嘉兴一中实验学校17-18学年第一学期八年级_数学素质检测卷

合集下载

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)

2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。

2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。

3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。

4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。

不按以上要求作答的答案无效。

5.考试结束只上交答题卡。

第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。

1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。

2017-2018学年度八年级第一学期教学质量检测数学试题

2017-2018学年度八年级第一学期教学质量检测数学试题

仲恺区 2017—2018 学年度第一学期教学质量阶段性检测 八年级数学 (说明:考试时间 100 分钟,满分 120 分) 一、选择题(本大题 10 小题,每小题 3 分,共 30 分) 1.下列运算正确的是( ) A .22()m m x x += B 2353(2)8x y x y -=- C 632x x x ÷= D 325xx x = 2.若分式 31x x -+ 的值为 0,则 x 的值为( ) A -1 B 0 C 3 D -1或 3 3.点 M( 2,-3 ) 关于y 轴的对称点坐标为( ) A .(-2,3) .(2,3) C .(-3,2) D .(-2, -3 ) 4.下列各式,不能用平方差公式化简的是( ) A 11()()22a b b a +- B (2)(a 2)a b b -+- C (c )()d d c -+ D 1(3)(3)3a b b a +- 5.把多项式24a a -分解因式,结果正确的是() A (2)(a 2)a +- B 2(2)4a -- C (4)a a - D (2)(2)a a ++ 6. 等腰三角形的周长为 13,其中一边长为 3,则该等腰三角形的腰长为( ) A 7 B 3 C 7或3 D 5 7.将一副直角三角尺如图放置,若∠AOD=20° , 则 ∠BOC 的大小为( ) A 140° B 150° C 160° D 170° 8. 如图,已知 AD 是△ABC 的 BC 边上的高,下列能使△ABD ≌△ACD 的条件是() A .AB=AC B .∠BAC=90° C .BD=AC D .∠B=45° 9.如图,直线 L 是一条河,P ,Q 是两个村庄.欲在 L 上的某处修建一个水泵站,向 P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )10. 如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,若 AD=3,BE=1,则 DE=()A .1B .2C .3D .4二、填空题(本大题 6小题,每小题 4分,共 24 分)11. 使式子31x -有意义的 x 的取值范围是_______________; 12. 正五边形的内角和为_______________ .13.若代数式 210x x k ++是一个完全平方式,则 k=______________;14.一种植物果实像一个微笑的无花果,质量只有 0.000000076 克,该质量请用科学记数法表示 ____________________克。

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017-2018学年第一学期期末检测八年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。

嘉兴市八年级(上)数学期末卷参考答案及评分标准

嘉兴市八年级(上)数学期末卷参考答案及评分标准
移项,得: 3x 4x > 2 3 , ............................................... 1 分 合并同类项,得: x > 1 ...................................................... 1 分
–4 –3 –2 –1 O 1 2 3 4
13 16.30°; 17.13; 18.75°、120°或 30°; 19.6; 20.8.
三、解答题(第 21~24 题,每题 6 分,第 25、26 题,每题 8 分,共 40 分) 21.去括号,得: 3 3x > 2 4x , .............................................. 2 分
2 0
b 2k
b
,解得:
k b
2
1 2
,.
.............
........................................1

∵两条直线 y=x, y 1 x 2 2
的交点坐标为
4 3
,
4 3

∴点
C
的坐标为
4 3
,
4 3
..............................................................1
(2) ∵△ACD≌△BCE,
∴∠EBC=∠A=45°,...................................................... 1 分
∴∠ABE=∠ABC+∠EBC=90°,
∴∠DBE=90°..................................................................1 分

20172018学年初二数学第一学期第一次阶段性测试包括答案.docx

20172018学年初二数学第一学期第一次阶段性测试包括答案.docx

2017-2018 学年初二数学第一学期第一次阶段性测试本次100 分,分100 分一、细心选一选:(本大共8 小,每小 3 分,共24 分)1、下列法正确的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯A.形状相同的两个三角形全等B.面相等的两个三角形全等C. 完全重合的两个三角形全等D.所有的等三角形全等2、下列交通志案是称形的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(()).3.如所示:ABC 和DEF中① AB DE,BC EF,AC DF;② AB DE,B E,BC EF ;③B E, BC EF ,C F ;④ AB DE,AC DF, BE .第 3其中,能使△ ABC ≌△ DEF 的条件共有⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A. 1B. 2C. 3D. 44、如,△ ABC中,∠ C=90°, AD平分∠ BAC,点 D作 DE⊥ AB于 E,得 BC=9, BE=3,△ BDE的周是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯() A. 6B. 9C. 12D. 15A1 号袋2 号袋EBD C第 7第 4 3 号袋 4 号袋第 6第55.如是一个改造的3×5 的台球桌面示意,中四个角上的阴影部分分表示四个入球孔,如果一个球按中所示的方向被出(球可以台球多次反)那么球最后将落入的球袋是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(,)A.1 号袋B.2 号袋C.3 号袋D. 4 号袋6.如,把方形 ABCD 沿 EF 折后使两部分重合,若∠ 1=50°,∠ AEF=A .110°B .115°C. 120°D. 130°7、如,在 CD上求一点 P,使它到 OA,OB的距离相等,P 点是⋯⋯⋯⋯⋯A. 段 CD的中点B.OA与OB的中垂的交点C.OA与 CD的中垂的交点D.CD与∠ AOB的平分的交点(())8.如图,过边长为 1 的等边△ ABC 的边 AB 上一点 P,作 PE⊥ AC 于 E, Q 为 BC 延长线上一点,当 PA=CQ 时,连 PQ 交 AC 边于 D,则 DE 的长为 ()A.B.C. D .不能确定CDA 50oB第 8 题图 .1-15第 12 题第 13 题第 10 题二、精心填一填:空,每空 2 分,共 20 分.)(本大题共有 109.角的对称轴是.10.小新是一位不错的足球运动员,他衣服上的号码在镜子里如图,他是号运动员.11.如果等腰三角形的两边长分别是4、 8,那么它的周长是 ____________ .12、如图, AC、BD 相交于点 O,∠ A=∠D,请补充一个条件,使△AOB≌△ DOC,你补充的条件是(填出一个即可).BAFAEDC lB C第 14 题第 15 题第 16 题第 17题13.如图所示,ADC°.14.如图,已知AB∥CF,E为DF的中点,若AB=9 cm ,CF=5 cm ,则BD=cm.15、如图,在△ ABC 中,AB= AC= 32cm,DE 是 AB 的垂直平分线,分别交 AB、AC 于 D、E 两点. (1) 若∠ C = 700,则∠ CBE = ______(2)若 BC = 21cm ,则△ BCE 的周长是______cm.16.已知:∠ BAC 的平分线与 BC 的垂直平分线相交于点 D , DE ⊥AB , DF ⊥ AC ,垂足分别为 E、 F,AB =6 , AC =3 ,则 BE= ___________.17.如图,△ ABC 中,∠ ACB = 90°,AC =6cm, BC= 8cm.点 P 从 A 点出发沿 A→ C→ B终点为 B 点;点Q 从 B 点出发沿B→C→ A 路径向终点运动,终点为 A 点.点 P 和 Q 分别以1cm/ 秒和 3cm/ 秒的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过 P 和 Q 作 PE⊥ l 于 E,QF⊥ l 于 F.设运动时间为(t秒),当t=________秒时,△ PEC 与△ QFC 全等.三、认真答一答(本大题八题,共56 分)18.(本题满分 7 分)如图,点 B、 F、 C、E 在一条直线上, FB=CE, AC=DF ,请从下列三个条件:①AB=DE ;②∠ A=∠ D;③∠ ACB=∠ DFE 中选择一个合适的条件,使..AAB∥ ED 成立,并给出证明.(1) 选择的条件是(填序号 )CE(2) 证明:B FD19.(本题满分 6 分)如图,阴影部分是由5 个小正方形组成的一个直角图形,请用3 种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.20、(本题满分6 分)如图,在所给网格图(每小格均为边长是 1 的正方形)中完成下列各题: (1) 画出格点△ ABC(顶点均在格点上)关于直线DE对称的△ A1B1C1;(2)在直线 DE上画出点 Q,使QA QC最小.C DA B21、(本题满分 6 分)如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备E在这里安装一盏路灯,要求灯柱的位置 P 离两块宣传牌一样远,并且到两条路的距离也一样远,请你用尺规作出灯柱的位置点 P。

2017~2018学年嘉兴市八年级上数学期末检测卷(含答案及评分标准)

2017~2018学年嘉兴市八年级上数学期末检测卷(含答案及评分标准)

2017~2018学年嘉兴市八年级(上)数学期末检测卷(2018.2)一、选择题(每小题3分,共30分)1.下列长度的三条线段能组成三角形的是( )(A )1cm ,2cm ,3cm (B )2cm ,2cm ,3cm(C )2cm ,2cm ,5cm (D )2cm ,3cm ,6cm2.在平面直角坐标系中,点P (1,-2)位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.在△ABC 中,∠ACB =90°,∠A =15°,则∠B 的度数为( )(A )15° (B )30° (C )75° (D )85°4.1921年7月23日,中共一大在上海市兴业路76号、78号召开,后转至嘉兴南湖的红船上闭幕.如图,地图上的点O 是嘉兴南湖,点P 是上海一大会址,∠POQ ≈38°,OP ≈85千米,下列描述正确的是( )(A )点P 在点O 的北偏东38°方向85千米处(B )点O 在点P 的南偏西38°方向85千米处(C )点P 在点O 的北偏西52°方向85千米处(D )点O 在点P 的南偏西52°方向85千米处5.若a >b ,则下列各式中一定成立的是( )(A )2a <2b (B )-2a >-2b (C )a +2>b +2 (D ) a 2 < b 26.在直角坐标系中,点A (-2,3)向右平移三个单位的点的坐标是( )(A )(-2,0) (B )(-2,6) (C )(1,3) (D )(-5,3)7.直角三角形两直角边长分别为3和1,则其斜边上的中线长是( )(A )1 (B )32(C ) 2 (D )2 8.已知点A (x ,y 1)和B (x +1,y 2)在正比例函数y =-3x 的图象上,则y 1与y 2的大小关系是( )(A )y 1>y 2 (B )y 1<y 2 (C )y 1≥y 2 (D )y 1≤y 29.用尺规作图作∠BAC 的平分线AD ,痕迹如图所示,则此作图的依据是( )(A )SAS (B )SSS (C )ASA (D )AAS10.如图,在等边△ABC 中,已知AB =5,点D 在BC 边上,且BD =2,点E 为AB 边上一动点,在线段ED 右侧作等边△DEF ,当点F 恰在AC 边上时,等边△DEF 的边长为( ) (A )2 (B )7 (C )2 2 (D )4(第9题图) (第10题图) (第13题图)二、填空题(本题有10小题,每小题3分,共30分)11.点A (1,2)到y 轴的距离为_________.12.不等式组⎩⎨⎧x ≥-2x <1的解为_________. 13.如图,点E 是∠BAC 平分线AD 上一点,EM ⊥AB ,垂足为点M .若EM =3,则点到边AC的距离为_________.14.在直角坐标系中,点A (-3,2)关于y 轴的对称点的坐标是_________.15.已知x 的3倍减去1是正数,将这一数量关系用不等式表示为_______________.16.命题“三个角都相等的三角形是等边三角形”的逆命题是_____________________.17.写一个图象经过一、二、四象限的一次函数表达式_______________.18.如图,已知∠BAD =∠BCD =90°,∠ABD =50°,AB =CB ,则∠ADC 的度数为______.(第18题图) (第19题图) (第20题图)19.如图,有赵爽选图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1+S 2+S 3=27,S 3=1,则S 1的值是_________.20.如图,在平面直角坐标系xoy 中,点A (8,0),B (0,6)在坐标轴上,点P 是x 轴上任一点,△BPC 与△BPO 关于BP 所在直线对称,连结AC ,当△ACP 是直角三角形时,点P 的坐标是_________.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分)21.已知y 是x 的一次函数,当x =0时,y =1,且图象通过点(1,3).(1)求这个一次函数的表达式;(2)当y =3时,求自变量x 的值.22.解不等式: x 2 -1≤3x +1 4.23.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:△ABF≌△DCE;(2)若∠AOE=80°,求∠OEF的度数.24.嘉兴粽子历史悠久,某销售商为扩大销售量,准备印制宣传材料,甲印刷厂的收费标准是:每份材料收0.5元印制费,另收500元制版费;乙印刷厂的收费标准是:每份材料收1.5元印制费,不收制版费.(1)分别写出甲、乙两厂的收费y(元)与印制数量x(份)之间的关系式;(2)该粽子销售商应选择哪家印刷厂收费较低?25.定义:把斜边重合,且直角顶点不重合的两个直角三角形叫做共边直角三角形.(1)概念理解:如图(1),在△ABC中,∠C=Rt∠,作出△ABC的共边直角三角形(画一个就行);(2)问题探究:如图(2),在△ABC中,∠C=Rt∠,AC=6,BC=8,△ABD与△ABC是共边直角三角形,连结CD,当CD⊥AB时,求CD的长;(3)拓展延伸:如图(3)所示,△ABC和△ABD是共边直角三角形,BD=CD,求证:AD 平分∠CAB.26.如图1,已知直线y1=-34x+92与x轴和y轴分别相交于点A,B,直线y2=kx+3-2k(k≠0)与y轴相交于点C,两直线交于点P.(1)求△AOB的面积;(2)如图2,过点P作x轴的平行线交y轴于点D,若点B,C关于直线DP对称,求点C 的坐标;(3)当△BCP是以BC为腰的等腰三角形时,求直线y2的表达式.。

2017—2018学年度八年级数学上学期第一次质量监测(含答案)

2017—2018学年度八年级数学上学期第一次质量监测(含答案)

2017—2018学年度上学期第一次质量监测八 年 数 学(时间:90分钟 满分: 100分) 一. 选择题(本大题共10小题,每小题2分,共20分). 1. 下列实数中,是无理数的是A. 0 B .2 C .-2 D.72 2. 在平面直角坐标系中,一次函数y=kx +b示,观察图像可得A. 0>k ,0>b B. 0>k ,0<b C. 0<k ,0>b D. 0<k ,0<b 3. 9的算数平方根是A. 3B. -3C. ±3D. 3 第2题图 4.“赵爽炫图”巧妙地利用面积关系证明了勾股定理,是 我国古代数学的骄傲,如图所示的“赵爽炫图”是由四个 全等直角三角形和一个小正方形拼成的一个大正方形, 设直角三角形较长直角边长为a ,较短直角边长为b ,若21)(2=+b a ,大正方形的面积为13,则小正方形的边长为 第4题图A. 3B. 2C. 5D. 6 5. 估计41的值在A. 4和5之间B. 5和6之间C. 6和7之间D.7和8之间 6. 如图,等腰直角OAB ∆的斜边OA 在x 轴上,且2=OA ,则点B 坐标为 A. (1, 1) B. (2, 1) C.(2, 2) D. (1,2) 7. 已知一次函数2+=kx y 的图象经过点(3,-3),则k 值为A.35 B. 35- C. 53 D.53- 8. 小学我们就知道:四边形具有不稳定性,如图,在平面直角坐标系中,边长为2的正方形ABCD 的边长AB在x 轴上,AB 的中点是坐标原点O ,固定点A 、B ,把正方形沿箭头方向推,使点D 落在y 轴正率轴上点D 处,则点C 的对应点C 的坐标为 A. (3, 1) B. (2, 1) C. (1, 3) D.(2,3)9. 已知一次函数x m kx y 2--=的图象与y 轴的负半 第8题图 轴相交,且函数值y 随自变量x 的增大而减小,则下列 结论正确的是A. 2<k ,0>mB. 2<k ,0<mC. 2>k ,0>mD. 0<k ,0<m10. 如图是边长为10cm 的正方形铁片,过两个顶点减掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的是A B C D 第10题图 二、填空题(本大题共6小题,每小题2分,共12分) 11. 若正比例函数kx y =(k 是常数,0≠k )的图像经过第二、四象限,则k 的值可以是____▲____.(写出一个即可). 12. =-++3131______▲___.13. 在平面直角坐标系xOy 中,点A 的坐标为(3,4), 第14题图则OA 长为____▲_____.14. 如图,已知圆柱的底面直径π6=BC ,高3=AB ,小虫在圆柱表面爬行,从点C 爬到点A ,然后在沿另一面爬回点C ,则小虫爬行的最短路程为______▲_____. 第15题图 15. 如图,在长方形ABCD 中,8=BC ,6=CD .、点E 在边AD 上,将△ABE 沿着BE 折叠,使点A 恰好落在对角线BD 上点F 处,则DE 的长是____▲_______. 16. 如图,在平面直角坐标系中,直线I 与x 轴交于点1B ,与y 轴交点于D ,且11=OB ,601=∠ODB °,以1OB 为边长作等边三角形11OB A ,过点1A 作21B A 平行于x 轴,交直线I 于点2B ,以21B A 为边长作等边三角 第16题图 行212B A A ,过点2A 作32B A 平行于x 轴,交直线I 于 点3B ,以2A 3B 为边长坐等三角形323B A A ,…,则点10A 的横坐标是_____▲______.三、解答题(每题6分,共18分) 17. 计算:22)2(8)12(-+-+,(将答案写在答题卡上,不要在此处答题) 18. 如图,ABC ∆的边2=AC ,22=BC ,60=∠C °,求边AB 的长.(将答案写在答题卡上,不要在此处答题) 第18题图19.一次函数m x y +-=2的图像经过点)3,2(-P ,且与x 轴、y 轴分别交与点A 、B ,求 △AOB 的面积.(将答案写在答题卡上,不要在此处答题) 四、(每题6分,共12分)20. 如图,在平面直角坐标系xOy 中,ABC ∆的 顶点,A ,B C 均在正方形网格的格点上, (1)画出ABC ∆关于y 轴的对称图形111C B A ∆: (2)画出111C B A ∆关于x 轴的对称图形222C B A ∆,并直接写出222C B A ∆的顶点2A ,2B ,2C 的坐标. 第20题图 (将答案写在答题卡上,不要在此处答题)21. 如图,已知ABC ∆≌C B A '''∆, 其中点A '与点A 重合, 点C 落在边AB 上,连接C B '.若90=''∠=∠B C A ACB °3==BC AC ,求C B '的长.(将答案写在答题卡上,不要在此处答题)(本题8分)22. 某数学兴趣小组根据学习函数的经验,对函数 第21题图ABC∙)(A '1-=x y 的图象与性质进行了探究,下面是该小组的探究过程,请补充完整:(1)函数1-=x y 的自变量x 的取值范围是____▲____: (2)列表,找出y 与x 的几组对应值:其中,=b ___▲____:(3)在平面直角坐标系xOy 中,描出以上表中对应值为坐标的点,并画出该函数的图像. 第22题图 (将答案写在答题卡上,不要在此处答题) 六、(本题8分)23. 对于实数p ,q ,我们用符号{}q p ,max 表示q p ,两数中较大的数,如{}22,1max =, (1)请直接写出{}3,2max --的值:(2)我们知道,当12=m 时,=m ±1,利用这种方法解决下面问题:若{}4,)1(max 22=-x x ,求x 的值.(将答案写在答题卡上,不要在此处答题) 七、(本题10分)24. 一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行使,轿车到达乙城停留一段时间后,按原路原速返回甲城:卡车到达甲城比轿车返回甲城早 0.5小时,轿车比卡车每小时多行使60千米, 两车到达甲城后均停止行使,两车之间的路程为y (千米)与轿车行使时间t (小时)的函 第24题图 数图象如图所示,请结合图象提供的信息解答下列问题:(1)甲城 和乙城之间的路程为_____▲_____千米,并求出轿车和卡车的速度: (2)轿车在乙城停留的时间为____▲____小时,点D 的坐标为_____▲_____,:(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s (千米)与轿车行使时间t (小时)之间的函数关系式(不要求写出自变量的取值范围). (将答案写在答题卡上,不要在此处答题) 八、(本题12分)25.阅读理解:在以后你的学习中,我们会学习一个定理:直角三角形斜边上的中线等于斜边的一半,即:如图1, 在ACB Rt ∆中,90=∠ACB °,若点D 是斜边AB 的中点, 则AB CD 21=. 第25题图1 灵活应用:如图2,ABC ∆中,90=∠BAC °,3=AB ,4=AC ,点D 是BC 的中点, 将ABD ∆沿AD 翻折得到AED ∆,连接BE ,CE . (1)求AD 的长: (2)判断BCE ∆的形状: (3)请直接写出CE 的长.(将答案写在答题卡上,不要在此处答题) 第25题图2一、选这题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共6小题,每小题2分,共12分)11. ____________ 12. ____________ 13. ___________14. ____________ 15. ____________ 16. ___________三、解答题(每题6分,共18分) 17.()()222812-+-+4221222+-++= 7=322102355262-18. 作 223=-=∴CD BC BD 90=∠ADC ° ,60=∠C ° =在ABD Rt ∆中90=∠ADB °30=∠∴CAD ° 由勾股定理得22221==∴CD 222AB BD AD =+∴ 在ACD Rt ∆中,90-∠ADC ° 6=∴AB 由勾股定理得26222=∴=-∴AD AD CD AC19.把,2(-p )3带入 当0=x 时 1-=y143)2(23-=+=+--=m m m BOAO AOB S .21=∆ 12--=x y 当0=y 时21120-=--=x x 四、(每题6分,共12分) 20. (1)如图111C B A ∆即为所求. (2)如图222C B A ∆即为所求.)2,1()2,4()3,2(222-----C B A 第20题图21. 90=∠ACB °,3==BC AC 在B C A Rt ''∆中,90='∠B CA ° ACB ∆∴为等腰直角三角形 由勾股定理得45=∠=∠∴CAB CAB ° 222C B B A AC '=''+∴ ABC ∆ ≌C B A '''∆ 33='∴C B4114112121=⨯=⨯⨯=BCAD ⊥3=''=''∴C B C AB C A '''∆∴为等腰直角三角形 45='''∠='''∠∴C B A B A C ° B A C B A C B CA '''∠+'∠='∠ 90='∠∴B CA °在C B A Rt '''∆中,90='''∠B C A ° 由勾股定理得222B A C B C A ''='+'∴ 23=''∴B A 五、(本题8分) 22. (1)任意实数(2)2(3)如图即为所求第22题图六、(本题8分)(1){}3,2max --的值为2-。

2017-2018学年度第一学期期末素质测试人教版八年级数学(含解析)

2017-2018学年度第一学期期末素质测试人教版八年级数学(含解析)

试卷第1页,总6页…………外…○…………订………____班级:________考号:________…………内…○…………订………2017-2018学年度第一学期期末素质测试八年级数学考试范围:人教版八年级;考试时间:100分钟;分数:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(10小题,3共30分)1.下列平面图形中,不是轴对称图形的是( )A .B .C .D .2.若分式有意义,则x 满足的条件是( )A .x =1B .x =3C .x ≠1D .x ≠33.下列运算中正确的是( ) A .a 2•a 3=a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 5+a 5=2a 104.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 034米,将这个数用科学记数法表示为( )米 A .0.34×10﹣9B .3.4×10﹣9C .3.4×10﹣10D .3.4×10﹣115.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .66.下列分式中是最简分式的是( )试卷第2页,总6页………○……………○…………订…※※请※※※※装※※订※※线※※内※※………○……………○…………订…A .B .C .D .7.若x 2+kx +9是完全平方式,则k 的值是( ) A .6B .﹣6C .9D .6或﹣68.如果方程有增根,那么m 的值为( )A .1B .2C .3D .无解9. 如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(3a ﹣1,b ),则a 与b 的数量关系为( )A .3a +b =1B .3a +b =﹣1C .3a ﹣b =1D .a =b10.如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为( )A .B .C .2D .4二.填空题(5小题,共15分)11.一个n 边形的内角和是540°,那么n = . 12.若分式的值为零,则x 的值为 .13.如图,△ABC 中,AB =AC ,AB 的垂直平分线交边AB 于D 点,交边AC试卷第3页,总6页…线…………○……线…………○…于E 点,若△ABC 与△EBC 的周长分别是40cm ,24cm ,则AB = cm .14.D 为等腰Rt △ABC 斜边BC 上一点(不与B 、C 重合),DE ⊥BC 于点D ,交直线BA 于点E ,作∠EDF =45°,DF 交AC 于F ,连接EF ,BD =nDC ,当n = 时,△DEF 为等腰直角三角形.15.如图,是我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式(a +b )n (n 为整数)的展开时的系数规律,(按a 的次数由大到小的顺序),此规律称之为“杨辉三角”.请依据此规律,写出(a +b )2018展开式中含a 2017项的系数是 .三.解答题(75分) 16.(10分)计算:(1)(x ﹣y )(x +2y )+(2x ﹣y )(2x +y )(2)(3m ﹣4n )(3m +4n )﹣(2m ﹣n )(2m +n ) 17.(8分)把下面各式分解因式:试卷第4页,总6页(1)4x 2﹣8x +4(2)x 2+2x (x ﹣3y )+(x ﹣3y )2. 18.(9分)先化简代数式,然后选取一个使原式有意义的x 值代入求值.19.(10分)解分式方程: (1)(2).20.(10分)某市火车站北广场将于2016年底投入使用,计划在广场内种植A ,B 两种花木共 6600棵,若A 花木数量是B 花木数量的2倍少600 棵. (1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排13人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40 棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?21.(8分)如图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延长交BC 于点G .连接AG .求证:△ABG ≌试卷第5页,总6页装…………○…………线…………○…____姓名:________班级:_____装…………○…………线…………○…△AFG .22.(10分)已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ; (2)如图2,若AD =AB ,求证:AF =AE +BC .23.(10分)已知等边△ABC 的边长为4cm ,点P ,Q 分别从B ,C 两点同时出发,其中点P 沿BC 向终点C 运动,速度为1cm /s ;试卷第6页,总6页……○…………线※题※※……○…………线点Q 沿CA ,AB 向终点B 运动,速度为2cm /s ,设它们运动的时间为x (s ), (1)如图(1),当x 为何值时,PQ ∥AB ; (2)如图(2),若PQ ⊥AC ,求x ;(3)如图(3),当点Q 在AB 上运动时,PQ 与△ABC 的高AD 交于点O ,OQ 与OP 是否总是相等?请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】结合选项根据轴对称图形的概念求解即可.【解答】解::A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.若分式有意义,则x满足的条件是()A.x=1B.x=3C.x≠1D.x≠3【分析】根据分母不为零分式有意义,可得答案.【解答】解:分式有意义,得x﹣3≠0.解得x≠3,故选:D.【点评】本题考查了分式有意义的条件,利用分母不为零分式有意义是解题关键.3.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5C.a6÷a2=a3D.a5+a5=2a10【分析】根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据同底数幂的除法,可判断C;根据合并同类项,可判断D.1【解答】解:A、同底数幂的乘法底数不变指数相加,故A正确;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、合并同类项系数相加字母部分不变,故D错误;故选:A.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 034米,将这个数用科学记数法表示为()米A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣11【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 034=3.4×10﹣11.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD AB•DE10•DE=15,2解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.6.下列分式中是最简分式的是()A.B.C.D.【分析】判断分式是否是最简式,看分式能否进行因式分解,是否能约分.【解答】解:A、是最简分式,故正确;B、不是最简分式,因为,故错误;C、不是最简分式,因为,故错误;D、不是最简分式,因为,故错误.故选:A.【点评】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.7.若x2+kx+9是完全平方式,则k的值是()A.6B.﹣6C.9D.6或﹣6【分析】本题是完全平方公式的应用,这里首末两项是x和9这两个数的平方,那么中间一项为加上或减去x和9乘积的2倍.【解答】解:∵x2+kx+9是一个完全平方式,∴这两个数是x和3,∴kx=±2×3x=±6x,解得k=±6.故选:D.3【点评】本题考查的是完全平方公式,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积的2倍的符号,有正负两种情况,避免漏解.8.如果方程有增根,那么m的值为()A.1B.2C.3D.无解【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣3),得x=3m.∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3.m x=1,故选:A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.9.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(3a﹣1,b),则a 与b的数量关系为()A.3a+b=1B.3a+b=﹣1C.3a﹣b=1D.a=b【分析】由题意知点P在第二象限角平分线上,即可得3a﹣1=﹣b,从而得出答案.4【解答】解:由题意知,点P在第二象限角平分线上,∴3a﹣1=﹣b,则3a+b=1,故选:A.【点评】本题主要考查作图﹣基本作图,熟练掌握角平分线的尺规作图及第二象限角平分线上点的坐标特点是解题的关键.10.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD 边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为()A.B.C.2D.4【分析】根据折叠的性质,在图②中得到DB=8﹣6=2,∠EAD=45°;在图③中,得到AB=AD﹣DB=6﹣2=4,△ABF为等腰直角三角形,然后根据等腰三角形的性质和矩形的性质得到BF=AB=4,CF=BC﹣BF=6﹣4=2,EC=DB=2,最后根据三角形的面积公式计算即可.【解答】解:∵AB=8,AD=6,纸片折叠,使得AD边落在AB边上,∴DB=8﹣6=2,∠EAD=45°,又∵△AED沿DE向右翻折,AE与BC的交点为F,∴AB=AD﹣DB=6﹣2=4,△ABF为等腰直角三角形,∴BF=AB=4,∴CF=BC﹣BF=6﹣4=2,而EC=DB=2,2×2=2.故选:C.【点评】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.也考查了等腰三角形的性质和矩形的性质.二.填空题(共5小题)11.一个n边形的内角和是540°,那么n=5.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.12.若分式的值为零,则x的值为1.【分析】分式的值为零:分子等于零,分母不等于零.【解答】解:依题意得|x|﹣1=0,且x+1≠0,解得x=1.故答案是:1.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC 于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB=16cm.【分析】首先根据DE是AB的垂直平分线,可得AE=BE;然后根据△ABC 的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,可得△ABC的周长﹣△EBC的周长=AB,据此求出AB的长度是多少即可.【解答】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=AB,∴AB=40﹣24=16(cm).故答案为:16.【点评】(1)此题主要考查了垂直平分线的性质,要熟练掌握,解答此题的关键是要明确:垂直平分线上任意一点,到线段两端点的距离相等.(2)此题还考查了等腰三角形的性质,以及三角形的周长的求法,要熟练掌握.14.D为等腰Rt△ABC斜边BC上一点(不与B、C重合),DE⊥BC于点D,交直线BA于点E,作∠EDF=45°,DF交AC于F,连接EF,BD=nDC,当n=或1时,△DEF为等腰直角三角形.【分析】分两种情况:①当∠DEF=90°时,由题意得出EF∥BC,作FG ⊥BC于G,证出△CFG、△BDE是等腰直角三角形,四边形EFGD是正方形,得出BD=DE=EF=DG=FG=CG,即可得出结果;②当∠EFD=90°时,求出∠DEF=45°,得出E与A重合,D是BC的中点,BD=CD,即可得出结果.【解答】解:分两种情况:①当∠DEF=90°时,如图1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,四边形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD CD,∴n;②当∠EFD=90°时,如图2所示:∵∠EDF=45°,∴∠DEF=45°,此时E与A重合,D是BC的中点,∴BD=CD,∴n=1.故答案为:或1.【点评】本题考查了等腰直角三角形的判定与性质、平行线的判定、正方形的判定与性质;熟练掌握等腰直角三角形的性质,分两种情况讨论是解决问题的关键.15.如图,是我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式(a+b)n(n为整数)的展开时的系数规律,(按a 的次数由大到小的顺序),此规律称之为“杨辉三角”.请依据此规律,写出(a+b)2018展开式中含a2017项的系数是2018.【分析】根据表格中的系数找出规律确定出所求即可.【解答】解:依据此规律,写出(a+b)2018展开式中含a2017项的系数是2017+1=2018,故答案为:2018【点评】此题考查了完全平方公式,以及规律型:数字的变化类,熟练掌握完全平方公式是解本题的关键.三.解答题(共8小题)16.计算:(1)(x﹣y)(x+2y)+(2x﹣y)(2x+y)(2)(3m﹣4n)(3m+4n)﹣(2m﹣n)(2m+n)【分析】(1)利用整式的混合运算的顺序求解即可,(2)利用平方差公式及混合运算的顺序求解即可.【解答】解:(1)(x﹣y)(x+2y)+(2x﹣y)(2x+y)=x2+2xy﹣xy﹣2y2+4x2﹣y2=5x2+xy﹣3y2.(2)(3m﹣4n)(3m+4n)﹣(2m﹣n)(2m+n)=9m2﹣16n2﹣(4m2﹣n2)=9m2﹣16n2﹣4m2+n2=5m2﹣15n2.【点评】本题主要考查了整式的混合运算,解题的关键是熟记整式的混合运算的顺序.17.把下面各式分解因式:(1)4x2﹣8x+4(2)x2+2x(x﹣3y)+(x﹣3y)2.【分析】(1)首先提取公因式4,进而利用完全平方公式分解因式得出答案;(2)直接利用完全平方公式分解因式进而得出答案.【解答】解:(1)4x2﹣8x+4=4(x2﹣2x+1)=4(x﹣1)2;(2)x2+2x(x﹣3y)+(x﹣3y)2=(x+x﹣3y)2=(2x﹣3y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.18.先化简代数式:,然后选取一个使原式有意义的x 的值代入求值.【分析】先算小括号里的,小括号里面的先对第二项的分母分解因式,然后找出两项分母的最简公因式(x﹣1)(x+1),对小括号里的第一项的分子分母都乘以x﹣1,第二项不变,然后根据同分母相加减的法则,分母不变.只把分子相加减,再把除法统一成乘法,约分化为最简.注意化简后,代入的数不能使分母的值为0.【解答】解:(2分)(4分)=x2+1;(15分)当x=0时,原式的值为1.(6分)说明:只要x≠±1,且代入求值正确,均可记满分(6分).【点评】分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.注意化简后,代入的数不能使分母的值为0.19.解分式方程:(1)(2).【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x=﹣3+x﹣2,移项合并得:3x=﹣5,解得:x,经检验x是分式方程的解;(2)去分母得:x(x﹣1)=x2﹣1﹣2x+1,整理得:x=0,经检验x=0是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.火车站北广场将于2016年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排25人同时种植这两种花木,每人每天能种植A花木70棵或B花木60棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【分析】(1)首先设A种花木的数量为x棵,B种花木的数量为y棵,根据题意可得等量关系:①A、B两种花木共6600棵;②A花木数量=B花木数量的2倍﹣600棵,根据等量关系列出方程,再解即可得A、B两种花木的数量;(2)设应安排a人种植A花木,则安排(25﹣a)人种植B花木,由题意可等量关系:种植A花木所用时间=种植B花木所用时间,根据等量关系列出方程,再解即可判断.【解答】解:(1)设A种花木的数量为x棵,B种花木的数量为y棵,由题意得:,解得:,答:A种花木的数量为4200棵,B种花木的数量为2400棵;(2)设安排a人种植A花木,由题意得:,解得:a=15,经检验:a=15是原分式方程的解,25﹣a=25﹣15=10,答:应安排15人种植A花木和10人种植B花木,才能确保同时完成各自的任务.【点评】此题主要考查了二元一次方程组和分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.21.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G.连接AG.求证:△ABG≌△AFG.【分析】根据正方形的性质得出∠B=∠D=90°,AD=AB,根据折叠的性质得出AD=AF,∠AFG=∠D=90°,求出∠AFG=90°=∠B,AB=AF,根据HL推出全等即可.【解答】证明:∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,由折叠的性质可知:AD=AF,∠AFG=∠D=90°,∴∠AFG=90°=∠B,AB=AF,在Rt△ABG和Rt△AFG中∴Rt△ABG≌Rt△AFG(HL),即△ABG≌△AFG.【点评】本题考查了正方形的性质,全等三角形的判定的应用,能求出证三角形全等的条件是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,直角三角形全等还有HL定理.22.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD;(2)如图2,若AD=AB,求证:AF=AE+BC.【分析】(1)由∠BAC=∠EDF=60°,推出△ABC、△DEF为等边三角形,于是得到∠BCE+∠ACE=∠DCA+∠ECA=60°,推出△BCE≌△ACD (SAS),根据全等三角形的性质得到AD=BE,即可得到结论;(2)在F A上截取FM=AE,连接DM,推出△AED≌△MFD(SAS),根据全等三角形的性质得到DA=DM=AB=AC,∠ADE=∠MDF,证得∠ADM=∠EDF=∠BAC,推出△ABC≌△DAM(SAS),根据全等三角形的性质得到AM=BC,即可得到结论.【解答】证明:(1)∵∠BAC=∠EDF=60°,∴△ABC、△DEF为等边三角形,∴∠BCE+∠ACE=∠DCA+∠ECA=60°,在△BCE和△ACD中∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF;(2)在F A上截取FM=AE,连接DM,∵∠BAC=∠EDF,∴∠AED=∠MFD,在△AED和△MFD中,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF=∠BAC,在△ABC和△DAM中,,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,等边三角形的性质,正确的作出辅助线是解题的关键.23.已知等边△ABC的边长为4cm,点P,Q分别从B,C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s),(1)如图(1),当x为何值时,PQ∥AB;(2)如图(2),若PQ⊥AC,求x;(3)如图(3),当点Q在AB上运动时,PQ与△ABC的高AD交于点O,OQ与OP是否总是相等?请说明理由.【分析】(1)首先得出△PQC为等边三角形,进而表示出PC=4﹣x,CQ=2x,由4﹣x=2x,求出答案;(2)根据题意得出CQ PC,即2x(4﹣x),求出即可;(3)根据题意得出QH=DP,进而判断出△OQH≌△OPD(AAS),即可得出答案.【解答】解:(1)∵∠C=60°,∴当PC=CQ时,△PQC为等边三角形,于是∠QPC=60°=∠B,从而PQ∥AB,∵PC=4﹣x,CQ=2x,由4﹣x=2x,解得:x,∴当x时,PQ∥AB;(2)∵PQ⊥AC,∠C=60°,∴∠QPC=30°,∴CQ PC,即2x(4﹣x),解得:x;(3)OQ=PO,理由如下:作QH⊥AD于H,如图(3),∵AD⊥BC,∴∠QAH=30°,BD BC=2,∴QH AQ(2x﹣4)=x﹣2,∵DP=BP﹣BD=x﹣2,∴QH=DP,在△OQH和△OPD中,∠∠,∴△OQH≌△OPD(AAS),∴OQ=OP.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.15。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档