第 5 章 配合物结构

合集下载

第五章 配位滴定法

第五章 配位滴定法

第五章配位滴定法1、氨羧配位剂与金属离子配合物的特点是什么呢?氨羧配位剂是一类以氨基二乙酸为基体的配位剂。

它的分子中含有氨氮和羧氧配位原子。

前者易与Co、Ni、Zn、Cu、Hg等金属离子配位,后者则几乎与所有高价金属离子配位。

因此氨羧配位剂兼有两者的配位能力,几乎能与所有金属离子配位。

EDTA是氨羧配位剂中应用最多的一种。

EDTA与金属离子形成多基配位体的配合物,又称螯合物。

在一般情况下,配位比都是1:1。

EDTA与金属离子形成的螯合物立体结构中具有多个五元环,稳定性高。

另外,此类配位反应速度快,生成的配合物水溶性大,大多数金属离子与EDTA的配合物为无色,便于用指示剂确定终点,这些都给配位滴定提供了有利条件。

2、何谓配合物的稳定常数、离解常数和累积稳定常数?他们之间的关系是什么?稳定常数P87。

累积稳定常数(第三章)3、何谓副反应系数?何谓条件稳定常数?他们之间有何关系?将被测离子M与滴定剂Y之间的反应作为主反应,其他伴随的副反应对主反应影响的程度为副反应系数(如酸效应系数、配位效应系数、共存离子效应系数等);条件稳定常数为在一定条件将各种副反应对金属离子-EDTA配合物的影响同时考虑时,配合物的实际稳定常数,它表示了在一定条件下有副反应发生时主反应进行的程度。

(5-8、5-9a)4、影响配位滴定突跃范围的因素是什么?配位滴定的滴定突跃大小取决于两个因素:一个是条件稳定常数KMY’,另一个是被测定金属离子的浓度CM。

在浓度一定的条件下,KMY’越大,突跃也越大。

在KMY’一定的条件下,金属离子的浓度越低,滴定曲线的起点越高,滴定突跃则随之减小。

5、金属指示剂的作用原理是什么?它应具备哪些条件?作用原理:金属指示剂是一种有机染料,它与被测定金属离子发生配位反应,形成一种与染料本身颜色不同的配合物。

例如常用指示剂铬黑T(EBT)在pH7~10的溶液中呈蓝色,而与其金属离子的配合物呈红色。

若以EDTA滴定Mg2+,用EBT作指示剂。

第五章配位化合物

第五章配位化合物
2
[Ag(S2O3)2]3-, [Fe(CN)6]4-, [Fe(SCN)6]3-, [HgI4]2- , [Fe(CN)6]3-等 或原子)和一定数目 配位单元:由中心离子(或原子 配位单元:由中心离子 或原子 和一定数目 的中性分子或阴离子以配位键结 合而成的中性分子或复杂离子。 合而成的中性分子或复杂离子。 [Ni(CO)4], [Co(NH3)3F3], [Pt(NH3)2Cl2], K3[Fe(SCN)6], [Ag(NH3)2]NO3。 配合物: 含配位单元的化合物。 配合物 含配位单元的化合物。
6
{
多齿配体数≠( ) 多齿配体数 (<) 配位数 中心离子的配位数一般等于其电荷数的二倍 如:M+——2、M2+——4、M3+——6 、 、 ④.配离子的电荷数 a. 配离子的电荷数等于中心原子的氧化数 和配体总电荷数的代数和。 和配体总电荷数的代数和。 b. 外层电荷数的相反数。 外层电荷数的相反数。 K3[Fe(SCN)6] [Ag(NH3)2]NO3 中心离子的电荷数: 中心离子的电荷数 +3(Ⅲ) +1(Ⅰ) [Pt(NH3)2NO2NH2 Cl2] +4(Ⅳ) Ⅳ
13
[Co(NH3)5(ONO)]Cl2 氯化亚硝酸根•五氨合钴 Ⅲ) 氯化亚硝酸根 五氨合钴(Ⅲ 五氨合钴 六氯合铂( 六氯合铂(Ⅳ)酸 H2[PtCl6] Na3[Ag(S2O3)2] [Cu(NH3)4](OH)2 K3[Fe(SCN)6] 二硫代硫酸根合银(Ⅰ 酸钠 二硫代硫酸根合银 Ⅰ)酸钠 氢氧化四氨合铜(Ⅱ 氢氧化四氨合铜 Ⅱ) 六硫氰合铁(Ⅲ 酸钾 六硫氰合铁 Ⅲ)酸钾
12
首页 上页 下页 返回
[Ag(S2O3)2]3[Cr(NH3)5(H2O)]3+ [Cu(NH3)4]2+ [Fe(NH3)2(en)2]3+ [Co(NH3)5(ONO)]2+ [Cr(NH3)3Cl3]

无机化学第五章

无机化学第五章

受配位体孤对电子能力的原子或离子。
可以是金属离子,也可以是电中性的金属原子),周期表中
几乎所有的金属(特别是过渡金属离子)都可作为中心离子,少数 非金属高氧化态离子也可作为中心离子,如[Ni(CO)4]及[Cr(CO)6] 中的Ni,Cr均为中性原子。又如[SiF6]2–中的Si(Ⅳ) 。
6
--
--
作为配位体的物质可以是简单离子,如Cl– ; 也可以是复杂 的离子或分子,如CN– 、 SCN-、NH3 。可以是有机分子如 乙二胺、乙二胺四乙酸根离子。 配位体中直接与中心离子(或原子)成键的原子为配位原子。
常见的配位原子:N、O、S、C、卤素原子
配位原子的特点是:电负性大、有孤对电子的非金属原子。
1) 单齿配体 一个配体中只能提供一个配位原子与中心离子成键的叫单 8 齿配体。
常见单齿配体 中性分子 H2O NH3 CO CH3NH2 配体 水 氨 羰基 甲胺 O N C N 配位原子 阴离子 F- Cl- Br- I- OH- CN- NO2配体 氟 氯 溴 碘 羟基 氰 硝基 O C N 配位原子 F Cl Br I SCNNCS阴离子 ONO配体 亚硝酸根 硫氰酸根 异硫氰酸根 O S N 配位原子
顺反异构体
NO2 NO2 O2N O2N
面式
经式
光活异构体 ,镜面 对称 (弯线表示en)
26
键合异构体:连接的原子不同
O N H3N H3N Co NH3 NH3 NH3
O N O H3N Co H3N NH3 NH3 NH3
O
硝基配合物(黄色)
亚硝酸Байду номын сангаас配合物(红色)
27
二、 配合物的化学式和命名
[Cu(NH3)4]SO4溶液 Cu(OH)2沉淀 CuSO4溶液

金属有机化学 第5章 羰基配合物

金属有机化学 第5章 羰基配合物

过渡金属原子簇化合物的结构和性质
多核配位化合物,并不一定是原子簇化合物,因一般 的多核体系中,M 与 M 之间不一定存在 M-M 键。例如 Cr2O7= 并不是簇合物,因 Cr 与 Cr 之间由O来键合。上世 纪的60年代以前仅合成了几个簇合物,如 K3W2Cl9,Fe2(CO)9 等。但近年来发展非常迅速,已合成出了数百个结构新颖 的簇合物。
侧基配位的情况比较少, 此时, CO可认 为是一个四电子给予体, 它一方面以5孤 对电子同M1配位,同时又以1电子同M2 配位。

C :
O

M1
M2
12
2) 边桥基配位 在双核或多核羰基化合物中,用符号“-CO” 表示,CO作为两电子配体,能够同时和两个金属原 子的空轨道重叠;另一方面金属原子充满电子的轨 道也能同CO的*反键轨道相互作用,形成反馈键。 结果是CO作为桥将两个金属联结到一起.
7
(2)与酸作用生成羰基氢化物
(3)配体取代反应 Fe2(CO)9+4NO
(4)氧化还原反应 Mn2(CO)10 +Br2
羰基配合物的成键: CO哪些分 子轨道上的电子能给予中心原子 形成配位键? (sp-sp反键)
(二重简并) (sp(C))
(二重简并)
(sp-sp成键) (sp(O))
8
4 轨道由于电子云大部分集中在CO核之间, 不能给予其它原子。 能给予中心金属原子电子对的只有3、1和 5电子。 3电子是 属于氧的孤对电子,由于氧的电负性比碳原子大, 除少数情况之外, 氧很难将3电子对拿出来给予中心金属原子, 因此,能与中心金 属原子形成σ 配键的分子轨道就只有1和 5了。
29
硼烷簇化合物的结构类型
structure type

第五章配位聚合解析

第五章配位聚合解析

第五章 配位聚合 习题参考答案1.举例说明聚合物的异构现象,如何评价聚合物的立构规整性?解答:(1)聚合物的异构现象:① 结构异构聚合物,如聚甲基丙烯酸甲酯与聚丙烯酸乙酯:CH 3|-[-CH 2-C-]n - -[-CH 2-CH-]n -| |CO 2CH 3 CO 2C 2H 5聚甲基丙烯酸甲酯 聚丙烯酸乙酯② 几何异构聚合物,汉分子链中由于双键或环形结构上取代基在空间排列方式不同造成的立体异构称为几何异构,也称顺-反异构。

如丁二烯聚合所形成的1,4-聚丁二烯,其结构单元有顺式结构和反式结构两种:~~~CH 2 CH 2~~~ ~~~CH 2 HC = C C = CH H H CH 2~~~ 顺式结构(顺-1,4聚丁二烯) 反式结构(反-1,4聚丁二烯)③ 光学异构聚合物,如聚环氧丙烷有一个真正的手性碳原子:H|~~~O-C *-CH 2~~~|CH 3④ 构象异构聚合物,当大分子链中原子或原子团绕单键自由旋转所占据的特殊空间位置或单键连接的分子链单元的相对位置的改变称构象异构。

构象异构可以通过单键的旋转而互相转换。

(2)当大分子链上大部分结构单元(大于75%)是同一种立体构型时,称该大分子为有规立构聚合物,或立构规整聚合物、定向聚合物。

反之,称为无规立构聚合物。

2.写出下列单体聚合后可能出现的立构规整聚合物的结构式及名称:(1)CH 2=CH-CH 3(2)CH 2-CH-CH 3O(3)CH 2=CH-CH=CH 2CH 3|(4)CH 2 =C-CH=CH 2 解答:(1) 聚丙烯全同聚丙烯(R 为甲基) 间同聚丙烯(R 为甲基)全规聚环氧丙烷 间规聚环氧丙烷 (3) 丁二烯~~~CH 2CH 2~~~ ~~~CH 2 HC = C C = CHH 2~~~ 顺式结构(顺-1,4聚丁二烯)反式结构(反-1,4聚丁二烯)R 为乙烯基)间同1,2-聚丁二烯(R 为乙烯基)(4) 异戊二烯~~~CH 2 CH 2~~~~~~CH 2 H C = CC = C CH 3CH 3 2~~~ 顺式结构(顺-1,4聚异戊二烯)反式结构(反-1,4聚异戊二烯) 全同3,4-聚异戊二烯(R 为-C(CH 3)=CH 2)间同3,4-32)全同1,2-聚异戊二烯(R 乙烯基)间同3,4-聚异戊二烯(R 为乙烯基)3.什么是配位聚合?主要有几类催化剂(或引发剂),各有什么特点?解答:(1)配位聚合:是指单体分子的碳-碳双键先在显正电性的低价态过渡金属的空位上配位,形成某种形式的络合物(常称σ-π络合物),经过四元环过渡态,随后单体分子插入过渡金属-碳键中进行增长的聚合过程。

2013-第五章--配合物的稳定性

2013-第五章--配合物的稳定性

解:[NH3] = [Ag(NH3)2+] = 1 mol·L-1时
Ag+ + 2NH3
Ag(NH3)2+
Kf = —[AA—gg+—(]N[N—HH3—)32]+—2 = —[A1—g+]= 1.7×107 [Ag+]= 5.9×10-8 mol·L-1
所以 [Ag(NH3)2+] + e
Ag + 2NH3
冠醚
穴醚
大环效应导致的高稳定性极大地扩展了碱金属配 位化学和配位化合物的研究范围。
§5-3 中心与配体的关系(软硬酸碱原理 )
(Hard and Soft Acids and Bases,HSAB)
1. 酸碱的软硬分类 在路易斯酸碱的基础上,进行酸碱的软硬分类 。
软(酸或碱): 指离子半径大、电荷低、易变形、容易被极化的物种。 硬(酸或碱): 指离子半径小、电荷高、不易变形、不易被极化的物种
第一章 配位化学基础知识 第二章 配合物的结构及异构现象 第三章 配合物的化学键理论 第四章 配合物的电子光谱 第五章 配合物在溶液中的稳定性 第六章 配合物反应动力学 第七章 新型配合物
第五章 配合物在溶液中的稳定性
§5-1 配合物的稳定常数 §5-2 影响配合物稳定性的因素 §5-3 中心与配体的关系 §5-4 配合物的应用
[Zn(NH3)4]2+ [Cu(NH3)4]2+ [HgCl4]2[Zn(CN)4]2[HgI4]2[Hg(CN)4]2[Co(NH3)6]2+ [Cd(NH3)6]2+ [Ni(NH3)6]2+ [AlF6]3[Fe(CN)6]4[Co(NH3)6]3+ [Fe(CN)6]3-

高中化学第5章 第30讲 配合物 分子间作用力 超分子---2023年高考化学一轮复习(新高考)

第30讲
配合物 分子间作用力 超分子
复习目标
1.了解配位键的形成和配合物的组成。 2.了解分子间作用力的类型、特征、实质及其对物质性质的影响。 3.能列举存在氢键的物质,并能解释氢键对物质性质的影响。
内容索引
考点一
配位键 配合物
考点二
分子间作用力与分子 的性质 超分子
答题规范(4)
分子结构与性质简答
3.超分子 (1)概念 超分子是由 两种或两种以上 的分子通过 分子间相互作用 形成的分子聚集体。 (2)超分子内分子间的作用力 超分子内部分子之间通过非共价键相结合,包括氢键、静电作用、疏水作用以及一 些分子与金属离子形成的弱配位键等。 (3)超分子的应用 在分子水平上进行分子设计,有序组装甚至复制出一些新型的分子材料。
_增__大__,__沸__点__升__高___。
(4)有一类组成最简单的有机硅化合物叫硅烷。硅烷的沸点与相对分子质量的关系如 图所示,呈现这种变化的原因是_硅__烷__为__分__子__晶__体__,__随__相__对__分__子__质__量__的__增__大__,__分___子__间_ _作__用__力__增__强__,__沸__点__升__高___。
_非__极__性__键__或__极__性__键___ _不__对__称___
(2)分子的溶解性 ①“相似相溶”的规律:非极性溶质一般能溶于 非极性 溶剂,极性溶质一般能溶 于 极性 溶剂。 ②若溶剂和溶质分子之间可以形成氢键,则溶质的溶解度 增大 。 ③随着溶质分子中憎水基个数的增多,溶质在水中的溶解度减小。如甲醇、乙醇和 水以任意比互溶,而戊醇在水中的溶解度明显减小。 (3)分子的手性 具有完全相同的组成和原子排列的一对分子,如同左手与右手一样 互为镜像 ,却 在三维空间里不能叠合,互称手性异构体(或对映异构体)。有手性异构体的分子叫 手性分子。

第5章 过渡金属有机化学基础

(V) CO
R CC )R (IV
SO2 OC L Ir L Cl
R
L CO Cl Ir CO L
L Ir L Cl CO
图 5-5 Vaska配合物的氧化加成反应
• C-O键与过渡金属有机配合物的氧化加成反应
Ni(cod)2 + OAc C3H5)NiOAc C3H5)2Ni + Ni(OAc)2
• 还原消除反应 还原消除反应是氧化加成的逆反应。发生还 原消除反应时,配合物的氧化态及有效原子序 数均下降 "2",形成A-B型的消除产物。
• 还原消除经过一个非极性、非自由基的三中心过 渡态 。
图5-8 还原消除的三中心过渡态
由于还原消除反应按三中心过渡态机理 进行,发生消除反应的两个配体在过渡金 属有机配合物中必须处在顺位。
Ph2 P Me Pd P Me Ph2 DMSO, 80oC Me-Me
DMSO, 80oC NR Me Ph2P Pd P Ph2 Me
• 在反应过程中加入吸引电子的配体,如顺 丁烯二酸酐,丙烯腈等可加速还原消除反 应。
CN N Ni N Me N Me CN N Ni Me N Me CN CN N Ni CN + Me-Me
表5-3 有效原子序数的计算方法
• 5.3 过渡金属有机配合物的合成 • 5.4 过渡金属有机配合物的化学性质
(1),配体置换反应。(配位体的配位与解离) (2),氧化加成和还原消除反应。 (3),插入反应和消除(反插入)反应。 (4),过渡金属有机配合物配体上的反应。
• 5.4.1过渡金属有机配合物的配体置换反应 配位饱和的过渡金属有机配合物的配体 置换是它们的重要化学性质,也是它们实 现催化作用的首要条件。原有配体被另一 个配体---反应底物置换,使底物进入配位 圈,改变了底物的化学键状态而得到活化, 并接着在配位圈内发生反应。 这是配位催化中第一种反应底物进入配 位圈的途径。

第五章 配合物在溶液中的稳定性-2013


Li >Na >K >Rb >Cs Be > Mg > Ca > Sr > Ba 电荷相同,半径越大,稳定相越差 高价金属配合物稳定性比低价金属离子配合物稳定性要高
② d10型金属离子 Cu+、Ag+、Au+、 Zn2+、Cd2+、Hg2+ Ga3+、In3+、TI3+ 其配合物一般比电荷相同、体积相近惰气型金属离子的配合 物稳定性高 对于Zn副族来说,大量的数据表明: Zn2+>/<Cd2+<Hg2+

f MLn
fM• fL
n
= βc
f MLn fM• fL n
浓度稳定常数
5.2 影响配合物稳定性的因素
中心离子性质对配合物稳定性的影响 一般来说,过渡金属离子形成配合物的能力比主族离子强 而主族金属中,又以电荷少、半径大的碱金属离子等最弱 ① 惰气型金属离子
碱金属: Li+、Na+、K+、Rb+、Cs+ 碱土金属:Be2+、Mg2+、Ca2+、Sr2+、Ba2+ 及:Al3+、Sc3+、Y3+、La3+
Co(CN)53-,Pd2+,Pt2+,Pt4+ Cu+,Ag+,Au+,Cd2+,Hg+,Hg2+

BH3,Ga(CH3)3,GaCl3,GaBr3,GaI3,Ti+,Tl(CH3)3 CH2,碳烯类 π接受体:三硝基本,醌类

HO+,RO+,RS+,RSe+,Te4+,RTe+ Br2,Br+,I2,I+,ICN等 金属

2013-第五章--配合物的稳定性


与反应对应的形成常数叫逐级稳定常数,分别用
k1、k2、k3和 k4表示。
K稳=k1·k2·k3·k4
lg
K稳=Klgfθ1k1+lgk2+lgk3+lgk4
2. 稳定常数的应用
① 判断配位反应进行的方向
Ag(NH3)2+ +2CN -
Ag(CN)2- + 2NH3
查表求
Kf Ag(NH3)2+ = 1.7×107 Kf Ag(CN)2- = 1.0×1021
5-1. 配合物的稳定常数 1.配合物的稳定常数和不稳定常数
稳定常数:
Cu2++4NH3
Cu(NH3)42+
K稳=
[Cu(NH3)42+] [Cu2+][NH3]4
不稳定常数: Cu(NH3)42+ Cu2++4NH3
1 K不稳 = ——
K稳
K不稳= [Cu2+][NH3]4 [Cu(NH3)42+]
K = 5.8×1013平衡常数很大,说明上述反应很完全。
② 计算溶液中有关离子的浓度
③ 讨论难溶盐生成或溶解的可能性
④ 计算电极电势
① 判断配位反应进行的方向
Ag(NH3)2+ +2CN -
Ag(CN)2- + 2NH3
可以看作是 下列两个反 应的总和:
Ag(NH3)2+ Ag++2CN-
Ag++2NH3 Kd Ag(NH3)2+ Ag(CN)2- Kf Ag(CN)2-
[Cu(H2O)3NH3]2+ + H2O
[Cu(H2O)3NH3]2+ + NH3
[Cu(H2O)2(NH3)2]2+ + H2O
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配位数为六配合物
配位数为六的配合物绝大多数是八面体构型,
d区过渡金属一般均为该配位构型
配位数为七及以上的配合物
高配位数的配合物一般中心离子为稀土金属离子
配位数 2
4
6
空 间 构 型
直线形 3
四面体 平面正方形 八面体 5
配位数 空 间 构 型
三角形
四方锥
三角双锥
配合物的异构现象
结构异构
原子间连接方式不同引起的异构现象
若H和H’反向,即κ<0(~-10-6)的物质称为反磁 性或抗磁性物质; 若H和H’同向,即κ>0(~10-3),顺磁性物质;
κ=103~104,铁磁性物质
抗磁性物质中全部电子均配对,无永久磁矩,如H2,He。 顺磁性原子或分子中有未成对电子存在,如O2,NO等, 存在永久磁矩,当无外磁场时,无规则的热运动使磁 矩随机取向,当有外磁场时,磁矩按一定方向排布, 呈现顺磁性。 铁磁性在金属铁或钴等材料中,每个原子都有几个有 未成对电子,原子磁矩较大,且有一定的相互作用, 使原子磁矩平行排列,是强磁性物质。
几何异构:配体对于中心离子的不同位置。
顺式(cis)异构体 棕黄色,极性分子
反式(cis)异构体 淡黄色,非极性分子
顺铂是已经临床使用的抗癌药物
配体处于相邻位置为顺式结构(cis isomer),配体处于 相对位置,称为反式结构(trans isomer)。配位数为2的 配合物,配位数为3与配位数为4的四面体配合物, 配体 只有相对位置,因而不存在反式异构体;在平面四边 形和八面体配位化合物中,顺-反异构是很常见的。
在八面体配合物中,MA6和MA5B显然没有异构体。 在MA4B2型八面体配合物有顺式和反式两种异构体:
cis-[CoCl2(NH3)4]+
trans-[CoCl2(NH3)4]+
手性(光学)异构 手性异构又称旋光异构。手性异构是由于分子中没 有对称因素(对称面和对称中心)而引起的旋光性相反的 两种不同的空间排布。当分子中存在有一个不对称的 碳原子时, 就可能出现两种旋光异构体。 手性异构体能使偏振光左旋或右旋,而它们的空间 结构是实物和镜象不能重合,如左手和右手的关系, 彼此互为对映体。具有旋光性的分子称作手性分子。
正八面体场中d轨道的能级分裂
无外电场作用下的d轨道
Ed = Ed = Ed = Ed = Ed
xy xz yz x2-y2
z2
在带负电荷均匀球形场的作用下,d轨道 能量均升高相同值,能级不发生分裂。 在呈八面体配体负电场(八面体场)的作用下 d轨道能级发生分裂。
eg E E0 t2g 自由离子 球形场中 八面体场 Es
4s
4p
4d
Fsp3d2
[CoF6]3-
[Co(CN)6]3-—— 正八面体
3d
d2sp3
轨道杂化类型与配位个体的几何构型
配位数 杂化类型 几何构型 实例 sp 2 直线形 [Hg(NH3)2]2+ sp2 等边三角形 [CuCl3]23 4
5 sp3 dsp2 dsp3 正四面体形 [Ni(NH3)4]2+ [Ni(CN)4]2正方形 三角双锥形 [Fe(CO)5]
例:l3]2-——正三角形
Cu+价层电子结构为
3d
4s
4p
[CuCl3]2-
3d
3Clsp2
配位数为 4 的配合物
[BeX4]2-的空间构型为四面体。
[Ni(NH3)4]2+—— 正四面体
Ni2+价层电子结构为
3d 4s 4p
[Ni(NH3)4]2+
杂化方式与空间构型有关 由于中心原子的杂化 轨道具有一定的伸展方向性,使形成的配合物具 有一定的几何构型。
配位数为 2、3 的配合物
[Hg(NH3)2]2+——直线形
5d 6s 6p
Hg2+价层电子结构为:
NH3
[Hg(NH3)2]2+
5d sp
[Ag(NH3)2]+的空间构型为直线形,μ=0。
磁性
=√n(n+2)
—磁矩,单位为波尔磁子,符号 B.M. n—未成对电子数
n(未成对电子数) 0
1
2
3
4
5
(理)/B.M.
0 1.73 2.83 3.87 4.90 5.92
/B.M.
n(未成对电子数)
Fe3+的d电子构型 杂化轨道 配键类型
[FeF6]35.90 5 sp3d2 外轨型
配合物的化学键理论
配合物中的化学键 配合物中的中心原子与配 体之间的配位键 目前有以下几种理论: (1)价键理论(VBT) (2)晶体场理论(CFT) (3)分子轨道理论(MOT) (4)配位场理论(LFT)
价键理论
中心原子(离子)的杂化轨道与配位原子的孤电子 对的原子轨道成键,形成配位键,即M←L 中心原子(M):有空轨道 配位体(L):有孤对电子 二者形成配位键ML 形成体(中心离子)采用杂化轨道成键
配合物的空间构型
配体在中心原子(或离子)的周围并非任意的堆积, 而是以确定的数目,按一定的方式有规律的排列着。 其中,中心原子的配位数与配合物的空间构型有着 密切的关系,
配位数为二和三的配合物
当中心原子与二个配体配位时,为使两配体成键电 子对间的斥力最小通常将形;成键角为1800的直线 型配合物。 配位数为三的配合物较少见。当中心原子与三个配 体配位时,为保证配体间斥力最小,它们要保持 120的键角而形成等边三角形的配位化合物。
配位键类型——内轨配键、外轨配键 影响因素: 中心离子的电子构型
离子的电 子构型 d10 d8 d4~d7 形成配合物类型 外轨型 大多数为内轨型 内轨型、外轨型 实例 Cu+、Ag+、Zn2+ Ni2+、Pt2+、 Pd2+ Fe3+、Co2+
配位键类型——内轨配键、外轨配键
影响因素: 中心离子的电荷
螺旋体结构特点是: 金属中心相同的手性指向
配合物的磁性
物质置于磁场中会被磁化,物质内部的磁化强度B (称为磁感应强度)不同于外加磁场强度H
H’— 物质处于磁化状态时产生的附加磁化强度 I— 磁化强度(单位体积所产生的磁矩,相当于书中的M) κ— 物质磁化率(无量纲,单位体积单位磁场强度的磁矩)
(4) 配位异构
紫色 亮绿色 暗绿色
[Co(en)3][Cr(ox)3]
[Cr(en)3][Co(ox)3]
2 立体异构
立体异构的研究曾在配位化学的发展上起过决定 性的作用。Werner曾出色地完成了配位数为四和六 的配合物立体异构的合成与分离,从而为确立配故 理论提供了最令人信服的证明。 所谓立体异构是指实验式相同,成键原子联结方 式也相同,但其空间排列方式不问而引起的异构。 配合物的立体异构被分为非手性异构(几何异构) 和手性异构(旋光异构)两大类。
亚铁磁性如Fe3O4等相邻原子磁矩部分呈现平行排列。 反铁磁性如MnO和Cr2O3等氧化物在奈尔温度
Tn以上呈现顺磁性,在奈尔温度Tn以下相邻原子间
磁矩呈现相等的反平行排列,使磁化率随温度的降 低而减小。
磁化率的测量 古埃磁天平法基本原理:
当样品物质置于一不均匀磁场时,样品分子的磁 矩按磁场方向做有序排列,且受到一个使样品发生 位移的力,力的大小与样品的磁化率有关.
6
sp3d2
d2sp3
正八面体形
[CoF6]3[Co(CN)6]3-
配位键类型——内轨配键、外轨配键
内轨配键:由次外层(n-1)d与最外层ns、np轨 道杂化所形成的配位键。 内轨型配合物:由内轨配键形成的配合物 [Fe(CN)6]3-、[Co(NH3)6]3+、[Ni(CN)4]2外轨配键:全部由最外层ns、np、nd轨道杂化 所形成的配位键。 外轨型配合物:由外轨配键形成的配合物 [FeF6]3-、[Co (NH3)6]2+、[Ni(NH3)4]2+
(键合异构,电离异构,水合异构,配位异构……) (1) 键合异构 [Co(NO2)(NH3)5]Cl2 硝基 黄褐色 酸中稳定 [Co(ONO)(NH3)5]Cl2 亚硝酸根 红褐色 酸中不稳定
(2) 电离异构 [Co(SO4)(NH3)5]Br
[Co Br(NH3)5] SO4
(3) 水合异构
[Cr(H2O)6]Cl3 [CrCl(H2O)5]Cl2 · H 2O [CrCl2(H2O)4]Cl · 2H2O
3d
NH3
sp3
[Ni(CN)4]2-—— 正方形
Ni2+价层电子结构为
[Ni(CN)4 ]2-
3d 3d
4s
4p
CNdsp2
[Ni(CN)5]3-—— 三角双锥体
价层电子结构为
3d 4s 4p
CN过量
[Ni(CN)5]3-
3d dsp3
[CoF6]3-—— 正八面体 Co3+价层电子结构为
3d 3d
把配体对中心离子产生的静电场叫作晶体场。
1. 基本要点
中心离子和配体之间仅有静电的相互吸 引和排斥作用。
中心离子的5个能量相同的d轨道受周围配体 负电场的不同程度的排斥作用,发生能级分裂, 有的轨道能量升高,有的能量降低。 由于d轨道的能级分裂,d轨道的电子需 重新分布,使体系能量降低,即给配合 物带来了额外的稳定化能。
配位数为四的配合物
配位数为四的配合物较为常见.它主要有两种 构型,即正四面体和平面正方形构型.当第一过渡 系金属与碱性较弱或体积较大的配体配位时, 由于 配体间的斥力起着重要的作用,它们易形成正四面 体构型.第二、第三过渡系的金属离子,等易形成平 面正方形配合物。
相关文档
最新文档