湖北省宜昌市高中物理专题十二动量和动量守恒定律复习题无答案新人教版2018011127
宜昌市《动量守恒定律》单元测试题含答案

宜昌市《动量守恒定律》单元测试题含答案一、动量守恒定律选择题1.如图所示,电阻不计的光滑金属导轨MN、PQ水平放置,间距为d,两侧接有电阻R1、R2,阻值均为 R, O1O2右侧有磁感应强度大小为 B、方向垂直纸面向里的匀强磁场。
质量为 m、长度也为 d 的金属杆置于 O1O2 左侧,在水平向右、大小为 F 的恒定拉力作用下由静止开始运动,经时间 t 到达 O1O2时撤去恒力 F,金属杆在到达 NQ 之前减速为零。
已知金属杆电阻也为 R,与导轨始终保持垂直且接触良好,下列说法正确的是()A.杆刚进入磁场时速度大小为Ft mB.杆刚进入磁场时电阻R1 两端的电势差大小为BdFt mC.整个过程中,流过电阻R1 的电荷量为Ft BdD.整个过程中,电阻R1上产生的焦耳热为22 12 F tm2.如图所示,小车的上面是由中间凸起的两个对称曲面组成,整个小车的质量为m,原来静止在光滑的水平面上。
今有一个可以看做质点的小球质量也为m,以水平速度v从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。
关于这个过程,下列说法正确的是()A.小球滑离小车时,小车又回到了原来的位置B.小球滑到小车最高点时,小球和小车的动量不相等C.小球和小车相互作用的过程中,小车和小球系统动量始终守恒D.车上曲面的竖直高度若高于24vg,则小球一定从小车左端滑下3.如图,质量为m的小木块从高为h的质量为M的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 4.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 5.质量为m 的箱子静止在光滑水平面上,箱子内侧的两壁间距为l ,另一质量也为m 且可视为质点的物体从箱子中央以v 0=2gl 的速度开始运动(g 为当地重力加速度),如图所示。
高中物理-动量守恒定律测试题

高中物理-动量守恒定律测试题一、动量守恒定律 选择题1.如图所示,光滑水平面上质量为m 的小球A 和质量为13m 的小球B ,通过轻质弹簧相连并处于静止状态,弹簧处于自由长度;质量为m 的小球C 以速度0V 沿AB 连线向右匀速运动.并与小球A 发生弹性正碰.在小球B 的右侧固定一块弹性挡板(图中未画出).当小球B 的速度达到最大时恰与挡板发生正碰,后立刻将挡板搬走.不计所有碰撞过程中的机械能损失.弹簧始终处于弹性限度内,小球B 与固定挡板的碰撞时间极短,碰后小球B 的速度大小不变,但方向相反.则B 与挡板碰后弹簧弹性勢能的最大值m E 为( )A .20mVB .2012mVC .2016mVD .20116mV 2.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m3.如图所示,质量为m 的小球从距离地面高度为H 的A 点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h 的B 点时速度减为零不计空气阻力,重力加速度为g 。
则关于小球下落过程中,说法正确的是A.整个下落过程中,小球的机械能减少了mgHB.整个下落过程中,小球克服阻力做的功为mg(H+h)C.在陷入泥潭过程中,小球所受阻力的冲量大于mD.在陷入泥潭过程中,小球动量的改变量的大小等于m4.某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a、b、c分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知()A.碰前滑块Ⅰ与滑块Ⅱ速度大小之比为5∶2B.碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C.碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D.滑块Ⅰ的质量是滑块Ⅱ的质量的1 65.如图所示,两个小球A、B在光滑水平地面上相向运动,它们的质量分别为m A=4kg,m B=2kg,速度分别是v A=3m/s(设为正方向),v B=-3m/s.则它们发生正碰后,速度的可能值分别为()A.v A′=1 m/s,v B′=1 m/sB.v A′=4 m/s,v B′=-5 m/sC.v A′=2 m/s,v B′=-1 m/sD.v A′=-1 m/s,v B′=-5 m/s6.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4kg·m/s,则()A .左方是A 球,碰撞后A 、B 两球速度大小之比为2:5B .左方是A 球,碰撞后A 、B 两球速度大小之比为1:10C .右方是A 球,碰撞后A 、B 两球速度大小之比为2:5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1:107.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始下落,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B .小球在槽内运动的B 至C 过程中,小球、半圆槽和物块组成的系统水平方向动量守恒 C .小球离开C 点以后,将做竖直上抛运动D .小球从A 点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒8.如图所示,离地H 高处有一个质量为m 、带电量为q +的物体处于电场强度随时间变化规律为0E E kt =-(0E 、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知0qE mg μ<.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑4H 后脱离墙面,此时速度大小为gH ,物体最终落在地面上.则下列关于物体的运动说法正确的是A .当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动B .摩擦力对物体产生的冲量大小为202E qk μC .摩擦力所做的功18W mgH =D .物体与墙壁脱离的时刻为gH t g= 9.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是A .导体棒ab 刚好匀速运动时的速度22FR vB L =B .通过电阻的电荷量2Ft q BL= C .导体棒的位移22244FtRB L mFR x B L-= D .电阻放出的焦耳热2222244232tRF B L mF R Q B L-= 10.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。
人教版高中物理-动量守恒定律专题练习

《动量守恒定律》练习题 1、两球A 、B 在光滑水平面上沿同一直线,同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s 。
当A 追上B 并发生碰撞后,两球A 、B 速度的可能值是 ( )A .v A ′=5 m/s , vB ′=2.5 m/s B .v A ′=2 m/s , v B ′=4 m/sC .v A ′=-4 m/s ,v B ′=7 m/sD .v A ′=7 m/s , v B ′=1.5 m/s2、如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视为质点,质量 相 等。
Q 与轻弹簧相连,设Q 静止,P 以某一速度向Q 运动并以弹簧发生碰撞,在整个过程中,弹簧的最大弹性势能等于 ( )A 、P 的初动能B 、 P 的初动能的21 C 、 P 的初动能的31 D 、 P 的初动能的413.(多选)质量为kg 1的小球以4m /s 的速度与质量为2kg 的静止小球正碰,碰后的速度分别为v 1’和v 2’,则下面哪些4值是可能正确的 ( AB )A .s m v v /3421='=' B .s m v s m v /5.2,/121='-=' C .s m v s m v /3,/121='=' D .s m v s m v /5.0,/321='=' 4、在静止的水面上有一条长L 的船静止。
船头站立一个人。
在不计阻力的情况下,若人的质量为m ,船的质量为M 。
人从船头走向船尾的过程中,则该船A .保持静止B .向相反的方向移动m M m L +C .向相反的方向移动 m M LD .向相反的方向移动L5、如图所示,甲、乙两车的质量均为M 静置在光滑的水平面上,两车相距为L 。
乙车上站立着一个质量为m 的人,他通过一条轻绳拉甲车,甲乙两车最后相接触,以下说法正确的是A .甲、乙两车移动距离的比为M m M +B .甲、乙两车运动中速度的比为M M m +C .甲车移动的距离为M m M m L ++2D .乙车移动的距离为M M m L 2+ 6.如图所示,半径为R ,质量为M ,内表面光滑的半球物体放在光滑的水平面上,左端紧靠着墙壁,一个质量为m 的物块从半球形物体的顶端的a 点无初速释放, b 点为半球的最低点,c 点为半球另一侧与a 同高的顶点,关于物块M 和m 的运动,下列说法正确的有A .m 从a 点运动到b 点的过程中,m 与M 系统的机械能守恒、动量守恒B .m 从a 点运动到b 点的过程中,m 的机械能守恒C .m 释放后运动到b 点右侧,m 能到达最高点cD .当m 首次从右向左到达最低点b 时,M 的速度达到最大7.如图所示,A 、B 两物体的质量比m A ∶m B =3∶2,它们原来静止在平板车C 上,A 、B 间有一根被压缩了的弹簧,A 、B 与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有A .A 、B 系统动量守恒B .A 、B 、C 系统动量守恒C .小车向左运动D .小车向右运动8、如图所示,用轻质弹簧连着的A 、B 两物体放在光滑的水平面上,先将A 向左推使弹簧处于压缩状态,而B 紧贴在竖直墙壁上,从某时刻起对A 撤去推力,下列说法正确的是A 、在弹簧恢复自然长时B 物体开始离开竖直墙壁B 、从撤去力到弹簧恢复自然长过程中两物体的动量之和保持不变C 、从撤去力后,A 、B 及弹簧组成的系统机械能总量保持不变D 、当弹簧伸长到最长时,A 、B 速度相等9.如图所示,一根轻弹簧下端固定,竖立在水平面上.其正上方A 位置有一只小球.小球从静止开始下落,在B 位置接触弹簧的上端,在C 位置小球所受弹力大小等于重力,在D 位置小球速度减小到零,小球下降阶段 下列说法中正确的是( ) A.在B 位置小球动能最大 B.在C 位置小球动能最大 C.从A →C 位置小球重力势能的减少大于小球动能的增加D.从A →D 位置小球重力势能的减少等于弹簧弹性势能的增加10.如图所示,光滑水平面上停着一辆小车,小车的固定支架左端用不计质量的细线系一个小铁球.开始将小铁球提起到图示位置,然后无初速释放.在小铁球来回摆动的过程中,下列说法中正确的是( )A.小车和小球系统动量守恒B.小球向右摆动过程小车一直向左加速运动C.小球摆到右方最高点时刻,由于惯性,小车仍在向左运动D.小球摆到最低点时,小车的速度最大11.如图甲所示,一轻质弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使A 瞬时获得水平向右的速度3m/s ,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( )A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都是处于压缩状态 A B C B AD CA B C B.从t 3到t 4时刻弹簧由压缩状态恢复到原长C.两物体的质量之比为m 1:m 2=1:2D.在t 2时刻A 和B 的动能之比为E k1: E k2=1:812如图所示将一光滑的半圆槽置于光滑水平面上,槽的左侧有一固定在水平面上的物块。
高中物理《动量守恒定律及其应用》专题复习题(可编文档+参考答案)

高中物理《动量守恒定律及其应用》专题练习题一.单项选择题1.两个小球A、B,质量分别为M=1.5kg和m=0.5k g,两小球在光滑水平直线轨道上碰撞.两个小球碰撞前后的位移—时间图象如图所示,由图象可知( )A.两小球碰撞前后动量不守恒B.两小球碰撞前后B球的速度方向相同C.两小球碰撞前后动能减小了D.两小球碰撞前后动能不变2.一炮弹以一定倾角斜向上发射达到最高点时,爆炸成两块,其中一块沿原方向运动,则另一块()A、一定沿原来相反的方向运动B、一定沿原来相同的方向运动C、可能做自由落体运动D、可能做竖直上抛运动3.如图所示,用细线挂一质量为M的木块,有一质量为m的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为v0和v(设子弹穿过木块的时间和空气阻力不计),木块的速度大小为()D.两手同时放开,两车总动量守恒;两手放开有先后,两车总动量一定不为零4.(江苏南京一模)甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p甲=5 kg· m/s,p乙=7 kg· m/s,甲追上乙并发生碰撞,碰撞后乙球的动量变为p乙′=10 kg· m/s.则两球质量m甲与m乙的关系可能是( )A.m甲=m乙B.m乙=2m甲C.m乙=4m甲D.m乙=6m甲5.两个小球在光滑水平面上沿同一直线,同一方向运动,B球在前,A球在后,M A=1kg, M B=2kg, v A=6m/s, v B=2m/s, 当A球与B球发生碰撞后,A、B两球速度可能为A. v A=5m/s, v B=2.5m/sB. v A=2m/s, v B=4m/sC . v A= -4m/s, v B=7m/s D. v A=7m/s, v B=1.5m/s6.如图,质量为M的小车静止在光滑的水平面上,小车上AB部分是半径为R的四分之一光滑圆弧,BC部分是粗糙的水平面.今把质量为m的小物体从A点由静止释放,m与BC部分间的动摩擦因数为μ,最终小物体与小车相对静止于B、C之间的D点,则B、D间的距离x随各量变化的情况是( )A.其他量不变,R 越大x 越大B.其他量不变,μ越大x 越大C.其他量不变,m 越大x 越大D.其他量不变,M 越大x 越大7.一个质量为m 的弹性小球,与水平钢板成450角打在钢板上,刚接触钢板时的速度为υ,然后又以同样大的速率和方向反弹上去,在与钢板碰撞过程中,小球动量的变化量是( )A .2m υ,方向竖直向上B .0C . 2 m υ,方向竖直向上D . 2 m υ,方向水平向右8.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法不.正确..的是( ) A .小球第一次离开槽时,将向右上方做斜抛运动 B .小球第一次离开槽时,将做竖直上抛运动 C .小球离开槽后,仍能落回槽内,而槽将做往复运动 D .槽一直在向右运动9.如图所示,将质量为2m 的长木板静止地放在光滑水平面上,一质量为m 的小铅块(可视为质点)以水平初速v 0由木板A 端滑上木板,铅块滑至木板的B 端时恰好与木板相对静止.已知铅块在滑动过程中所受摩擦力始终不变.若将木板分成长度与质量均相等的两段后,紧挨着静止放在此水平面上,让小铅块仍以相同的初速v 0由左端滑上木板,则小铅块将 ( )A .滑过B 端后飞离木板B .仍能滑到B 端与木板保持相对静止C .在滑到B 端前就与木板保持相对静止D .以上三答案均有可能 二、双选题1.放在光滑水平面上的A 、B 两小车中间夹了一压缩轻质弹簧,用两手分别控制小车处于静止状态,下面说法中正确的是 ( ) A .两手同时放开后,两车的总动量为零 B .先放开右手,后放开左手,两车的总动量向右 C .先放开左手,后放开右手,两车的总动量向右2.将物体P 从置于光滑水平面上的斜面体Q 的顶端以一定的初速度沿斜面往下滑,如图所示.在下滑过程中,P 的速度越来越小,最后相对斜面静止,那么由P 和Q 组成的系统( )A. 动量守恒B. 水平方向动量守恒C. 最后P 和Q以一定的速度共同向左运动D. 最后P 和Q以一定的速度共同向右运动3.长木板A 放在光滑的水平面上,质量为m=2kg 的另一物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图所示,则下列说法正确的是( )A.木板获得的动能为2JB.系统损失的机械能为2JC.木板A 的最小长度为1mD. A 、B 间的动摩擦因数为0.24.如图所示,水平传送带AB 足够长,质量为M=1 kg 的木块随传送带一起以v 1=2m/s 的速度向左匀速运动(传送带的速度恒定),木块与传送带的动摩擦因数μ=0.5,当木块运动到最左端A 点时,一颗质量为m=20g 的子弹,以v 0=300m/s 的水平向右的速度,正对射入木块并穿出,穿出速度v=50m/s,设子弹射穿木块的时间极短,(g 取10m/s 2)则( )A.子弹射穿木块后,木块一直做减速运动B.木块遭射击后远离A 的最大距离为0.9 mC.木块遭射击后到相对传送带静止所经历的时间为1.0 sD.木块遭射击后到相对传送带静止所经历的时间为0.6 s实验题(本题共4小题,共20分)13.某同学用如图所示装置,通过半径相同的A 、B 两球的碰撞来验证动量守恒定律. (1)实验中必须要求的条件是( )A .斜槽轨道尽量光滑以减少误差B .斜槽轨道末端的切线必须水平C .入射球和被碰球的质量必须相等,且大小相同D .入射球每次必须从轨道的同一位置由静止滚下 (2)在以下选项中,哪些是本次实验必须进行的测量? A.水平槽上未放B 球时,测量A 球落点位置到O 点的距离 B.A 球与B 球碰撞后,测量A 球落点位置到O 点的距离C.测量A 球或B 球的直径D.测量A 球和B 球的质量(或两球质量之比)E.测量G 点相对于水平槽面的高度 答: (填选项号).(3)某次实验中得出的落点情况如下图所示,假设碰撞过程中动量守恒,则入射小球质量m1和被碰小球质量m2之比为____________.14.某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前端粘有橡皮泥,推动A使它做匀速运动,然后与原来静止在前方的小车B相碰并粘合成一体,继续做匀速运动,他设计的装置如图1所示,在小车A后连着纸带,长木板下垫着小木片以平衡摩擦力.(1)若已得到打点纸带,并将测得各记数点间距标在下面(如图2),A为运动起始的第一点,则应选_______ 段来计算A车的碰前速度,应选___段来计算A车和B车碰后的共同速度.(以上两空填“AB”或“BC”,或“CD”或“DE”)(2)已测得小车A的质量m1=0.40kg, 小车B的质量m2=0.20kg,由以上测量结果可得,碰前总动量= kg·m/s;碰后总动量= kg·m/s.三.计算题(本题共5小题,共40分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.)1.如图所示,abc是光滑的轨道,其中ab是水平的,bc为与ab相切的、位于竖直平面内的半圆,半径R=0.30m,质量m=0.20kg的小球A静止在轨道上,另一质量M=0.60kg,速度v0=5.5m/s的小球B与小球A正碰。
动量定理及动量守恒定律专题复习(附参考答案)

动量定理及动量守恒定律专题复习一、知识梳理1、深刻理解动量的概念(1)定义:物体的质量和速度的乘积叫做动量:p =mv(2)动量是描述物体运动状态的一个状态量,它与时刻相对应。
(3)动量是矢量,它的方向和速度的方向相同。
(4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。
题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。
(5)动量的变化:0p p p t -=∆.由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。
A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。
B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。
\(6)动量与动能的关系:k mE P 2=,注意动量是矢量,动能是标量,动量改变,动能不一定改变,但动能改变动量是一定要变的。
2、深刻理解冲量的概念(1)定义:力和力的作用时间的乘积叫做冲量:I =Ft(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
(3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
(4)高中阶段只要求会用I=Ft 计算恒力的冲量。
对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。
(5)要注意的是:冲量和功不同。
恒力在一段时间内可能不作功,但一定有冲量。
特别是力作用在静止的物体上也有冲量。
3、深刻理解动量定理(1).动量定理:物体所受合外力的冲量等于物体的动量变化。
既I =Δp(2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
动量守恒定律练习题含答案及解析.doc

动量守恒定律练习题含答案及解析一、高考物理精讲专题动量守恒定律1. 水平放置长为 L=4.5m 的传送带顺时针转动,速度为v=3m/s ,质量为 m 2=3kg 的小球被长为 l 1m 的轻质细线悬挂在 O 点,球的左边缘恰于传送带右端 B 对齐;质量为 m 1=1kg的物块自传送带上的左端A 点以初速度 v 0=5m/s 的速度水平向右运动,运动至B 点与球 m 2发生碰撞,在极短的时间内以碰撞前速率的1反弹,小球向右摆动一个小角度即被取走。
2已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度 g 10m/s 2。
求:( 1)碰撞后瞬间,小球受到的拉力是多大?( 2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少?【答案】( 1) 42N ( 2) 13.5J【解析】【详解】解:设滑块 m1与小球碰撞前一直做匀减速运动,根据动能定理:m gL = 1mv 2 1 m v 2121 121 0解之可得: v 1 =4m/s因为 v 1 v ,说明假设合理m 1v 1 = 1 2滑块与小球碰撞,由动量守恒定律: 2m 1v 1+m 2v 2解之得: v 2 =2m/s碰后,对小球,根据牛顿第二定律:F m 2 gm 2 v 22l小球受到的拉力:F 42N(2)设滑块与小球碰撞前的运动时间为t 1 ,则 L1v 0 v 1 t 12解之得: t 1 1s在这过程中,传送带运行距离为: S 1 vt 1 3m 滑块与传送带的相对路程为:X 1L X 1 1.5m设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为 t 2则根据动量定理:m 1 gt 2m 11v 12解之得: t2 2s滑块向左运动最大位移: x m 1 1v1 t 2=2m2 2因为 x m L ,说明假设成立,即滑块最终从传送带的右端离开传送带1再考虑到滑块与小球碰后的速度2 v1< v ,说明滑块与小球碰后在传送带上的总时间为2t2在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程X 22vt212m因此,整个过程中,因摩擦而产生的内能是Q m1 g x1 x2=13.5J2.如图:竖直面内固定的绝缘轨道abc R=3 m的光滑圆弧段bc与长l=1.5 m的粗,由半径糙水平段 ab 在 b 点相切而构成, O 点是圆弧段的圆心,Oc 与 Ob 的夹角θ=37°;过 f 点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C 的匀强电场, Ocb 的外侧有一长度足够长、宽度 d =1.6 m 的矩形区域 efgh, ef 与 Oc 交于 c 点, ecf 与水平向右的方向所成的夹角为β(53 °≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3× 10-3 kg、电荷量 q=3× l0-3 C 的带正电小物体Q 静止在圆弧轨道上 b 点,质量 m1=1.5× 10-3 kg 的不带电小物体 P 从轨道右端 a 以 v0=8 m/s 的水平速度向左运动,P、 Q 碰撞时间极短,碰后 P 以 1 m/s 的速度水平向右弹回.已知P 与 ab 间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37° =0.6, cos37° =0.8,重力加速度大小g=10m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小 B1;(3)当区域 efgh 内所加磁场的磁感应强度为B2 =2T 时,要让物体Q 从 gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】 (1) F N 4.6 10 2 N (2) B1 1.25T(3) t 127s ,1900和21430 360【解析】【详解】解: (1)设 P 碰撞前后的速度分别为 v 1 和 v 1 , Q 碰后的速度为 v 2 从 a 到 b ,对,由动能定理得: 1212P- m 1gl2 m 1v 12m 1v解得: v 1 7m/s碰撞过程中,对 P , Q 系统:由动量守恒定律: m 1v 1 m 1v 1 m 2v 2取向左为正方向,由题意 v 11m/s,解得: v 24m/sb 点:对 Q ,由牛顿第二定律得: F Nm 2 g m 2 v 2 2R解得 : F N 4.6 10 2 N(2)设 Q 在 c 点的速度为 v c ,在 b 到 c 点,由机械能守恒定律:m 2 gR(1 cos )1m 2v c21m 2v 2 22 2解得: v c 2m/s进入磁场后: Q 所受电场力 F qE 3 10 2Nm 2 g ,Q在磁场做匀速率圆周运动由牛顿第二定律得:qv c B 1m 2v c2r 1Q 刚好不从 gh 边穿出磁场,由几何关系: r 1 d 1.6m解得: B 11.25T(3)当所加磁场 B 22T ,r2m 2v c1mqB 2要让 Q 从 gh 边穿出磁场且在磁场中运动的时间最长,则 Q 在磁场中运动轨迹对应的圆心角最大,则当 gh 边或 ef 边与圆轨迹相切,轨迹如图所示:d r2 设最大圆心角为,由几何关系得:cos(180)r2 解得:1272 m2运动周期: TqB2则 Q 在磁场中运动的最长时间:t T 127?2 m2 127 s360 360 qB2 360此时对应的角: 1 90 和2 1433.如图甲所示,物块A、 B 的质量分别是m A B=4.0kg 和 m =3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所示.求:①物块 C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1) 2kg( 2) 9J【解析】试题分析:①由图知, C 与 A 碰前速度为 v1= 9 m/s,碰后速度为v2= 3 m/s , C 与 A 碰撞过程动量守恒. m c 1 AC2v =( m + m ) v即 m c= 2 kg② 12 s 时 B 离开墙壁,之后A、 B、C 及弹簧组成的系统动量和机械能守恒,且当A、 C 与B的速度相等时,弹簧弹性势能最大(m A+ m C) v3=( m A+ m B+ m C) v4得E p= 9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.如图所示,质量分别为m1和m2的两个小球在光滑水平面上分别以速度v1、 v2同向运动,并发生对心碰撞,碰后 m2被右侧墙壁原速弹回,又与 m1碰撞,再一次碰撞后两球都静止.求第一次碰后 m1球速度的大小 .【答案】 【解析】设两个小球第一次碰后 m 1 和 m 2 速度的大小分别为和 ,由动量守恒定律得:( 4 分)两个小球再一次碰撞, (4 分)得:( 4 分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5. 如图所示,一辆质量M=3 kg 的小车 A 静止在光滑的水平面上,小车上有一质量 m=l kg的光滑小球 B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为 L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
高中物理动量守恒定律试题(有答案和解析)
高中物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离; (3)当物块a 相对小车静止时在小车上的位置到O 点的距离. 【答案】(1)1m/s (2) (3) x =0.125m【解析】试题分析:(1)对物块a ,由动能定理得:代入数据解得a 与b 碰前速度:;a 、b 碰撞过程系统动量守恒,以a 的初速度方向为正方向, 由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a 以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B 端距挡板的距离:;(3)由能量守恒得:,解得滑块a 与车相对静止时与O 点距离:;考点:动量守恒定律、动能定理。
动量及动量守恒定律习题大全(含解析答案)
动量守恒定律习题课一、运用动量守恒定律的解题步骤1.明确研究对象,一般是两个或两个以上物体组成的系统; 2.分析系统相互作用时的受力情况,判定系统动量是否守恒; 3.选定正方向,确定相互作用前后两状态系统的动量; 4.在同一地面参考系中建立动量守恒方程,并求解.二、碰撞1.弹性碰撞特点:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则有动量守恒:221101v m v m v m +=碰撞前后动能不变:222212111210121v mv m v m += 所以012121v v m m m m +-= 022211v v m m m +=(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论]①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <<m 2时,v 1≈-v 0,v 2≈O (速度反向) ③当m l >m 2时,v 1>0,v 2>0(同向运动) ④当m l <m 2时,v 1<O ,v 2>0(反向运动)⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动)、 2.非弹性碰撞特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能的损失:)()(22221211212222121121'+'-+=∆v m v m v m v m E3.完全非弹性碰撞特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v动能损失:221212222121121)()(v m m v m v mE k +-+=∆ 【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是A.m 甲=m 乙B.m 乙=2m 甲C.m 乙=4m 甲D.m 乙=6m 甲 三、平均动量守恒问题——人船模型:1.特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).对于这类问题,如果我们应用“人船模型”也会使问题迅速得到解决,现具体分析如下:【模型】如图所示,长为L 、质量为M 的小船停在静水中,一个质量m 的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少? 〖分析〗lv 0 v S四、“子弹打木块”模型此模型包括:“子弹打击木块未击穿”和“子弹打击木块击穿”两种情况,它们有一个共同的特点是:初态时相互作用的物体有一个是静止的(木块),另一个是运动的(子弹) 1.“击穿”类其特点是:在某一方向动量守恒,子弹有初动量,木块有或无初动量,击穿时间很短,击穿后二者分别以某一速度度运动【模型1】质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速度v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
高中物理动量守恒定律题20套(带答案)及解析
高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A 、B 、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A 、B 在前,C 在后.此后C 向左加速,A 、B 的加速度沿杆向右,直到弹簧恢复原长,故A 、B 继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A 、B 的速度,C 的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数 ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A、B、C运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.4.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。
动量-动量守恒定律专题练习
动量-动量守恒定律专题练习(含答案)(共5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。
4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。
以下说法正确的是A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。
A 、'0()Mv M m v mv =-+B 、'00()()Mv M m v m v v =-++C 、''0()()Mv M m v m v v =-++D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南滑行了一段距离后停止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十二、动量和动量守恒定律
1.放在水平面上的物体,用水平推力F 推它t 秒,物体始终不动,则在这t 秒内,关于合力的冲量与摩擦力冲量的大小,下列说法正确的是( )
A .合力的冲量及摩擦力的冲量均为0
B .合力的冲量及摩擦力的冲量均为Ft
C .合力的冲量为0,摩擦力的冲量为Ft
D .合力的冲量为Ft ,摩擦力的冲量为0
2.物体在恒定的合力作用下做直线运动,在时间t 1内动能由零增大到E 1,在时间t 2内动能由E 1增加到2E 1,设合力在时间t 1内做的功为W 1,冲量为I 1,在时间t 2内做的功是W 2,冲量为I 2,则( )
A .I 1<I 2,W 1=W 2
B .I 1>I 2,W 1=W 2
C .I 1>I 2,W 1<W 2
D .I 1=I 2,W 1<W 2
3.质量是60 kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来。
已
知安全带的缓冲时间是1.2 s ,安全带长5 m ,取g =10 m/s 2,则安全带所受的平均冲力的
大小为( )
A .500 N
B .600 N
C .1 100 N
D .100 N
4.如图所示,甲木块的质量为m 1,以v 的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m 2的乙木块,乙上连有一轻质弹簧。
甲木块与弹簧接触后( )
A .甲木块的动量守恒
B .乙木块的动量守恒
C .甲、乙两木块所组成系统的动量守恒
D .甲、乙两木块所组成系统的动能守恒
5.如图所示,质量为m 的人立于平板车上,人与车的总质量为M ,人与车以速度v 1在光滑水平面上向东运动。
当此人相对于车以速度v 2竖直跳起时,车向东的速度大小为( ) A.Mv 1-Mv 2
M -m B.Mv 1M -m
C.Mv 1+Mv 2M -m
D .v 1 6.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A 。
给A 和B 以大小均为4.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,A 始终没有滑离B 板。
在小木块A 做加速运动的时间内,木板速度大小可能是( )
A .1.8 m/s
B .2.4 m/s
C .2.8 m/s
D .3.0 m/s
7.在光滑水平桌面上停放着两辆玩具小车A 、B ,其质量之比m A ∶m B =1∶2,两车用一根轻质细线缚住,中间夹着被压缩的轻弹簧,当烧断细线,轻弹簧将两车弹开,A 车与B 车( )
A .动量大小之比为1∶2
B .动量大小之比为1∶1
C .速度大小之比为1∶2
D .速度大小之比为1∶1
8. “爆竹声中一岁除,春风送暖入屠苏”,爆竹声响是辞旧迎新的标志,是喜庆心情的流露。
有一个质量为3m 的爆竹斜向上抛出,到达最高点时速度大小为v 0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m ,速度大小为v ,方向水平向东;则另一块的速度为( )
A .3v 0-v
B .2v 0-3v
C .3v 0-2v
D .2v 0+v
9.如图所示,光滑圆形管道固定在竖直面内,直径略小于管道内径可视为质点的小球A 、B 质量分别为m A 、m B ,A 球从管道最高处由静止开始沿管道下滑,与静止于管道最低处的B 球
相碰,碰后A 、B 球均能刚好到达与管道圆心O 等高处,关于两小球质量比值m A m B
的说法正确的是( )
A.m A m B =2+1
B.m A m B =2-1
C.m A m B =1
D.m A m B = 2
10.牛顿的《自然哲学的数学原理》中记载,A、B两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总量约为15∶16,分离速度是指碰撞后B对A的速度,接近速度是指碰撞前A对B的速度。
若上述过程是质量为2m的玻璃球A以速度v0碰撞质量为m 的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小。
11.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A和B分别静止在圆弧轨道的最高点和最低点。
现将A无初速释放,A与B碰撞后结合为一个整体,并沿桌面滑动。
已知圆弧轨道光滑,半径R=0.2 m;A和B的质量相等;A和B整体与桌面之间的动摩擦因数μ=0.2。
取重力加速度g=10 m/s2。
求:
(1)碰撞前瞬间A的速率v;
(2)碰撞后瞬间A和B整体的速率v′;
(3)A和B整体在桌面上滑动的距离l。
12.如图所示。
质量M=2 kg的足够长的小平板车静止在光滑水平面上,车的一端静止着质量为M A=2 kg的物体A(可视为质点)。
一个质量为m=20 g的子弹以500 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A静止在车上。
若物体A与小车间的动摩擦因数μ=0.5(g取10 m/s2)。
(1)平板车最后的速度是多大?
(2)全过程损失的机械能为多少?
(3)A在平板车上滑行的时间为多少?。