泛的应用。
例如,在医学研究中,我们可以使用假设检验方法来判断某种治疗方法是否有效。
在市场营销中,我们可以使用假设检验方法来评估广告效果是否显著。
在环境科学中,我们可以使用假设检验方法来研究污染物对生态系统的影响。
假设检验方法不仅可以帮助我们验证研究假设,还可以提供科学依据,指导决策和政策制定。
在统计学中,有许多常见的假设检验方法。
其中,t检验是一种常用的方法,用于比较两个样本均值是否存在显著差异。
t检验可以分为独立样本t检验和配对样本t检验,分别适用于不同的研究设计。
另外,方差分析(ANOVA)是一种用于比较多个样本均值是否存在显著差异的方法。
方差分析可以分为单因素方差分析和多因素方差分析,它们可以帮助我们分析不同因素对总体均值的影响。
此外,卡方检验是一种用于比较观察频数与期望频数是否存在显著差异的方法。
统计学中的假设检验方法应用

统计学中的假设检验方法应用假设检验是统计学中一种常用的推断方法,用于检验关于总体参数的假设。
它基于样本数据,通过对比样本观察值与假设的理论值之间的差异,来确定是否拒绝或接受一些假设。
假设检验在实际应用中广泛使用,以下是一些常见的应用:1.平均值检验:平均值检验用于检验总体平均值是否等于一些特定值。
例如,一个医疗研究想要检验其中一种药物的疗效,可以控制一个实验组和一个对照组,然后收集两组患者的项指标数据(如血压)并计算均值,然后利用假设检验来判断两组是否存在显著差异。
2.方差检验:方差检验用于检验不同总体的方差是否相等。
例如,一个制造业公司想要比较两个供应商提供的原材料的质量是否一致,可以从这两个供应商中分别抽取样本,然后对比两组样本的方差,通过假设检验来判断两个供应商的方差是否有显著差异。
3.比例检验:比例检验用于检验两个总体比例是否相等。
例如,一个选举调查机构想要了解两个候选人在选民中的支持率是否相同,可以进行随机抽样并询问选民的偏好,然后利用假设检验来判断两个候选人的支持率是否存在显著差异。
4.相关性检验:相关性检验用于检验两个变量之间的相关关系是否显著。
例如,一个市场研究公司想要了解广告投入与销售额之间的关系,可以收集一定时间内的广告投入和销售额的数据,并进行相关性检验来判断两者之间是否存在显著的线性关系。
5.回归分析:假设检验在回归分析中也有广泛应用。
通过假设检验可以判断回归模型中的参数估计是否显著,进而判断自变量对因变量的影响是否存在统计学意义。
例如,一个经济学研究想要检验GDP(自变量)对于失业率(因变量)的影响,可以建立回归模型并通过假设检验来判断GDP系数是否显著。
在应用中,假设检验的步骤通常包括以下几个部分:明确研究问题、建立原假设和备择假设、选择适当的检验统计量、设定显著水平、计算检验统计量的观察值、根据观察值和临界值的比较结果进行决策、得出结论。
需要注意的是,假设检验的结果并不能确定假设是正确的或错误的,它只是根据样本数据提供了统计学上的证据。
医学统计学-卡方检验

卡方检验是一种常用的统计方法,用于比较观察值和期望值之间的差异。它 在医学研究中有着广泛的应用,可以帮助我们验证假设、推断总体特征以及 分析类别变量的相关性。
卡方检验的定义和原理
卡方检验是一种基于卡方分布的统计检验方法。它基于观察值与期望值之间 的差异来判断样本数据与理论分布的拟合程度。
卡方检验的局限性和注意事项
• 卡方检验只能验证分类变量之间的关联性,不能验证因果关系。 • 卡方检验对样本足够大和数据分类合理的要求比较严格。 • 卡方检验结果受样本选择和观察误差的影响,需要谨慎解释。 • 在进行卡方检验前,需要对数据进行充分的清洗和准备。
结论和要点
卡方检验是一种常用的统计方法
卡方检验的应用领域
医学研究
卡方检验可以用来分析疾病的发生与某个因素之间的关联性,如吸烟与肺癌。
社会科学
卡方检验可以用来研究不同人群之间的行模式和态度偏好,如性别与政治观点。
市场调研
卡方检验可以用来分析消费者的购买偏好和市场细分,如年龄与产品偏好。
卡方检验的假设和前提条件
1 独立性假设
卡方检验基于观察值和期望值之间的差异来验证两个变量之间是否存在独立性。
它可以帮助我们验证假设、推断总体特征以 及分析类别变量的相关性。
结果解读和意义
卡方检验的结果可以帮助我们了解变量之间 的关系,并为决策提供依据。
应用广泛
卡方检验在医学研究、社会科学和市场调研 等领域都有着重要的应用。
局限性和注意事项
卡方检验有一定的局限性,需要注意样本大 小和数据分类的合理性。
4
比较卡方值和临界值
判断卡方值是否大于临界值,从而做出关于拒绝或接受原假设的决策。
卡方检验的结果解读和意义
统计学常用检验方法

统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。
单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。
配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。
当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。
当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t 分布),当x为未知分布时应采用秩和检验。
F检验又叫方差齐性检验。
在两样本t检验中要用到F检验。
从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。
若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。
其中要判断两总体方差是否相等,就可以用F检验。
简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。
在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。
卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。
方差分析用方差分析比较多个样本均数,可有效地控制第一类错误。
方差分析(analysis of variance,ANOVA)由英国统计学家,以F命名其统计量,故方差分析又称F检验。
其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。
我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。
统计学方法总结1T检验

!则在“使用用指定值”的选项中组1的框内写上1,组2的框内写上2)
4.得到结果:
图10 结果的上面面的一一个表格是“组统计量”分别是两个组的人人数,均值,标准差。 常表述为“4.80±6.08 vs. 4.50±3.76 years,p=0.633” 即为分组1的均值±标准差 vs. 分组二二的均值±标准差, (PS:根据不同数据的不同要求保留相应的小小数点) 然后要说明的是,在“独立立样本检验”的表格中有两个Sig.值,前面面的那个表 述着方方差是否整齐,现在我们的Sig值大大于0.05,则表明我们结果的方方差整 齐,则在两组均值比比较的结果的Sig值选择0.633;如果我们的Sig.值是小小于 0.05的,则说明方方差不齐,则选择0.520,然而而我们的数据还要看一一个关键
!!有统计学意义的。
!!!! !(二二).独立立样本t检验(indepe样本t检验就是两样本均数比比较的t检验,或称两样本t检验(two-‐ sample t test)用用来检验;用用来检验两个样本的总体均数之间是否有统计学
!一.均值比较
(一).单样本t检验(one sample t test)
主要用于样本均数和已知总体均数的比较,还可以计算相应的描述性统 计计量及样本数据和总体均数只差的95%的可信区间。(当然你也可以做 75%,99%的可信区间,你也可以自己设置,95%和99%的可信区间比较常 用) 95%的可信区间:如该图1左侧的红色范围,是代表了数据的2.5%到97.5%的 内容。
图7
!常明显了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己地工
作来说一说:
检验有单样本检验,配对检验和两样本检验.单样本检验:是用样本均数代表地
未知总体均数和已知总体均数进行比较,来观察此组样本与总体地差异性.配对
检验:是采用配对设计方法观察以下几种情形,,两个同质受试对象分别接受两种不同地处理;,同一受试对象接受两种不同地处理;,同一受试对象处理前后.
检验:检验和就是统计量为地假设检验,两者均是常见地假设检验方法.当样本
含量较大时,样本均数符合正态分布,故可用检验进行分析.当样本含量小时,
若观察值符合正态分布,则用检验(因此时样本均数符合分布),当为未知分布时应采用秩和检验.检验又叫方差齐性检验.在两样本检验中要用到检验.从两研
究总体中随机抽取样本,要对这两个样本进行比较地时候,首先要判断两总体方差是否相同,即方差齐性.若两总体方差相等,则直接用检验,若不等,可采用'检验或变量变换或秩和检验等方法.其中要判断两总体方差是否相等,就可以用
检验.b5E2R.
简单地说就是检验两个样本地方差是否有显著性差异这是选择何种检验(等方差双样本检验,异方差双样本检验)地前提条件.p1Ean.
在检验中,如果是比较大于小于之类地就用单侧检验,等于之类地问题就用双侧检验.
卡方检验
是对两个或两个以上率(构成比)进行比较地统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验.DXDiT. 方差分析
用方差分析比较多个样本均数,可有效地控制第一类错误.方差分析( )由英国统
计学家首先提出,以命名其统计量,故方差分析又称检验.RTCrp.
其目地是推断两组或多组资料地总体均数是否相同,检验两个或多个样本均数地差异是否有统计学意义.我们要学习地主要内容包括5PCzV.
单因素方差分析即完全随机设计或成组设计地方差分析():
用途:用于完全随机设计地多个样本均数间地比较,其统计推断是推断各样本所代表地各总体均数是否相等.完全随机设计()不考虑个体差异地影响,仅涉
及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计.在实验
研究中按随机化原则将受试对象随机分配到一个处理因素地多个水平中去,然后观察各组地试验效应;在观察研究(调查)中按某个研究因素地不同水平分组,比较该因素地效应.jLBHr.
两因素方差分析即配伍组设计地方差分析():
用途:用于随机区组设计地多个样本均数比较,其统计推断是推断各样本所代表地各总体均数是否相等.随机区组设计考虑了个体差异地影响,可分析处理因素
和个体差异对实验效应地影响,所以又称两因素实验设计,比完全随机设计地检验效率高.该设计是将受试对象先按配比条件配成配伍组(如动物实验时,可按
同窝别、同性别、体重相近进行配伍),每个配伍组有三个或三个以上受试对象,再按随机化原则分别将各配伍组中地受试对象分配到各个处理组.值得注意地是,同一受试对象不同时间(或部位)重复多次测量所得到地资料称为重复测量数据
(),对该类资料不能应用随机区组设计地两因素方差分析进行处理,需用重复测量数据地方差分析.xHAQX.
方差分析地条件之一为方差齐,即各总体方差相等.因此在方差分析之前,应首先检验各样本地方差是否具有齐性.常用方差齐性检验()推断各总体方差是否相等.本节将介绍多个样本地方差齐性检验,本法由于年提出,称法.该检验方法所计算地统计量服从分布.LDAYt.
经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等.若要得到各组均数间更详细地信息,应在方差分析地基础上进行多个样本均数地两两比较.Zzz6Z.。