矩阵概念及运算
矩阵的基本概念和运算

矩阵的基本概念和运算矩阵是线性代数中的基本概念之一,广泛应用于数学、工程学、计算机科学和物理学等领域。
它是一个由数字排列成的矩形阵列,其中的数字称为矩阵的元素。
本文将详细介绍矩阵的基本概念和运算。
一、矩阵的基本概念矩阵由m行n列的数字排列组成,可以表示为一个m×n的矩阵。
其中,m为矩阵的行数,n为矩阵的列数。
每个元素可以用下标表示,例如矩阵A的第i行第j列的元素可以用A(i,j)表示。
二、矩阵的表示和分类矩阵可以用方括号表示,例如A = [aij],其中aij表示矩阵A的第i 行第j列的元素。
矩阵还可以分为不同的类型,如行矩阵、列矩阵、方阵等。
行矩阵是只有一行的矩阵,可以表示为A = [a1, a2, ..., an],其中ai 为矩阵A的第i个元素。
列矩阵是只有一列的矩阵,可以表示为A = [a1; a2; ...; an],其中ai 为矩阵A的第i个元素。
方阵是行数和列数相等的矩阵,可以表示为A = [aij],其中i和j都从1到n。
三、矩阵的运算1. 矩阵的加法对于两个相同大小的矩阵A和B,它们的加法可以定义为A + B = [aij+ bij],其中aij和bij分别为矩阵A和B的对应元素。
2. 矩阵的减法对于两个相同大小的矩阵A和B,它们的减法可以定义为A - B = [aij- bij],其中aij和bij分别为矩阵A和B的对应元素。
3. 矩阵的数乘对于一个矩阵A和一个实数k,它们的数乘可以定义为kA = [kaij],其中aij为矩阵A的元素。
4. 矩阵的乘法对于两个矩阵A和B,它们的乘法可以定义为C = AB,其中C的第i行第j列的元素可以表示为C(i,j) = ∑(ai,k * bk,j),其中k从1到n,n为矩阵A和B的列数。
四、矩阵的转置矩阵的转置是将矩阵的行和列互换得到的新矩阵。
例如,若A = [aij]为一个m×n的矩阵,它的转置矩阵记作AT,即AT = [aji],其中a ji为矩阵A的第j行第i列的元素。
矩阵的基本概念和运算

矩阵的基本概念和运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。
本文将介绍矩阵的基本概念以及常见的矩阵运算。
一、矩阵的基本概念1.1 定义矩阵是一个由m行n列元素组成的矩形数组,记作A=[a_ij],其中i表示行数,j表示列数,a_ij表示矩阵A中第i行第j列的元素。
1.2 矩阵的类型根据矩阵元素的性质和特点,矩阵可以分为以下几种类型:- 零矩阵:所有元素都为0的矩阵,记作O。
- 方阵:行数等于列数的矩阵,记作A(m×m)。
- 行矩阵:只有一行的矩阵,记作A(1×n)。
- 列矩阵:只有一列的矩阵,记作A(m×1)。
- 对角矩阵:非主对角线上的元素都为0的方阵。
1.3 矩阵的运算矩阵的运算包括加法、减法、数乘以及矩阵乘法等。
二、矩阵的运算2.1 矩阵的加法和减法设有两个m×n的矩阵A=[a_ij]和B=[b_ij],则它们的和记作C=A+B,差记作D=A-B。
矩阵的加法和减法满足以下性质:- 交换律:A+B=B+A,A-B≠B-A。
- 结合律:(A+B)+C=A+(B+C),(A-B)-C=A-(B-C)。
- 零元素:A+O=A,A-O=A。
- 负元素:A+(-A)=O。
2.2 矩阵的数乘设有一个m×n的矩阵A=[a_ij],数k,则kA记作E=[ka_ij],即矩阵A中的每个元素乘以k。
2.3 矩阵的乘法设有一个m×n的矩阵A=[a_ij]和一个n×p的矩阵B=[b_ij],它们的乘积记作C=A•B,其中C的第i行第j列的元素为:c_ij = a_i1 * b_1j + a_i2 * b_2j + ... + a_in * b_nj矩阵的乘法需要满足以下条件:- 矩阵A的列数等于矩阵B的行数时,才能进行乘法运算。
- 乘法不满足交换律,即A•B≠B•A。
- 结合律成立:(A•B)•C=A•(B•C)。
2.4 矩阵的转置设有一个m×n的矩阵A=[a_ij],A的转置记作A^T,其中A^T 的第i行第j列的元素为a_ji。
2_1_2矩阵的概念与矩阵运算

;两边加A 的负矩阵 ;交换律 ;约定(减法) ;性质4 ;性质3 ;数乘运算 ;恒等变换 ;性质8
下页 结束 ֠
3 5 7 2 1 3 2 0 例4.已知 A= 2 0 4 3 , B = 2 1 5 7 , . 0 1 2 3 0 6 4 8 且A+2X=B,求X。 解:
− 2 − 2 − 5 − 2 1 从而得 X = ½ ∗(B-A) = 0 1 1 4 2 0 5 2 5
本章重点
用初等变换求逆矩阵及求矩阵的秩的方法.
首页
上页
返回
下页
结束
֠
§1 矩阵的概念
在某些问题中,存在若干个具有相同长度的有序数组.比如线性方程 组的每个方程对应一个有序数组:
a11x1 + a12x2 + ⋅⋅⋅ + a1nxn =b1 a21x1 + a22x2 + ⋅⋅⋅ + a2nxn =b2 ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ am1x1+ am2x2 + ⋅⋅⋅ + amnxn =bm
首页
上页
返回
下页
结束
֠
都是m× 矩阵 容易证明, 矩阵.容易证明 设A,B,C都是 ×n矩阵 容易证明,矩阵的加法满足如下运 都是 算规律: 算规律 (1)交换律: A+B=B+A; )交换律: (2)结合律:(A+B)+C=A+(B+C); )结合律: 是与A同型的零矩阵 (3)A+O=A,其中 是与 同型的零矩阵 ) ,其中O是与 同型的零矩阵; (4)A+(-A)=O,其中 是与 同型的零矩阵 是与A同型的零矩阵 ) ,其中O是与 同型的零矩阵. 矩阵的减法可定义为: 矩阵的减法可定义为: 减法可定义为
矩阵知识点完整归纳

矩阵知识点完整归纳矩阵是大学数学中比较重要和基础的概念之一,具有广泛的应用领域,例如线性代数、微积分、计算机科学等。
本文将全面归纳和总结矩阵的基本概念、性质以及相关应用,旨在帮助读者更好地理解和掌握矩阵知识。
一、基本概念1.矩阵的定义矩阵是由一个$m\times n$ 的矩形阵列(数组)表示的数表,其中$m$ 表示矩阵的行数,$n$ 表示矩阵的列数。
如下所示:$$A = \begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\\a_{21} & a_{22} & \cdots & a_{2n} \\\\vdots & \vdots & \ddots & \vdots \\\a_{m1} & a_{m2} & \cdots & a_{mn}\end{bmatrix}$$其中,$a_{ij}$ 表示矩阵的第$i$ 行、第$j$ 列元素。
2.矩阵的分类矩阵根据其元素的性质可以分为不同类型,主要有以下几种:(1)行矩阵(行向量):只有一行的矩阵,例如$[a_1,a_2,\cdots,a_n]$。
(2)列矩阵(列向量):只有一列的矩阵,例如$\begin{bmatrix}a_1\\\ a_2\\\ \vdots\\\ a_m\end{bmatrix}$。
(3)方阵:行数等于列数的矩阵,例如$A=\begin{bmatrix}1 & 2 & 3\\\ 4 & 5 & 6\\\ 7 & 8 & 9\end{bmatrix}$。
(4)零矩阵:所有元素都为$0$ 的矩阵,例如$\begin{bmatrix}0 & 0 & 0\\\ 0 & 0 & 0\\\ 0 & 0 & 0\end{bmatrix}$。
矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的重要概念,广泛应用于数学、物理、计算机科学等领域。
本文将介绍矩阵的基本概念、运算规则以及常见的应用。
一、矩阵的基本概念矩阵是由数个数排列成的矩形阵列。
矩阵可以用方括号表示,例如:A = [a11, a12, a13;a21, a22, a23;a31, a32, a33]其中a11、a12等为矩阵元素,按行排列。
矩阵的行数为m,列数为n,则该矩阵称为m×n矩阵。
矩阵可以是实数矩阵,也可以是复数矩阵。
实数矩阵的元素全为实数,复数矩阵的元素可以是复数。
例如:B = [3+2i, -4-7i, 5+6i;-2+3i, 1-5i, -2i]二、矩阵的运算1. 矩阵的加法和减法若A、B为同型矩阵(行数和列数相同),则有:A +B = [a11+b11, a12+b12, a13+b13;a21+b21, a22+b22, a23+b23;a31+b31, a32+b32, a33+b33]A -B = [a11-b11, a12-b12, a13-b13;a21-b21, a22-b22, a23-b23;a31-b31, a32-b32, a33-b33]2. 矩阵的数乘若A为m×n矩阵,k为标量,则有:kA = [ka11, ka12, ka13;ka21, ka22, ka23;ka31, ka32, ka33]3. 矩阵的乘法若A为m×n矩阵,B为n×p矩阵,则它们的乘积AB为m×p矩阵,满足:AB = [c11, c12, c13;c21, c22, c23;c31, c32, c33]其中:c11 = a11b11 + a12b21 + a13b31c12 = a11b12 + a12b22 + a13b32c13 = a11b13 + a12b23 + a13b33...c33 = a31b13 + a32b23 + a33b334. 矩阵的转置若A为m×n矩阵,则其转置记作A^T,为n×m矩阵,满足:A^T = [a11, a21, a31;a12, a22, a32;a13, a23, a33]三、矩阵的应用1. 网络图论矩阵可以用于表示和分析网络图论中的关系和连接。
矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数学科中的基础工具,这是因为矩阵可以用来表示线性变换和线性方程组。
对于矩阵的基本概念与运算,我们需要从以下几个方面来分析。
一、矩阵的基本概念1、定义与记法矩阵是一个由m行n列元素排成的矩形阵列,常用大写字母表示,如A、B、C等。
其中,阵列中的m表示矩阵的行数,n则表示矩阵的列数。
因此,一个m行n列的矩阵可以写成:$A_{m×n}=\begin{bmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{m1}&a_{m2}& \cdots&a_{mn}\\\end{bmatrix}$其中,$a_{ij}$ 表示矩阵 A 中第 i 行第 j 列的元素。
2、矩阵的类型按照元素类型可以将矩阵分为实矩阵、复矩阵和布尔矩阵等。
按照矩阵的形状,矩阵可以分为方矩阵、长方矩阵和列矩阵等。
二、矩阵的基本运算1、矩阵的加法假设有两个矩阵 $A_{m×n}$ 和 $B_{m×n}$,它们对应位置相加的结果记作 $C=A+B$,则:$C_{ij}=A_{ij}+B_{ij}$2、矩阵的数乘假设有一个矩阵 $A_{m×n}$ 和一个数 $\lambda$,则它们的乘积记作 $B=\lambda A$,则:$B_{ij}=\lambda A_{ij}$3、矩阵的乘法假设有两个矩阵 $A_{m×n}$ 和 $B_{n×p}$,它们的乘积记作$C=AB$,则:$C_{ij}=\sum_{k=1}^n A_{ik}B_{kj}$矩阵乘法需要满足结合律,但不满足交换律,也就是说,$AB$ 与 $BA$ 不一定相等。
2.1 矩阵的概念 2.2矩阵的运算
a11 b11 a 21 b21 a b m1 m1
a12 b12 a 22 b22 a m 2 bm 2
a1n b1n a 2 n b2 n a mn bmn
简记为:A B (aij ) (bij ) (aij bij )
三、矩阵与矩阵的乘法
定义2· 5
B 设矩阵 A (aij ) ms , (bij ) sn,由元素
cij ai1b1 j ai 2b2 j aisbsj aikbkj
k 1
s
构成的矩阵 C (cij ) mn称为矩阵A与矩阵B的乘积。 记为 即:
a11 a i1 a m1
a12 a 22 am2
a1n a2n a mn
•
1.
矩阵概念与行列式概念的区别:
a11 a12 a1n a 21 a 22 a 2 n 一个行列式 D a n1 a n 2 a nn
代表一个数
(*)
把方程组中系数aij及常数项 bi 按原来次序取出, 作一个矩阵
a11 a 21 a m1 a12 a 22 a1n a2n b1 b2 bm m×(n+1)
=A
增广矩阵
a m 2 a mn
则线性方程组(*)与 A 之间的关系是1-1对应的
则称矩阵A与矩阵B相等。记为:A=B
1 a c 1 1 例如:若 A B 且A=B 2 b 3 0 d
则有c=0; a=-1; b=2; d=3
一、矩阵的加法
线性代数中矩阵的基本概念与运算
线性代数中矩阵的基本概念与运算线性代数是数学中的一个分支,其中矩阵的概念和运算是非常基本的。
本文将简单介绍矩阵的基本概念和运算。
矩阵的基本概念矩阵是一个方形或长方形的数表,其中的数被排列在行和列中。
一个矩阵通常用大写字母来表示,如下所示:$$A =\begin{bmatrix}a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1} & a_{m,2} & \cdots & a_{m,n}\end{bmatrix}$$其中 $m$ 表示矩阵的行数,$n$ 表示矩阵的列数,$a_{i,j}$ 表示第 $i$ 行第 $j$ 列的元素。
对于一个 $m \times n$ 的矩阵,我们可以简单地把它看做是$n$ 个列向量的组合,每个列向量是一个 $m$ 维的向量。
也就是说,$A$ 可以被写成如下形式:$$A = [a^{(1)}, a^{(2)}, \cdots, a^{(n)}]$$其中 $a^{(i)}$ 表示矩阵 $A$ 的第 $i$ 列向量。
矩阵的加法和减法两个同规格的矩阵可以进行加法和减法运算。
对于两个 $m\times n$ 的矩阵 $A$ 和 $B$,它们的和可以表示为:$$C = A + B =\begin{bmatrix}a_{1,1}+b_{1,1} & a_{1,2}+b_{1,2} & \cdots & a_{1,n}+b_{1,n} \\a_{2,1}+b_{2,1} & a_{2,2}+b_{2,2} & \cdots & a_{2,n}+b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}+b_{m,1} & a_{m,2}+b_{m,2} & \cdots &a_{m,n}+b_{m,n}\end{bmatrix}$$同理,它们的差可以表示为:$$D = A - B =\begin{bmatrix}a_{1,1}-b_{1,1} & a_{1,2}-b_{1,2} & \cdots & a_{1,n}-b_{1,n} \\a_{2,1}-b_{2,1} & a_{2,2}-b_{2,2} & \cdots & a_{2,n}-b_{2,n} \\\vdots & \vdots & \ddots & \vdots \\a_{m,1}-b_{m,1} & a_{m,2}-b_{m,2} & \cdots & a_{m,n}-b_{m,n}\end{bmatrix}$$需要注意的是,在进行矩阵加法和减法运算时,这些矩阵必须是同规格的,也就是说它们的行数和列数都必须相等。
矩阵的概念和计算
矩阵的概念和计算矩阵是线性代数中一种重要的数学工具,广泛应用于各个领域,包括物理、工程、计算机科学等。
本文将详细介绍矩阵的概念,以及矩阵的基本运算和计算方法。
一、矩阵的概念矩阵是由数个数按一定的规律排列成的长方形阵列。
矩阵由m行n列元素组成,可以表示成一个m×n的形式。
其中,m表示矩阵的行数,n表示矩阵的列数。
每个元素在矩阵中由其所在的行号和列号来确定。
例如,一个3×2的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中,a11, a12, a21, a22, a31, a32分别表示矩阵A中的元素。
二、矩阵的基本运算1. 矩阵的加法矩阵的加法是指对应元素相加,要求两个矩阵具有相同的行数和列数。
例如,对于两个3×2的矩阵A和B,其加法可以表示为:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法是指对应元素相减,同样需要两个矩阵具有相同的行数和列数。
例如,对于两个3×2的矩阵A和B,其减法可以表示为:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘是指矩阵中的每个元素都乘以一个常数。
例如,对于一个3×2的矩阵A和一个常数k,其数乘可以表示为:B = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指满足前一个矩阵的列数等于后一个矩阵的行数的情况下,将相应的元素相乘再相加得到新的矩阵。
例如,对于一个m×n 的矩阵A和一个n×p的矩阵B,其乘法可以表示为:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,其计算方法为:cij = a[i1]b[1j] + a[i2]b[2j] + ... + a[in]b[nj]三、矩阵的计算方法1. 矩阵的转置矩阵的转置指的是将矩阵的行和列互换得到的新矩阵。
1-1矩阵的基本概念及运算
作业2
2.
即 AB AC× B C.
但也有例外,比如设
A 2 0, 0 2
B 1 1, 1 1
则有 AB 2 2, 2 2
BA 2 2
2 2
AB BA.
这属于特例,称之 为“可交换矩阵”。
4. 单位矩阵——如同数和乘法中的 1
单位矩阵是一个方阵,并且除左上角到右下角的对 角线(称为主对角线)上的元素均为1以外,其他元素 全都为0, 即
一般的线性方程组
a11x1 a12 x2
a21x1
a22 x2
am1x1 am2 x2
a1n xn b1 a2n xn b2
amn xn bm
可以非常简单地表示为矩阵方程 AX B
a11 a12
这里,
A
a21
a22
am1 am2
a1n
x1 b1
a2n
X
2 0
5 T 1
4 2 5
2
0
1
1 2 3 4 2
0
1
0 2
0
2 1 3 5 1
A BT = AT BT .
2、矩阵的倍数 (即数与矩阵相乘)
1) 定义
数与矩阵A的乘积记作A或A , 规定为
a11
A
A
a21
a12
a22
a1n
a2n
.
am1 am1 amn
2) 数乘矩阵的运算规律
这里,Aj为列向量,Bi为行向量。
B1
B2
Bm
特殊矩阵
特殊矩阵
零矩阵:所有元素全等于零的矩阵。 矩阵相等:
①行数和列数分别相等; ②对应的元素都相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。