统计学 均数比较假设检验方法的选择

合集下载

总体均数的假设检验

总体均数的假设检验
总体均数的假设检验
$number {01}
目 录
• 引言 • 假设检验的基本原理 • 总体均数的假设检验方法 • 实例分析 • 总结与展望
01 引言
目的和背景
确定样本数据是否与假设的总体均数 存在显著差异,从而对总体均数进行 假设检验。
在科学实验、统计学、医学研究等领 域广泛应用,用于评估样本数据是否 支持或拒绝关于总体均数的假设。
配对样本均数假设检验实例
总结词
配对样本均数假设检验用于比较同一组研究对象在不同条件下的均数是否存在统计学显 著性差异。
详细描述
例如,为了比较同一组患者在接受两种不同治疗措施前后的改善程度,研究者收集了患 者的基线数据和接受不同治疗措施后的数据,并计算出各自治疗组的平均改善程度。然 后,研究者使用配对样本均数假设检验来比较同一组患者在不同治疗措施下的平均改善
概念简介
假设检验是一种统计推断方法,通过 检验样本数据是否符合某个假设,从 而对总体参数进行推断。
它基于概率论原理,通过计算样本数 据与假设的总体参数之间的差异,评 估这种差异是否具有统计学上的显著 性。
02
假设检验的基本原理
假设检验的步骤
建立假设
根据研究目的,提出一个关于总 体参数的假设,通常包括零假设 和备择假设。
收集样本数据
从总体中随机抽取一定数量的样 本,并记录样本数据。
确定检验水准
选择合适的检验水准,如α和β, 以平衡第一类和第二类错误的概 率。
计算统计量
根据样本数据计算适当的统计量, 如t值、Z值或χ^2值。
假设检验的类型
1 2
3
单样本均数检验
比较一个样本均数与已知总体均数或正常值范围。
两样本均数比较

公卫执业医师-综合笔试-卫生统计学-第三单元总体均数的估计和假设检验

公卫执业医师-综合笔试-卫生统计学-第三单元总体均数的估计和假设检验

公卫执业医师-综合笔试-卫生统计学-第三单元总体均数的估计和假设检验[单选题]1.两个样本均数比较作t检验,其他条件不变,犯第Ⅱ类错误的概率最小的是A.α=0.05B.α=0.(江南博哥)01C.α=0.1D.α=0.2E.该问题提法不对正确答案:D参考解析:一类错误α和二类错误β有一定的关系,α越大,β越小。

所以本题答案选择D。

掌握“Ⅰ型错误与Ⅱ型错误”知识点。

[单选题]5.下列关于均数的标准误的叙述,错误的是A.是样本均数的标准差B.反映样本均数抽样误差大小C.与总体标准差成正比,与根号n成反比D.增加样本含量可以减少标准误E.其值越大,用样本均数估计总体均数的可靠性越好正确答案:E参考解析:样本均数的标准差称为均数的标准误,是描述样本均数抽样误差大小的指标,其大小与总体标准差成正比,与根号n成反比。

标准误越小,抽样误差越小,用样本均数估计总体均数的可靠性越好。

故选项E叙述错误,本题选E。

掌握“标准误及可信区间★”知识点。

[单选题]6.关于可信区间,正确的说法是A.可信区间是总体中大多数个体值的估计范围B.95%可信区间比99%可信区间更好C.不管资料呈什么分布,总体均数的95%的可信区间计算公式是一致的D.可信区间也可用于回答假设检验的问题E.可信区间仅有双侧估计正确答案:D参考解析:按一定的概率估计总体参数的可能范围,该范围称为可信区间,可以用来估计总体均数的可能所在范围,常按95%可信度估计总体参数的可能范围。

掌握“标准误及可信区间★”知识点。

[单选题]7.同类定量资料下列指标,反映样本均数对总体均数代表性的是A.四分位数间距B.标准误C.变异系数D.百分位数E.中位数正确答案:B参考解析:样本均数的标准差即均数的标准误,简称标准误。

可用来描述样本均数的抽样误差,标准误越小,则说明样本均数的抽样误差越小,样本均数对总体均数的代表性越好。

掌握“标准误及可信区间★”知识点。

[单选题]8.比较两药疗效时,下列可作单侧检验的是A.己知A药与B药均有效B.不知A药好还是B药好C.己知A药与B药差不多好D.己知A药不会优于B药E.不知A药与B药是否有效正确答案:D参考解析:已知A药不会优于B药,只有低于B药的一种可能,所以可作单侧检验。

统计学问题

统计学问题

一、单项选择题1.用某地6~16岁学生近视情况的调查资料制作统计图,以反映患者的年龄分布,可用图形种类为______.A.普通线图B.半对数线图C.直方图D.直条图E.复式直条图【答案】C2.为了反映某地区五年期间鼻咽癌死亡病例的年龄分布,可采用______.A.直方图B.普通线图C.半对数线图D.直条图E.复式直条图【答案】E3.为了反映某地区2000~1974年男性肺癌年龄别死亡率的变化情况,可采用______.A.直方图B.普通线图C.半对数线图D.直条图E.复式直条图【答案】E4.调查某疫苗在儿童中接种后的预防效果,在某地全部1000名易感儿童中进行接种,经一定时间后从中随机抽取300名儿童做效果测定,得阳性人数228名。

若要研究该疫苗在该地儿童中的接种效果,则______.A.该研究的样本是1000名易感儿童B.该研究的样本是228名阳性儿童C.该研究的总体是300名易感儿童D.该研究的总体是1000名易感儿童E.该研究的总体是228名阳性儿童【答案】D5.若要通过样本作统计推断,样本应是__________.A.总体中典型的一部分B.总体中任一部分C.总体中随机抽取的一部分D.总体中选取的有意义的一部分E.总体中信息明确的一部分【答案】C6.下面关于均数的正确的说法是______.A.当样本含量增大时,均数也增大B.均数总大于中位数C.均数总大于标准差D.均数是所有观察值的平均值E.均数是最大和最小值的平均值【答案】D7.某地易感儿童注射乙肝疫苗后,从中随机抽取100名儿童测量其乙肝表面抗体滴度水平,欲描述其平均水平,宜采用______.A.均数B.几何均数C.中位数D.方差E.四分位数间距【答案】B8.有人根据某种沙门菌食物中毒患者164例的潜伏期资料,用百分位数法求得潜伏期的单侧95%上限为57.8小时,其含义是:______.A.大约有95人的潜伏期小于57.8小时B.大约有5人的潜伏期大于57.8小时C.大约有5人的潜伏期小于57.8小时D.大约有8人的潜伏期大于57.8小时E.大约有8人的潜伏期小于57.8小时【答案】D9.以下说法中不正确的是______.A.方差除以其自由度就是均方B.方差分析时要求各样本来自相互独立的正态总体C.方差分析时要求各样本所在总体的方差相等D.完全随机设计的方差分析时,组内均方就是误差均方E.完全随机设计的方差分析时,F=MS组间/MS组内【答案】A10.两组数据中的每个变量值减去同一常数后,作两个样本均数比较的假设检验______.A.t值不变B.t值变小C.t值变大D.t值变小或变大E.不能判断【答案】A11.甲乙两地某病的死亡率进行标准化计算时,其标准的选择______.A.不能用甲地的数据B.不能用乙地的数据C.不能用甲地和乙地的合并数据D.可用甲地或乙地的数据E.以上都不对【答案】D12.以下属于数值变量的是______.A.性别B.病人白细胞计数C.血型D.疗效E.某病感染人数【答案】B13.以下关于样本的说法,不正确的是______.A.样本是从总体中随机抽取的B.样本来自的总体应该是同质的C.样本中应有足够的个体数D.样本来自的总体中不能有变异存在E.样本含量可以估计【答案】D14.以下属于分类变量的是___________.A.IQ得分B.心率C.住院天数D.性别E.胸围【答案】D15.在抽样研究中,当样本例数逐渐增多时_____.A.标准误逐渐加大B.标准差逐渐加大C.标准差逐渐减小D.标准误逐渐减小E.标准差趋近于0答案】D16.某医院一年内收治202例腰椎间盘后突病人,其年龄的频数分布如下,为了形象表合选用_____.年龄(岁):10~20~30~40~50~60~人数:6405085 20 1A.线图B.条图C.直方图D.圆图E.散点图【答案】C17.关于构成比,不正确的是_____.A.构成比中某一部分比重的增减相应地会影响其他部分的比重B.构成比说明某现象发生的强度大小C.构成比说明某一事物内部各组成部分所占的分布D.若内部构成不同,可对率进行标准化E.构成比之和必为100%【答案】B18.若分析肺活量和体重之间的数量关系,拟用体重值预测肺活量,则采用_____.A.直线相关分析B.秩相关分析C.直线回归分析D.方差分析E.病例对照研究【答案】C9.根据下述资料,样本指标提示_____.甲疗法乙疗法病情病人数治愈数治愈率(%)病人数治愈数治愈率(%)轻型403690605490重型604270402870合计10078781008282A.乙疗法优于甲疗法B.甲疗法优于乙疗法C.甲疗法与乙疗法疗效相等D.此资料甲、乙疗法不能比较E.以上都不对【答案】C20.若算得F药物=7.604,P<0.01;F区组=1.596,P>0.05.按α=0.05水准,则4种药物的抑瘤效果和5个随机区组的瘤重的推断结论分别为_____.A.药物组间瘤重不同,区组间也不同B.不能认为药物组间瘤重不同,不能认为区组间不同C.药物组间瘤重不同,但不能认为区组间不同D.不能认为药物组间瘤重不同,但区组间不同E.药物差别较大,不能认为区组间不同【答案】C三、简答题1.举例简述同质与变异的概念。

医学统计学期末考试模拟题(三)

医学统计学期末考试模拟题(三)

《医学统计学》期末模拟考试题(三)一.是非题(每题1分,共20分)1.评价某人的某项指标是否正常,所用的范围是。

()2.配对资料若用成组t检验处理,就降低了统计效率。

()3.因为两类错误的存在,所以不能凭假设检验的结果下结论。

()4.随机区组设计的区组变异和误差两部分相当于完全随机设计方差分析的组内变异。

()5.抗体滴度资料经对数转换后可做方差分析,若方差分析得P<0.05,则可认为实测数据的各总体算术均数不全相等。

()6.五个百分率的差别的假设检验,>,可认为各组总体率都不相同。

()4.在两样本均数比较的Z检验中,若Z≥Z0.05,则在α=0.05水平上可认为两总体均数不等。

()5.在t检验中,若拒绝H,P值越小,则说明两总体均数差别越大。

()6.对三个地区血型构成(A、B、O、AB型),作抽样调查后比较,若有一个理论频数小于5大于1且n>40,必须作校正检验。

()7.如果两个变量的变动方向一致,同时呈上升或下降趋势,则二者是正相关关系。

()8.Ⅱ期临床试验是指采用随机盲法对照实验,评价新药的有效性及安全性,推荐临床给药剂量。

()9.临床试验中,为了避免人为主观因素的影响,保证结果的真实性,通常不让受试者及其家属知道他参与这项试验。

()10.假定变量X与Y的相关系数r1是0.8,P1<0.05;变量M与N的相关系数r2为-0.9,P2<0.05,则X与Y的相关密切程度较高。

与Y的相关系数r1是0.8,P1<0.05;变量M与N的相关系数r2为-0.9,P2<0.05,则X与Y的相关密切程度较高。

()11.临床试验必须符合《赫尔辛基宣言》和国际医学科学组织委员会颁布的《人体生物医学研究国际道德指南》的道德原则。

()12.当直线相关系数r=0时,说明变量之间不存在任何相关关系。

=0时,说明变量之间不存在任何相关关系。

()13.偏回归系数表示在除Xi 以外的自变量固定不变的条件下,Xi每改变一个单位的平均变化。

统计学第四讲两组资料均数比较2

统计学第四讲两组资料均数比较2
优点:配对设计减少了个体差异。
特点:资料成对,每对数据不可拆分。
计算出各对子差值d 的均数d 。当比较组间效果相同时, d 的总体均数 d =0,故可将配对设计资料的假设检验视为样 本均数d 与总体均数 d =0 的比较,所用方法称为配对 t 检验 (paired t-test)方法。 t | d d | | d | , n 1
或50)时,可采用u检验;但只是近似方法。 优点:简单,u界值与自由度无关, u0.05=1.96, u0.01=2.58
u X1 X2 S
X1 X 2
X1 X2 S12 S22 n1 n2
X1 X2
S 2S 2
X1
X2
第四军医大学卫生统计学教研室 2020年3月28日
五、正态性检验与两方差齐性检验

第四军医大学卫生统计学教研室 2020年3月28日
假设检验的步骤
1、建立假设与确定检验水准(α)
H0: μ1=μ2 无效假设(null hypothesis) H1: μ1≠μ2 备择假设(alternative hypothesis)
检验水准(level of a test):α=0.05(双侧)
今 F 1.484 F0.05 / 2,6,6 ,P>0.05 ,按α=0.05 水准,不拒绝 H0,两组总体
方差的差别无统计学意义,尚不能认为两组总体方差不等。
若两总体方差不等,即
2 1
2 2
时,
1. 近似 t 检验(separate variance estimation t-test) t'检验
n1
2.6314 1.342 / 12 0.475 12 1
t | d | 0.112 0.817, n 1 12 1 11

统计学两样本均数比较的t检验

统计学两样本均数比较的t检验
IQR法、Z分数法等)识别异常值,并进行处理。
处理方式
对于异常值,可以采用删除、替换或用中位数修正等方式进行处理。具体处理方式应根 据实际情况和数据分布特点进行选择,并确保处理后的数据仍然能够反映总体情况。
实验设计和伦理考虑
实验设计
在进行t检验之前,应进行充分的实验设计, 确保实验的合理性和科学性。实验设计应考 虑各种因素对实验结果的影响,并尽量减小 误差和干扰因素。
确定p值:根据t统计量和自由 度,查表或使用统计软件计算 p值。
步骤1
收集数据:分别从两个独立样 本中收集数据,并记录在表格 中。
步骤3
计算t统计量:根据两组样本的 均数和标准差,计算t统计量。
步骤5
结果解读:根据p值判断两组 样本均数之间的差异是否具有 统计学上的显著性。
结果解读
• 结果解读:根据p值的大小来判断两 组样本均数之间的差异是否具有统计 学上的显著性。通常,如果p值小于 0.05,则认为两组样本均数之间存在 显著差异;如果p值大于0.05,则认 为两组样本均数之间无显著差异。
对差值数据进行描述性统计分析, 计算差值的均值和标准差。
计算t统计量
根据差值的均值、标准差以及自 由度,计算t统计量。
收集两个配对样本的数据
确保两个样本具有相同的样本量, 且每个样本中的数值都是配对的。
判断显著性
பைடு நூலகம்根据t分布表或使用统计软件,查 找对应的p值,判断两个配对样本 均数是否存在显著差异。
结果解读
伦理考虑
在实验设计过程中,还应考虑伦理问题。应 尊重受试者的权益和尊严,确保受试者的安 全和隐私。同时,应遵循国际公认的伦理准 则和法律法规,如《赫尔辛基宣言》等。
06 案例分析

医学统计学第七、八章 假设检验的基本概念和t检验

医学统计学第七、八章  假设检验的基本概念和t检验

S x 1 − x 2 为两样本均数差值的标准误
Sx −x
1
2
⎛1 1⎞ ⎟ = S ⎜ + ⎜n n ⎟ 2 ⎠ ⎝ 1
2 c
在两总体方差相等的条件下,可将两方差合并, 求合并方差(pooled variance) S c2
2 ⎡ ( Σ x1 ) ⎤ 2 ⎢ Σ x1 − ⎥ + n1 ⎦ ⎣ = n1 − 1 + 2 ⎡ ( Σx2 ) ⎤ 2 ⎢Σ x2 − ⎥ n2 ⎦ ⎣ n2 − 1
t 检验的应用条件:
① 单样本t检验中,σ 未知且n 较小,样本取自 正态总体; ② 两小样本均数比较时,两样本均来自正态分 布总体,两样本的总体方差相等;若两总体 方差不齐可用t’检验; ③ 两大样本均数比较时,可用Z检验。
1、样本均数与总体均数比较的 t 检验
• 使用范围:用于样本均数与已知总体均数(一 般为理论值、标准值或经过大量观察所得的稳 定值等)的比较。 • 分析目的:推断样本所代表的未知总体均数 μ 与已知总体均数 μ0有无差别。 • 若 n 较大,则 tα .ν ≈ tα .∞ , 可按算得的 t 值用 v = ∞ 查 t 界值表( t 即为 Z )得P值。
回到例子:
2.计算统计量
已知μ0= 3min,n=50, X=4min
4−3 t= = 4 .7140 1 .5 / 50
υ = 50 − 1 = 49
3、确定 P 值,作出统计推断 根据算出的检验统计量如 t、z 值,查 相应的界值表,即可得到概率 P。 P值是在H0成立前提下,抽得比现有样 本统计量更极端的统计量值的概率。 P值越小只能说明:作出拒绝H0 ,接受 H1的统计学证据越充分。
X −μ X −μ 用公式:t = 或z = σX SX

总体均数的估计与假设检验(练习题)

总体均数的估计与假设检验(练习题)

练 习 题一、最佳选择题1.( C )小,表示用该样本均数估计总体均数的可靠性大。

A. CV B. S C. σXD. RE.四分位数间距2.两样本均数比较的t 检验,差别有统计意义时,P 越小,说明( C )。

A.两样本均数差别越大 B.两总体均数差别越大 C.越有理由认为两总体均数不同 D.越有理由认为两样本均数不同E.越有理由认为两总体均数相同3.甲乙两人分别从随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得1X 和21S ;2X 和22S ,则理论上( E )。

A.12X X =B.2212S S =C.作两样本均数的t 检验,必然得出无差别的结论D.作两方差齐性的F 检验,必然方差齐E.由甲、乙两样本均数之差求出的总体均数95%可信区间,很可能包括0 4.在参数未知的正态总体中随机抽样,X μ-≥( A )的概率为5%。

A. 1.96σ B. 1.96 C. 2.58 D.0.05, t S ν E.0.05, X t S ν 5.某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的平均数为74g/L ,标准差为4g/L ,则其95%的参考值范围(B )。

A.74±4⨯4B.74±1.96×4C.74±2.58⨯4D.74±2.58⨯4÷10E. 74±1.96⨯4÷10 6.关于以0为中心的t 分布,错误的是( E )。

A. t 分布是一簇曲线B. t 分布是单峰分布C.当ν→∝时,t →uD. t 分布以0为中心,左右对称E.相同ν时,|t|越大,P 越大7.在两样本均数比较的t 检验中,无效假设是( D )。

A.两样本均数不等 B.两样本均数相等 C.两总体均数不等D.两总体均数相等E.样本均数等于总体均数8.两样本均数比较时,分别取以下检验水准,以( E )所取第二类错误最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、方法选择(1) 方法选择( )
样本均数与已知总体均数的比较(目的) 选用:样本均数与总体均数比较的t检验 应用条件: 1、计量资料 2、总体服从正态分布 3、方差齐
五、方法选择(2) 方法选择( )
配对计量资料比较(差值均数的比较,目的) 选用:配对计量资料比较的t检验 应用条件: 1、计量资料 2、总体服从正态分布 3、方差齐 配对设计
五、方法选择(3) 方法选择( )
两样本均数的比较(目的) 选用:两样本均数比较的t检验(小样本) 两样本均数比较的u检验(大样本) 成组设计的方差分析 应用条件: 1、计量资料 2、总体服从正态分布 3、方差齐 完全随机 设计或成 组设计
五、方法选择(4) 方法选择( )
多个样本均数的比较(目的) 选用:成组设计的方差分析 应用条件: 1、计量资料 2、总体服从正态分布 3、方差齐
完全随机 设计或成 组设计
五、方法选择(5) 方法选择( )
多个样本均数的比较(目的) 选用:配伍组设计的方差分析 应用条件: 1、计量资料 2、总体服从正态分布 3、方差齐
配伍组 设计
ቤተ መጻሕፍቲ ባይዱ
六、训练
六、训练
六、训练
六、训练
现有24个高原地区成人心律资料如下 (次/分):68,75,71……69,欲与正常 成人心律72次/分比较,看高原地区成人心 律与正常成人心律是否有差别? 用什么检验方法? 用什么检验方法?
成组设计的方差分析 方差分析 配伍组设计的方差分析 设计方法不同, 设计方法不同,选用方差分析的具体类型 也不同。 也不同。
四、检验方法、类型选择的依据 检验方法、
主要考虑一下几个方面 研究目的 设计类型 资料类型 资料分布
研究目的不同、 研究目的不同、设计 类型不同、 类型不同、资料类型 不同、资料分布不同, 不同、资料分布不同, 选用的假设检验方法 不同
二、均数比较的假设检验方法
t检验—两个均数间比较 u检验—两大样本均数比较(是t检验的近似处理) 方差分析—二个或多个均数间的比较 既然“方差分析”能比较二个或多个均数, 既然“方差分析”能比较二个或多个均数,为什 么 还要学“ 检验 检验” 因为有些研究目的不同, 还要学“t检验”?因为有些研究目的不同,有些问题 用
均数比较假设检验方法的选择
授课教师:褚启龙
1
一、常用的假设检验方法有哪些? 常用的假设检验方法有哪些?
有很多具体的方法: 如:t检验、u检验、方差分析
χ 2 检验、率u检验
相关分析、回归分析等。 而每种方法中又有不同的类型,对于一个具
体问题,我们到底选用用哪种推断方法呢? 体问题,我们到底选用用哪种推断方法呢?
六、训练
现有124个高原地区成人心律资料如下 (次/分):68,75,71……69,平原地区 121个成人心律资料如下(次/分): 72, 75,71,66……68,看高原地区成人心律 与平原地区成人心律是否有差别? 用什么检验方法? 用什么检验方法?
谢谢!
3
三、t检验和方差分析的具体类型 检验和方差分析的具体类型
样本均数与总体均数比较的t检验 t检验 配对计量资料比较的t检验 两小样本均数比较的t检验 研究目的不同、设计方法不同,选用 检 研究目的不同、设计方法不同,选用t检 验的具体类型也不同。 验的具体类型也不同。
检验和方差分析的具体类型( 三、t检验和方差分析的具体类型(续) 检验和方差分析的具体类型
相关文档
最新文档