高数(下)要点(含微分方程)——自己整理的

合集下载

高数下要点含微分方程自己的完整版

高数下要点含微分方程自己的完整版

高数下要点含微分方程自己的HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】第六章 微分方程一、一阶微分方程1、一阶线性方程 )()(x Q y x P dxdy=+2、伯努利方程 )1,0()()(d d ≠=+n y x Q y x P xyn ).()(d d 1111x Q y x P xy n n n=+⋅---令.1n y z -= 二、可降阶的高阶方程1.)()(x f yn = n 次积分2.)',("y x f y = 不显含y令)('x p y =,化为一阶方程 ),('p x f p =。

3.)',("y y f y = 不显含自变量令)('y p y =,dydpp dx y d =22,化为一阶方程。

三、线性微分方程)()()()(1)1(1)(x f y x a y x a y x a y n n n n =+'+++-- ,0)(≡x f 时称为齐次的,0)(≡/x f 称为非齐次的。

1.二阶线性齐次线性方程0)()(=+'+''y x Q y x P y (1)如果函数)(1x y 与)(2x y 是方程(1)的两个解,则)()(2211x y C x y C y += 也是(1)的解,其中21,C C 是任意常数。

如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解,则)()(2211x y C x y C y += (21,C C 是任意常数)是(1)的通解.两个函数)(1x y 与)(2x y 线性无关的充要条件为C x y x y ≡/)()(21(常数)2.二阶线性非齐次线性方程设)(*x y 是二阶线性非齐次线性方程 )()()(x f y x Q y x P y =+'+''的一个特解,)(x Y 是它对应的齐次方程(1)的通解,则 )()(*x y x Y y += 是该方程的通解.设)(*1x y 与)(*2x y 分别是二阶线性非齐次方程 )()()(1x f y x Q y x P y =+'+'' 与 )()()(2x f y x Q y x P y =+'+''的两个特解。

高等数学下知识点总结大一

高等数学下知识点总结大一

高等数学下知识点总结大一高等数学下知识点总结高等数学是大一学生必修的一门课程,内容涵盖了微积分、线性代数和概率统计等方面的知识。

下面将对高等数学下的主要知识点进行总结,以帮助大家复习和加深理解。

1. 微积分微积分是高等数学的基础,包括了导数、积分和微分方程等内容。

1.1 导数导数是描述函数变化率的工具,常用符号表示为f'(x)或dy/dx。

常见的导数计算规则包括:- 基本导数公式:常数规则、幂函数规则、指数函数和对数函数规则、三角函数规则等。

- 高级导数公式:链式法则、隐函数求导、参数方程求导等。

- 导数的应用:切线和法线、单调性和极值、凹凸性和拐点等。

1.2 积分积分是导数的逆运算,表示曲线下的面积。

常用符号表示为∫f(x)dx。

常见的积分计算规则包括:- 不定积分:基本积分法、换元积分法、分部积分法等。

- 定积分:定义与性质、牛顿-莱布尼茨公式、定积分的应用等。

1.3 微分方程微分方程是描述变化率与函数关系的方程,分为常微分方程和偏微分方程。

常见的微分方程求解方法包括:- 可分离变量法、齐次方程法、一阶线性方程法等。

- 高阶线性齐次方程和非齐次方程的求解。

2. 线性代数线性代数是数学的一个分支,研究向量、矩阵、线性变换等内容。

2.1 向量向量是有大小和方向的量,常用符号表示为a、b等。

常见的向量运算包括:- 向量的加法、减法和数量乘法。

- 内积和外积的定义和计算。

- 向量的线性相关性和线性无关性。

2.2 矩阵矩阵是一个按照行和列排列的数表,常用符号表示为A、B等。

常见的矩阵运算包括:- 矩阵的加法、减法和数量乘法。

- 矩阵的乘法和转置。

- 矩阵的逆和行列式的求解。

2.3 线性变换线性变换是将一个向量空间映射到另一个向量空间的变换,常用符号表示为T。

常见的线性变换包括:- 线性映射的定义和性质。

- 基变换和过渡矩阵的计算。

- 特征值和特征向量的求解。

3. 概率统计概率统计是研究随机事件的概率和统计规律的学科。

高数下册总结

高数下册总结

高数下册总结篇一:高数下册总结高数(下)小结一、微分方程复习要点解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法求出其通解.一阶微分方程的解法小结:二阶微分方程的解法小结:非齐次方程ypy??qy?f(x)的特解y?的形式为:主要:一阶1、可分离变量方程、线性微分方程的求解;2、二阶常系数齐次线性微分方程的求解;3、二阶常系数非齐次线性微分方程的特解二、多元函数微分学复习要点一、偏导数的求法1、显函数的偏导数的求法在求z?x时,应将y看作常量,对x求导,在求z?y时,应将x看作常量,对y求导,所运用的是一元函数的求导法则与求导公式.2、复合函数的偏导数的求法设z?f?u,v?,ux,y?,vx,y?,则z?xz?uu?xz?vv?xz?yu?yz?vv?y几种特殊情况:1)z?f?u,v?,ux?,vx?,则2)z?f?x,v?,vx,y?,则z?xdzdxf?vdzduu?xz?vdvdxv?yf?xv?x,z?yf?u3)z?f?u?,ux,y?则3、隐函数求偏导数的求法1)一个方程的情况z?xdzdu,z?ydzduu?y设z?z?x,y?是由方程f?x,y,z??0唯一确定的隐函数,则z?xfxfz0?,z?yfyfzfz0?或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出2)方程组的情况 ?z?x(或z?y).f?x,y,u,v??0?z?z)即可. 由方程组?两边同时对x(或y)求导解出(或x?y??gx,y,u,v?0 ?二、全微分的求法方法1:利用公式du?u?xdx?u?ydy?dz方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:zduu?dz??z?dx??x??z?v?z?ydvdy三、空间曲线的切线及空间曲面的法平面的求法xt?1)设空间曲线г的参数方程为?yt?,则当t?t0时,在曲线上对应点zt??p0?x0,y0 ?,z0?处的切线方向向量为tt0?,?t0?,??t0??,切线方程为x?x0t0?y?y0t0?z?z0t0?法平面方程为 ??t0??x?x0t0??y?y0t0??z?z0??02)若曲面?的方程为f?x,y,z??0,则在点p0?x0,y0,z0?处的法向量n?fx,fy,fzp0,切平面方程为fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为x?x0fx?x0,y0,z0?y?y0fy?x0,y0,z0?z?z0fz?x0,y0,z0?若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为fx?x0,y0??x?x0??fy?x0,y0??y?y0z?z0??0 法线方程为x?x0fx?x0,y0?y?y0fy?x0,y0?z?z0?1四、多元函数极值(最值)的求法 1 无条件极值的求法设函数z?f?x,y?在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0,fyx,y??0,解出驻点?x0,y0,记a?fxxx0,y0,b?fxyx0,y0,c?fyyx0,y0?.2c?b1)若a?0,则f ?x,y?在点?x0,y0?处取得极值,且当a?0时有极大值,当a?0时有极小值.2)若ac?b2?0,则f?x,y?在点?x0,y0?处无极值. 3)若ac?b20,不能判定fx,y?在点?x0,y0?处是否取得极值.2 条件极值的求法函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题.2)拉格朗日乘数法作辅助函数f?x,y??f?x,yx,y?,其中?为参数,解方程组篇二:高数下册总结(同济第六版)高数(下)小结一、微分方程复习要点解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法求出其通解.一阶微分方程的解法小结:二阶微分方程的解法小结:非齐次方程ypy??qy?f(x)的特解y的形式为:主要:一阶1、可分离变量方程、线性微分方程的求解; 2、二阶常系数齐次线性微分方程的求解;3、二阶常系数非齐次线性微分方程的特解二、多元函数微分学复习要点一、偏导数的求法1、显函数的偏导数的求法在求z?z时,应将y看作常量,对x求导,在求时,应将x看作常量,对y求导,所运?x?y用的是一元函数的求导法则与求导公式.2、复合函数的偏导数的求法设z?f?u,v?,ux,y?,vx,y?,则z?z?u?z?v?z?z?u ?z?v,???? ?x?u? x?v?x?y?u?y?v?y几种特殊情况:1)z?f?u,v?,ux?,vx?,则2)z?fdzdz?u?zdv dxdu?x?vdx?f?vx,v?,vx,y?,则?x??x??v??x,z?fz?f?v?? ?y?u?y 3)z?f?u?,ux,y?则3、隐函数求偏导数的求法 1)一个方程的情况zdz?u?zdz?u, ?xdu?x?ydu?y设z?z?x,y?是由方程f?x,y,z??0唯一确定的隐函数,则f?zxxfzfzz0?, ??yfyfzfz0?或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出2)方程组的情况由方程组?z?z(或). ?x?y ?f?x,y,u,v??0?z? z两边同时对x(或y)求导解出(或)即可.x?y?g?x,y,u,v?? 0二、全微分的求法方法1:利用公式du?u?u?udx?dy?dz ?x?y?z方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:z??zdu?dv??v??udz??z?z?dx?dyyx三、空间曲线的切线及空间曲面的法平面的求法xt?1)设空间曲线г的参数方程为?yt?,则当t?t0时,在曲线上对应点zt??p0?x0,y0,z0?处的切线方向向量为tt0?,??t0?,??t0?,切线方程为x?x0y?y0z?z0t0?t0?t0法平面方程为 ??t0??x?x0t0??y?y0t0??z?z0??0 2)若曲面?的方程为f?x,y,z??0,则在点p0?x0,y0,z0?处的法向量n??fx,fy,fz?p0,切平面方程为fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为x?x0y?y0z?z0fxx0,y0,z0fyx0,y0,z0fzx0,y0,z0若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为fx?x0,y0??x?x0??fy?x0,y0??y?y0z?z0??0 法线方程为x?x0y?y0z?z0fxx0,y0fyx0,y0?1四、多元函数极值(最值)的求法 1 无条件极值的求法设函数z?f?x,y?在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0,fy?x,y??0,解出驻点?x0,y0?,记a?fxx?x0,y0?,b?fxy?x0,y0?,c?fyy?x0,y0?.c?b1)若a时有极小值.2)若ac?b2?0,则f?x,y?在点?x0,y0?处无极值.3)若ac?b?0,不能判定f?x,y?在点?x0,y0?处是否取得极值.220,则f?x,y?在点?x0,y0?处取得极值,且当a?0时有极大值,当a?02 条件极值的求法函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题.2)拉格朗日乘数法作辅助函数f?x,y??f?x,yx,y?,其中?为参数,解方程组篇三:高数下册公式总结第八章向量与解析几何- 2 -- 3 -第十章重积分- 4 -- 5 -第十一章曲线积分与曲面积分- 6 -篇四:高数下册积分方法总结积分方法大盘点现把我们学了的积分方法做个大总结。

期末高数下册知识总结

期末高数下册知识总结

期末高数下册知识总结本文将对高等数学下册的知识进行总结,主要分为以下几个部分:空间解析几何、多元函数与偏导数、重积分、无穷级数与幂级数、常微分方程五个部分。

一、空间解析几何(平面与直线、空间曲线与曲面、空间直角坐标系下的曲线与曲面)空间解析几何是指在空间情形下分析和研究几何形体、几何运动、数学方程和几何方程之间的联系的一门数学学科。

学习空间解析几何可以帮助我们理解空间形体之间的关系以及其运动规律。

1.平面与直线- 平面方程:点法式、一般式、截距式、两平面交线、平面与平面垂直、平行关系- 直线方程:点向式、两点式、一般式、向量叉乘、直线与直线垂直、平行、斜率、角度的概念与求解2.空间曲线与曲面- 空间曲线的方程:参数方程、一般方程- 空间曲面的方程:二次曲面、旋转曲面、柱面、锥面的方程3.空间直角坐标系下的曲线与曲面- 参数方程下的曲线计算:弧长、速度、加速度、切线、法平面、法线- 参数化的曲面计算:一类曲面的面积、体积、切平面、切向量二、多元函数与偏导数多元函数是指具有多个自变量的函数,偏导数是研究多元函数对其中一个自变量求导数的方法。

学习多元函数与偏导数可以帮助我们更加深入地了解多元函数的性质和变化规律。

1.多元函数的极限- 多元函数极限的定义与性质- 极限存在的条件与计算- 多元函数极限与连续函数2.多元函数的偏导数- 偏导数的定义与性质- 高阶偏导数的计算与应用- 隐函数的偏导数3.多元函数的微分与全微分- 多元函数的微分定义与性质- 链式法则与全微分的计算4.多元函数的方向导数与梯度- 方向导数的概念与计算- 梯度的概念与计算- 梯度的几何意义5.多元函数的极值与最值- 多元函数的极值的判定与求解- 条件极值的求解- 二次型的矩阵表示与规范形三、重积分重积分是对多元函数在给定区域上的积分,通过重积分可以计算出在多元函数定义的区域上的一些量的总和。

1.二重积分- 二重积分的概念与性质- 直角坐标系下的二重积分的计算- 极坐标系下的二重积分的计算2.三重积分- 三重积分的概念与性质- 柱坐标系下的三重积分的计算- 球坐标系下的三重积分的计算3.坐标变换与积分- 坐标变换的概念与方法- 二重积分与三重积分的坐标变换4.重积分的应用- 质量、重心、质心的计算- 总质量与平均密度的计算- 转动惯量与转动半径的计算四、无穷级数与幂级数无穷级数是指所含项的个数为无穷多个的数列之和,幂级数是指形如∑\(a_n(x-a)^n\)的形式的级数。

高等数学(下)知识点总结[汇编]

高等数学(下)知识点总结[汇编]

高等数学(下)知识点总结[汇编]
1.常微分方程:常微分方程是涉及未知函数在某个函数域内的导数与该未知函数自身
的关系的方程。

在常微分方程的解法中,可以使用分离变量法、齐次法等方法求解。

同时,也需要掌握一阶线性微分方程、一阶非线性微分方程、高阶线性微分方程等方程的解法。

3.多元函数微积分学:多元函数微积分学是研究多元函数的微积分理论及其应用的学科。

在多元函数微积分学的知识点中,需要掌握多元函数的极限、连续性、偏导数、方向
导数、梯度、多元函数的微分、多元函数的积分等内容。

4.向量代数与空间解析几何:向量代数与空间解析几何是研究向量相关理论及其在空
间解析几何中的应用的学科。

在向量代数与空间解析几何的知识点中,需要掌握向量的基
本运算、向量的数量积与向量积、直线及平面的方程、空间曲面方程等内容。

6.常微分方程的数值解法:常微分方程的数值解法是利用数值方法求解常微分方程的
近似解。

其中,欧拉法、龙格-库塔法等是常用的数值解法。

掌握常微分方程的数值解法
有利于在实际问题中应用数学知识进行求解。

以上就是高等数学下学期的知识点总结。

对于学习这门学科的学生来说,掌握以上知
识点是非常重要的,可以帮助他们更好地应对考试和实际问题的求解。

高等数学下册总结

高等数学下册总结

高等数学下册总结
高等数学下册主要涉及到的内容包括:多元函数的微积分、常微分方程、无穷级数等。

这些知识点较上册难度更大,需要更深入的理解和掌握。

下面对这些内容进行总结:
1. 多元函数的微积分:首先,需要掌握一元函数微积分的基
本概念和方法,包括导数、微分、极值和最值等。

在此基础上,需要学习多元函数的导数、偏导数、方向导数和梯度等概念,并能应用到实际问题中。

此外,还需要了解隐函数定理、反函数定理和极值判定定理等。

2. 常微分方程:常微分方程是描述物理、经济、生态等现象的重要工具。

首先,需要掌握一些基本概念和方法,如初值问题、线性方程组、欧拉法等。

然后,需要学习一阶、二阶和高阶常微分方程的常见解法,如分离变量法、齐次方程、变量分离法、常系数线性齐次二阶方程的解法等。

最后,需要应用所学知识解决实际问题,如振动问题、生长模型问题等。

3. 无穷级数:无穷级数是数学的基础概念之一。

首先,需要
掌握级数的基本概念和性质,如收敛、发散、绝对收敛、条件收敛等。

然后,需要学习级数收敛的测试方法,如比较判别法、积分判别法、级数比值判别法等。

最后,还需要会应用级数求和,如级数展开、泰勒级数等。

总之,高等数学下册的内容涉及范围较广,需要学生认真掌握每一个知识点,并能够灵活运用到实际问题中。

高等数学(下)知识点总结归纳

高等数学(下)知识点总结归纳

欢迎共阅高等数学(下)知识点主要公式总结第八章空间解析几何与向量代数 1、二次曲面1)椭圆锥面:22222z b y a x =+ 2)3)4)5)6)(二) 1、法向量:n2、3、两平面的夹角:),,(1111C B A n =,),,(2222C B A n =,⇔∏⊥∏210212121=++C C B B A A ;⇔∏∏21//212121C C B B A A ==4、点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:(三) 空间直线及其方程 1、一般式方程:⎪⎩⎪⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A2、对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s =,过点),,(000z y x3、两直线的夹角:),,(1111p n m s = ,),,(2222p n m s =,⇔⊥21L L 0212121=++p p n n m m ;⇔21//L L 212121p p n n m m ==4、直线与平面的夹角:直线与它在平面上的投影的夹角,2、 微分法1)复合函数求导:链式法则若(,),(,),(,)z f u v u u x y v v x y ===,则z z u z v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂,z z u z v y u y v y∂∂∂∂∂=⋅+⋅∂∂∂∂∂ (二) 应用1)求函数),(y x f z =的极值解方程组⎪⎩⎪⎨⎧==0y x f f 求出所有驻点,对于每一个驻点),(00y x ,令),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,① 若AC ② 若AC ③ 若AC 2、 1)曲线⎪⎪⎩⎪⎪⎨⎧Γ:z y x 2) 曲面:∑(一) 二重积分:几何意义:曲顶柱体的体积1、 定义:∑⎰⎰=→∆=nk k k kDf y x f 1),(lim d ),(σηξσλ2、 计算: 1)直角坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=b x a x y x y x D )()(),(21ϕϕ,21()()(,)d d d (,)d bx ax Df x y x y x f x y y φφ=⎰⎰⎰⎰⎭⎬⎫⎩⎨⎧≤≤≤≤=d y c y x y y x D )()(),(21φφ,21()()(,)d d d (,)d d y c y Df x y x y y f x y x ϕϕ=⎰⎰⎰⎰2) 极坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=βθαθρρθρθρ)()(),(21D ,21()()(,)d d (cos ,sin )d Df x y x y d f βρθαρθθρθρθρρ=⎰⎰⎰⎰(二) 三重积分1、 定义:∑⎰⎰⎰=→Ω∆=nk kk k kv f v z y x f 1),,(limd ),,(ζηξλ2、 计算: 1)⎰⎰⎰Ωx f ,(⎰⎰⎰Ωx f (2)⎪⎪⎩⎪⎪⎨⎧===zz y x ρρ3)(三) 应用曲面z S :(一) 1、 2、设,(y x f 在曲线弧上有定义且连续,的参数方程为),(ψ⎪⎩⎨=t y ,其中在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则(二) 对坐标的曲线积分 1、定义:设L 为xoy 面内从A 到B 的一条有向光滑弧,函数),(y x P ,),(y x Q 在L 上有界,定义∑⎰=→∆=nk kk k Lx P x y x P 1),(lim d ),(ηξλ,∑⎰=→∆=nk kk kLy Q y y x Q 1),(lim d ),(ηξλ.欢迎共阅向量形式:⎰⎰+=⋅LLy y x Q x y x P r F d ),(d ),(d2、计算:设),(,),(y x Q y x P 在有向光滑弧L 上有定义且连续,L 的参数方程为):(),(),(βαψϕ→⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则 3、两类曲线积分之间的关系:设平面有向曲线弧为⎪⎩⎪⎨⎧==)()( t y t x L ψϕ:,L 上点),(y x 处的切向量的方向角为:βα,,cos α=则LP ⎰(三) 1、则有⎰⎰D 2、G 则x Q ∂∂(四) 1、 设∑定义⎰⎰∑2、:z =∑,xy ,则(五) 对坐标的曲面积分 1、 定义:设∑为有向光滑曲面,函数),,(),,,(),,,(z y x R z y x Q z y x P 是定义在∑上的有界函数,定义1(,,)d d lim (,,)()ni i i i xy i R x y z x y R S λξηζ∑→==∆∑⎰⎰同理,1(,,)d d lim (,,)()ni i i i yz i P x y z y z P S λξηζ∑→==∆∑⎰⎰;01(,,)d d lim (,,)()ni i i i zx i Q x y z z x R S λξηζ∑→==∆∑⎰⎰2、性质:1)21∑+∑=∑,则计算:——“一投二代三定号”),(:y x z z =∑,xy D y x ∈),(,),(y x z z =在xy D 上具有一阶连续偏导数,),,(z y x R 在∑上连续,则(,,)d d [,,(,)]d d x yD R x y z x y R x y z x y x y ∑=±⎰⎰⎰⎰,∑为上侧取“+”,∑为下侧取“-”.3、 两类曲面积分之间的关系:其中γβα,,为有向曲面∑在点),,(z y x 处的法向量的方向角。

高数下册总结(同济第六版)

高数下册总结(同济第六版)

高数同济版下高数(下)小结一、微分方程复习要点解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法求出其通解. 一阶微分方程的解法小结:高数同济版下二阶微分方程的解法小结:非齐次方程的特解的形式为:高数同济版下主要一阶1、可分离变量方程、线性微分方程的求解; 2、二阶常系数齐次线性微分方程的求解; 3、二阶常系数非齐次线性微分方程的特解二、多元函数微分学复习要点一、偏导数的求法 1、显函数的偏导数的求法时,应将看作常量,对求导,在求时,应将看作常量,对求导,所运用的是一元函数的求导法则与求导公式2、复合函数的偏导数的求法设,,,则,几种特殊情况: 1),,,则2),,则 3),则3、隐函数求偏导数的求法 1)一个方程的情况,设是由方程唯一确定的隐函数,则,高数同济版下或者视,由方程两边同时对 2)方程组的情况由方程组 . 两边同时对求导解出即可二、全微分的求法方法1:利用公式方法2:直接两边同时求微分,解出即可.其中要注意应用微分形式的不变性:三、空间曲线的切线及空间曲面的法平面的求法 1)设空间曲线Г的参数方程为,则当时,在曲线上对应处的切线方向向量为,切线方程为法平面方程为2)若曲面的方程为,则在点处的法向,切平面方程为法线方程为高数同济版下若曲面的方程为,则在点处的法向,切平面方程为法线方程为四、多元函数极值(最值)的求法 1 无条件极值的求法设函数在点的某邻域内具有二阶连续偏导数,由,解出驻点,记, 1)若时有极小值 2)若,则在点处无极值 3)若,不能判定在点处是否取得极值,则在点处取得极值,且当时有极大值,当2 条件极值的求法函数在满足条件下极值的方法如下: 1)化为无条件极值:若能从条件解出代入中,则使函数成为一元函数无条件的极值问题 2)拉格朗日乘数法作辅助函数,其中为参数,解方程组高数同济版下求出驻点坐标,则驻点可能是条件极值点 3 最大值与最小值的求法若多元函数在闭区域上连续,求出函数在区域内部的驻点,计算出在这些点处的函数值,并与区域的边界上的最大(最小)值比较,最大(最小)者,就是最大(最小)值. 主要1、偏导数的求法与全微分的求法;2、空间曲线的切线及空间曲面的法平面的求法3、最大值与最小值的求法三、多元函数积分学复习要点七种积分的概念、计算方法及应用如下表所示:高数同济版下高数同济版下*定积分的几何应用定积分应用的常用公式: (1)面积 (2)体积(型区域的面积)(横截面面积已知的立体体积)(所围图形绕的立体体积)(所围图形绕体体积)(所围图形绕轴的立体体积)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 微分方程一、一阶微分方程1、一阶线性方程)()(x Q y x P dxdy=+])([)()(C dx e x Q e y dx x P dxx P +⎰⎰=⎰-通解2、伯努利方程)1,0()()(d d ≠=+n y x Q y x P xyn ).()(d d 1111x Q y x P xy n n n=+⋅---令.1n y z -= 二、可降阶的高阶方程1.)()(x f y n =n 次积分2.)',("y x f y = 不显含y令)('x p y =,化为一阶方程 ),('p x f p =。

3.)',("y y f y = 不显含自变量令)('y p y =,dydpp dx y d =22,化为一阶方程。

三、线性微分方程)()()()(1)1(1)(x f y x a y x a y x a y n n n n =+'+++-- ,0)(≡x f 时称为齐次的,0)(≡/x f 称为非齐次的。

1.二阶线性齐次线性方程0)()(=+'+''y x Q y x P y (1)如果函数)(1x y 与)(2x y 是方程(1)的两个解,则)()(2211x y C x y C y += 也是(1)的解,其中21,C C 是任意常数。

如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解,则)()(2211x y C x y C y += (21,C C 是任意常数)是(1)的通解.两个函数)(1x y 与)(2x y 线性无关的充要条件为C x y x y ≡/)()(21(常数)2.二阶线性非齐次线性方程设)(*x y 是二阶线性非齐次线性方程 )()()(x f y x Q y x P y =+'+''的一个特解,)(x Y 是它对应的齐次方程(1)的通解,则 )()(*x y x Y y += 是该方程的通解.设)(*1x y 与)(*2x y 分别是二阶线性非齐次方程)()()(1x f y x Q y x P y =+'+'' 与 )()()(2x f y x Q y x P y =+'+''的两个特解。

则+)(*1x y )(*2x y 是)()()()(21x f x f y x Q y x P y +=+'+''的特解。

(叠加原理)3.二阶线性常系数齐次方程0'"=++qy py y02,r r 4.二阶线性常系数非齐次方程i) 如果x m e x P x f λ)()(=,则二阶线性常系数非齐次方程具有形如x m k e x Q x y λ)(*= 的特解。

其中,)(x P m 是m 次多项式, )(x Q m 也是系数待定的m 次多项式;2,1,0=k 依照λ为特征根的重数而取值.i)如果[]x x P x x P e x f n l x ωωλsin )(cos )()(+=,则二阶线性常系数非齐次方程的特解可设为[]xx R x x R e x y m m x k ωωλsin )(cos )()2()1(*+=其中)(),()2()1(x R x R m m 是系数待定的m次多项式,{}n l m ,m ax =,1,0=k 依照ωλi +特征根的重数取值.四、欧拉方程二阶欧拉方程)(2x f qy y px y x =+'+'',其中q p ,为常数. 作变换te x =,则有 dtdy x dx dt dt dy dx dy 1=⋅=,⎪⎪⎭⎫⎝⎛-=dt dy dt y d x dx y d 222221。

原方程变为二阶线性常系数方程)()1(22te f qy dtdy p dx y d =+-+。

第七章 空间解析几何一、1、φβαβαsin ||||||=⨯,其中φ是α与β的夹角;2、向量积满足下列运算律: 1)反交换律 )(αββα⨯-=⨯;2)结合律)()()(βλαβαλβαλ⨯=⨯=⨯,其中λ是数量 ;3) 左分配律 βγαγβαγ⨯+⨯=+⨯)(,右分配律 γβγαγβα⨯+⨯=⨯+)(.3、321321212131313232b b b a a a k j i k b b a a j b b a a i b b a a=+-=⨯βα 4、若0},,{321≠=a a a α,则ααα||10=称为α单位化向量,并有||ααα=.此时}cos ,cos ,{cos ,,2322213232221223222110γβαα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++++=a a a a aa a a a a a a 其中 是α的方向余弦.三、1、旋转面方程yoz 平面上的曲线C :⎩⎨⎧==00),(x z y f 绕z 轴的旋转面方程为0),(22=+±z y x f ;绕y 轴的旋转面方程为0),(22=+±z x y f .类似可得其它坐标面上的曲线绕坐标轴的旋转面方程.2、柱面方程以xoy 平面上的曲线C :⎩⎨⎧==00),(z y x f 为准线,母线平行于z 轴的柱面方程为0),(=y x f .同理方程0),(=z y g 和0),(=z x h 分别表示母线平行于x 轴和y 轴的柱面.3、曲线在坐标面上的投影 在空间曲线的方程 ⎩⎨⎧==0),,(0),,(:21z y x F z y x F C 中,经过同解变形分别消去变量z y x ,,,则可得到C 在yoz 、xoz 、xoy 平面上的投影曲线,分别为:⎩⎨⎧==00),(x z y F ; ⎩⎨⎧==00),(y z x G ;⎩⎨⎧==0),(z y x H γβαcos ,cos ,cos四、1、平面方程1)点法式:过点),,(0000z y x P ,法向量},,{C B A n =的平面方程为0)()()(000=-+-+-z z C y y B x x A ,2)一般式: 0=+++D Cz By Ax ,其中C B A ,,不全为零.3)截距式:1=++czb y a x4)两个平面之间的关系设两个平面Π1与Π2的法向量依次为},,{1111C B A n =和},,{2222C B A n =.Π1与Π2的夹角θ规定为它们法向量的夹角(取锐角).此时2、直线方程1)一般式:将直线表示为两个平面的交线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A . 2)若直线L 经过点),,(0000z y x P 且与方向向量0},,{≠=n m l v 平行,则L 的方程为i) 对称式:nz z m y y l x x 000-=-=-.ii) 参数式:⎪⎩⎪⎨⎧+=+=+=tn z z t m y y t l x x 000,+∞<<∞-t.3)两条直线之间的关系设两条直线L 1和L 2方向向量分别为 },,{,},,{22221111n m l v n m l v ==,L 1 与 L 222 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 21 || | | | | | | co C B A C B A C C B B A A n n n n + + ⋅ + + + + = ⋅ • = θ的夹角θ规定为它们方向向量的夹角(取锐角).于是2222222121212121212121||||||||cos n m l n m l n n m m l l v v v v ++⋅++++=⋅•=θ3、直线与平面的关系设直线L 的方向向量为},,{n m l v = ,平面 Π 的法向量为},,{C B A n =.L与Π的夹角φ规定为L 与它在Π上投影直线'L 的夹角(锐角).这时222222||||||||sin C B A n m l nC mB lA n v n v ++⋅++++=⋅•=φ.L 与 Π 垂直的充要条件是 CnB m A l == .L 与 Π 平行的充要条件是0=++nC mB lA五、1、椭圆抛物面:2222by a x z +=,其中0,0>>b a(图3).例如22y x z+=,22y x z +=-等.2、椭圆锥面: 22222by a xz += ,其中0,0>>b a (图4).例如,圆锥面222y x z +=.3、单叶双曲面1222222=-+cz b y a x , 其中0,0,0>>>c b a (图5).图4y例如 1222=-+z y x .4、双叶双曲面 1222222-=-+cz b y a x , 其中0,0,0>>>c b a(图6).例如1222=--y x z .第八章 多元函数的微分学一、1.偏导数xy x f y x x f y x f x x ∆-∆+=→∆),(),(lim),(0000000[]0'),(),(000x x x y x f y x f ==对某一个自变量求偏导数,就是将其余的自变量看作常数,对这个变量求一元函数的导数. 2.高阶偏导数二元函数),(y x f 的二阶偏导数),(),(1122y x f y x f xzx z x xx ==∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂ ,或 11f ,11z ; ),(),(122y x f y x f yx zx z y xy ==∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂,或 12f ,12z ; ),(y x f xy 及),(y x f yx 称为二阶混合偏导数3、全微分6)二元函数),(y x f z =在点),(y x 处的全微分dy yz dx x z dz ∂∂+∂∂=三元函数),,(z y x f u =的全微分,并有dz zu dy y u dx x u du ∂∂+∂∂+∂∂=4、可微、可导、连续的关系在多元函数中,可微、可导、连续的关系与一元函数的情况有所不同.在多元函数中1)可微必可导,可导不一定可微; 2)可微必连续,连续不一定可微; 3)可导不一定连续,连续不一定可导5、复合函数的偏导数假设下列函数都可微,则有复合函数的求导公式(链式法则): a.若),(v u f z =,)(x uϕ=,)(x v ψ=,则复合函数)](),([x x f z ψϕ=的导数为dx dz =dx du u z ∂∂+dxdvv z ∂∂; b.若),(v u f z =,),(y x u ϕ=,),(y x v ψ=, 则复合函数)],(),,([y x y x f z ψϕ=的偏导数x z ∂∂=x u u z ∂∂∂∂+xvv z ∂∂∂∂ , y z ∂∂=y u u z ∂∂∂∂+y v v z ∂∂∂∂;6、隐函数的偏导数1)方程 0),(=y x F 所确定的隐函数的导数为yx F Fdx dy -=. 2)方程 0),,(=z y x F 所确定隐函数的偏导数为z x F F x z -=∂∂ , zy F F y z-=∂∂. 二、1、取得极值的必要条件如果函数),(y x f z=在点),(000y x P 的两个偏导数都存在,且在该点函数取得极值,则 0),(00=y x f x , 0),(00=y x f y . 可导的极值点必是驻点,但极值点不一定是驻点. 2.取得极值的充分条件设),(y x f z =在驻点),(00y x 的某个邻域内有二阶的连续偏导数. 令),(00y x f A xx =, ),(00y x f B xy =,),(00y x f C yy =, AC B -=∆2,于是有1)如果0<∆,则点),(00y x 是函数的极值点.当0<A 时,),(00y x f 是极大值 , 当0>A 时,),(00y x f 是极小值. 2)如果0>∆,则点),(00y x 不是函数的极值点.3)如果0=∆,则函数),(y x f z =在点),(00y x 有无极值不能确定,需用其它方法判别. 3.条件极值1)求二元函数),(y x f z =在约束条件),(y x ϕ=0下的极值,可以按照如下步骤进行:i) 构造拉格朗日函数 ),(),(),(y x y x f y x L λϕ+=;ii) 解方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=∂∂=+=∂∂0),(0),(),(0),(),(y x y x y x f y L y x y x f x Ly y x x ϕϕλϕλ.若 000,,y x λ是方程组的解,则),(00y x 是该条件极值问题的可疑极值点.三、多元微分学的几何应用1.空间曲线的切线与法平面给定空间曲线 ⎪⎩⎪⎨⎧===)()()(:t z z t y y t x x L ,其中的三个函数有连续的导数且导数不同时为零(光滑曲线).L 上的点),,(0000z y x P 对应的参数为0t.则曲线L 在点),,(0000z y x P 处的切向量为})(',)(',)('{000t z t y t x ,此时的切线方程为)(')(')('000000t z z z t y y y t x x x -=-=- . 曲线L 在点),,(0000z y x P 的法平面方程为))(('))(('))(('000000=-+-+-z z t z y y t y x x t x2.曲面的切平面与法线给定曲面∑的方程0),,(=z y x F ,函数),,(z y x F 有连续的偏导数且三个偏导数不同时为零(光滑曲面).点),,(0000z y x P 是∑上的一个点.则曲面∑在点),,(0000z y x P 处的法向量为}),,(,),,(,),,({000000000z y x F z y x F z y x F z y x ,此时的切平面方程为0))(,,())(,,())(,,(000000000000=-+-+-z z z y x F y y z y x F x x z y x F z y x ,曲面∑在点),,(0000z y x P 的法线方程为),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=- .四.方向导数与梯度1.若函数 ),,(z y x f u =在点),,(z y x P 可微,方向l 的方向余弦为γβαcos ,cos ,cos ,则函数在点),,(z y x P 沿方向l 的方向导数为γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂. 2.设函数),,(z y x f u =在空间区域G 内可微,则函数在点),,(0000z y x P 处的梯度定义为一个向量grad ),,(000z y x f =k z y x f j z y x f i z y x f z y x),,(),,(),,(000000000++.梯度方向是函数变化率最大的方向.在梯度方向上函数的方向导数取得最大值|),,(grad |000z y x f .第九章 重积分一、 二重积分的计算||D d D=⎰⎰σ1.直角坐标下二重积分的计算 1)若积分区域可以表示为D :,b x a ≤≤)()(21x y x ϕϕ≤≤,则⎰⎰⎰⎰=)()(21),(),(x x b aDdy y x f dx dxdy y x f ϕϕ2)若积分区域可以表示为 D :,d y c ≤≤)()(21y x y ψψ≤≤,则⎰⎰⎰⎰=)()(21),(),(y y dcDdx y x f dy dxdy y x f ψψ.2.极坐标下二重积分的计算直角坐标与极坐标的关系为 ⎩⎨=θsin r y ,.20πθ<≤此时面积元素为θσrdrd d =或θrdrd dxdy =.若在极坐标下积分区域可以表示为 )()(,:21θϕθϕβθα≤≤≤≤r D ,则⎰⎰⎰⎰⎰⎰==)()(21)sin ,cos ()sin ,cos (),(θϕθϕβαθθθθθθrdrr r f d rdrd r r f dxdy y x f DD二、三重积分的计算||1Ω==⎰⎰⎰⎰⎰⎰ΩΩdv dv ,||Ω表示Ω的体积.1.直角坐标下三重积分的计算 1)“先一后二”法若积分区域可表示为Ω:),(),(,)()(,2121y x z z y x z x y y x y b x a ≤≤≤≤≤≤,则⎰⎰⎰⎰⎰⎰=Ω),(),(21),,(),,(y x z y x z D dzz y x f dxdy dxdydz z y x f xy⎰⎰⎰=),(),()()(2121),,(y x z y x z x y x y badz z y x f dy dx其中xy D 是Ω在xoy 坐标面上的投影. 2) “先二后一”法设积分区域Ω在z 轴上的投影区间为],[d c .用平面z =z (常数)去截Ω,截面为z D .则⎰⎰⎰⎰⎰⎰=ΩzD d cdxdy z y x f dz dxdydz z y x f ),,(),,( 其中⎰⎰zD dxdy z y x f ),,(是将z D 投影到xoy 坐标面上所做的二重积分.2.柱面坐标下三重积分的计算直角坐标与柱面坐标的关系为 ⎪⎩⎪⎨+∞<<∞-=<≤=z z z r y πθθ20sin ,,则体积元素为dz rdrd dv θ=或 dz rdrd dxdydz θ=.若积分区域在柱面坐标下可表示为:Ω,βθα≤≤)()(21θθr r r ≤≤,),(),(21θθr z z r z ≤≤,则⎰⎰⎰⎰⎰⎰ΩΩ=dzrdrd z r r f dxdydz z y x f θθθ),sin ,cos (),,(⎰⎰⎰=),(),()()(2121),sin ,cos (θθθθβαθθθr z r z r r rdz z r r f dr d3.球面坐标下计算三重积分直角坐标与球面坐标的关系为⎪⎩⎪⎨⎧===ϕϕθϕθcos sin sin sin cos r z r y r x ,πθπϕ2000<≤≤≤+∞<≤r ,体积元素为θϕϕd drd r dv sin 2= 或 θϕϕd drd r dxdydz sin 2=. 如果积分区域在球面坐标下可表示为Ω:,βθα≤≤),(),(,)()(2121θϕθϕθϕϕθϕr r r ≤≤≤≤,则⎰⎰⎰⎰⎰⎰ΩΩ=θϕϕϕϕθϕθd d dr r r r r f dxdydz z y x f sin )cos ,sin sin ,sin cos (),,(2.sin )cos ,sin sin ,sin cos (),(),(2)()(2121⎰⎰⎰=θϕθϕθϕθϕβαϕϕϕθϕθϕθr r dr r r r r f d d4.简算:对称奇偶性, 重心公式。

相关文档
最新文档