2000到2015年美国数学竞赛
历年美国大学生数学建模竞赛试题MCM.翻译版doc

1985 年美国大学生数学建模竞赛MCM 试题1985年MCM:动物种群选择适宜的鱼类和哺乳动物数据准确模型。
模型动物的自然表达人口水平与环境相互作用的不同群体的环境的重要参数,然后调整账户获取表单模型符合实际的动物提取的方法。
包括任何食物或限制以外的空间限制,得到数据的支持。
考虑所涉及的各种数量的价值,收获数量和人口规模本身,为了设计一个数字量代表的整体价值收获。
找到一个收集政策的人口规模和时间优化的价值收获在很长一段时间。
检查政策优化价值在现实的环境条件。
1985年MCM B:战略储藏管理钴、不产生在美国,许多行业至关重要。
(国防占17%的钴生产。
1979年)钴大局部来自非洲中部,一个政治上不稳定的地区。
1946年的战略和关键材料储藏法案需要钴储藏,将美国政府通过一项为期三年的战争。
建立了库存在1950年代,出售大局部在1970年代初,然后决定在1970年代末建立起来,与8540万磅。
大约一半的库存目标的储藏已经在1982年收购了。
建立一个数学模型来管理储藏的战略金属钴。
你需要考虑这样的问题:库存应该有多大?以什么速度应该被收购?一个合理的代价是什么金属?你也要考虑这样的问题:什么时候库存应该画下来吗?以什么速度应该是画下来吗?在金属价格是合理出售什么?它应该如何分配?有用的信息在钴政府方案在2500万年需要2500万磅的钴。
美国大约有1亿磅的钴矿床。
生产变得经济可行当价格到达22美元/磅(如发生在1981年)。
要花四年滚动操作,和thsn六百万英镑每年可以生产。
1980年,120万磅的钴回收,总消费的7%。
1986 年美国大学生数学建模竞赛MCM 试题1986年MCM A:水文数据下表给出了Z的水深度尺外表点的直角坐标X,Y在码(14数据点表省略)。
深度测量在退潮。
你的船有一个五英尺的草案。
你应该防止什么地区的矩形(75200)X(-50、150)?1986年MCM B:Emergency-Facilities位置迄今为止,力拓的乡牧场没有自己的应急设施。
美国数学竞赛

竞赛题目的难度分布及运算量的不同
•我国数学竞赛题目缺乏应用性和技巧性,运算量较大,并且 一个题目的内容比较单一.美国数学竞赛题目应用性很强, 技巧性也较高,运算量比较小,同时能够够将多个知识点融 合到一个题目当中. •竞赛时间的不同 •我国中学数学竞赛由于题目较难,运算量较大,导致考试时 间较长.而美国题目难度稍低,运算量不大,同时有的竞赛 允许使用计算器,这样就减少了很多的竞赛时间.
IMO选拔
• • • • • 初中数学联赛 高中数学联赛 AMC8:11月中举行。 AMC10:2月初 AMC12:2月中。 美国数学邀请赛:3月底。 美国数学奥林匹克:4月的最后一周。 数学奥林匹克夏令营(MOSP) 国际数学奥林匹克(IMO):7月
AMC通过其完善的测试体系一直承担着为美国培育世界数 学奥林匹克IMO选手的重任。AMC的研究人员透过AMC8、AMC 10、AMC12、AIME等一系列测验,找出绩优生参加USJMO和 USAMO,再从全美数十州筛选出12位精英,成立美国数学奥 林匹克夏令营(MOSP),最终从中选出美国参加IMO的6名选 手,组成IMO美国国家队。
美国中学数学竞赛的特点
• 1)组织者广泛、参赛者自愿 • 2)竞赛目的多样化 • 3)普及与选拔两项功能有机结合
• 4)竞赛形式多样化,评分规则多元化
中美数学竞赛的比较
•竞赛考察知识点的不同 •首先,美国考察的内容比我国考察的内容更接近实际生活。 •其次,由于美国高中阶段就已经讲解了我们在大学阶段学习 的内容,比如微积分、极限、级数等等,而我国高中只简单 的涉及一点微积分的知识,故在一些中学数学竞赛中,美国 考察的知识范围是大于同等级别中国数学竞赛考察知识的范 围的.美国中学数学教学的特点是广而浅,我国则是窄而 深.
申请美国本科数学竞赛推荐

申请美国本科数学竞赛推荐冲刺美本TOP30申请,参加一些数学竞赛可以给美本申请增加砝码,对于竞赛的选择,适合孩子的才是最好的。
其次,则是从竞赛的含金量,参赛人数,整个比赛时间等全方面考量。
下面小编就给大家分享美国本科数学竞赛!申请美国本科数学竞赛推荐1、哈佛-麻省理工大学数学竞赛Harvard-MIT Mathematics Tournament(HMMT)难度:5.0含金量:5.0HMMT是由哈佛大学和麻省理工大学数学协会联合举办,是美国具有非凡影响力的高中生数学竞赛之一,每年有来自全球近1000名高中生参与。
其一流的学术水平、新颖的团队赛形式和领先的数学理念吸引了全美和各国优秀高中生参赛。
该比赛严格控制规模,仅美国和其他地区部分优秀高中和教育组织有资格获邀参赛。
自1998年创办以来,成为了国际上规模最大、影响最大的中学数学赛事之一。
每年分11月赛和2月赛,分别在哈佛大学和麻省理工大学校园内举行。
其中11月赛难度较低,2月赛难度较高,同学可以任选一个参加。
11月份的试题难度相当于AMC10 或AMC12水平,而2月份的试题难度较大,部分题目会达到国际奥赛水平,每年都会有相当一部分IMO(国际数学奥林匹克)金牌选手参加2月份的比赛,竞争激烈,同时也使赛事倍受瞩目。
11月的比赛以6人为一队,2月的比赛以8人为一队,主办方还额外给独立选手准备了名额,在个人赛中以自己为单位,团队赛中会和别的独立选手组队。
比赛不允许使用任何辅助计算工具。
HMMT竞赛共分三个部分:个人赛、团队赛、团队技巧赛。
HMMT竞赛水平高,题目难,时间很有限,对学生的数学基础,解题速度和反应能力是一个极大的挑战。
竞赛共分代数,几何,组合数学,微积分等4个单项比赛和TEAM, GUTS两个团体赛。
其中个人单项赛每人只能参加两个。
HMMT竞赛安排非常紧凑,一天之内完成了包括注册、个人赛、团体赛、分数统计、颁奖等所有工作。
难度高也就意味着会吸引学校的广泛关注,在HMMT竞赛中获得优秀成绩的学生在申请学校时会更加占据优势。
美国数学学会中学生数学竞赛真题和答案解析2015AMC8 Solutions

This Solutions Pamphlet gives at least one solution for each problem on this year’s exam and shows that all the problems can be solved using material normally associated with the mathematics curriculum for students in eighth grade or below. These solutions are by no means the only ones possible, nor are they necessarily superior to others the reader may devise.We hope that teachers will share these solutions with their students. However, the publication, reproduction, or communication of the problems or solutions of the AMC 8 during the period when students are eligible to participate seriously jeopardizes the integrity of the results. Dissemination at any time via copier, telephone, email, internet or media of any type is a violation of the competition rules.Correspondence about the problems and solutions should be addressed to:Prof. Norbert Kuenzi, AMC 8 Chair934 Nicolet AveOshkosh, WI 54901-1634Orders for prior year exam questions and solutions pamphlets should be addressed to:MAA American Mathematics CompetitionsAttn: PublicationsPO Box 471Annapolis Junction, MD 20701© 2015 Mathematical Association of AmericaWe thank the following donors for their generous support of the MAA American Mathematics Competitions, MOSP and the IMOPatron’s CircleAkamai FoundationSimons FoundationWinner’s CircleAmerican Mathematical SocietyThe D.E. Shaw GroupDropboxMathWorksTwo SigmaTudor Investment CorporationAchiever’s CircleArt of Problem SolvingJane Street CapitalMath for AmericaSustainer’s circleAcademy of Applied ScienceArmy Educational Outreach ProgramCollaborator’s CircleAmerican Statistical AssociationCasualty Actuarial SocietyConference Board of the Mathematical SciencesExpii, Inc.IDEA MATHMu Alpha ThetaNational Council of Teachers of MathematicsSociety for Industrial and Applied MathematicsStar League。
2000-2012美国AMC10中文版试题及答案

2000到2012年AMC10美国数学竞赛0 0P 0 A 0 B 0 C 0D 0 全美中学数学分级能力测验(AMC 10)2000年 第01届 美国AMC10 (2000年2月 日 时间75分钟)1. 国际数学奥林匹亚将于2001年在美国举办,假设I 、M 、O 分别表示不同的正整数,且满足I ⨯M ⨯O =2001,则试问I +M +O 之最大值为 。
(A) 23 (B) 55 (C) 99 (D) 111 (E) 6712. 2000(20002000)为 。
(A) 20002001 (B) 40002000 (C) 20004000 (D) 40000002000 (E) 200040000003. Jenny 每天早上都会吃掉她所剩下的聪明豆的20%,今知在第二天结束时,有32颗剩下,试问一开始聪明豆有 颗。
(A) 40 (B) 50 (C) 55 (D) 60 (E) 754. Candra 每月要付给网络公司固定的月租费及上网的拨接费,已知她12月的账单为12.48元,而她1月的账单为17.54元,若她1月的上网时间是12月的两倍,试问月租费是 元。
(A) 2.53 (B) 5.06 (C) 6.24 (D) 7.42 (E) 8.775. 如图M ,N 分别为PA 与PB 之中点,试问当P 在一条平行AB 的直 在线移动时,下列各数值有 项会变动。
(a) MN 长 (b) △P AB 之周长 (c) △P AB 之面积 (d) ABNM 之面积(A) 0项 (B) 1项 (C) 2项 (D) 3项 (E) 4项 6. 费氏数列是以两个1开始,接下来各项均为前两项之和,试问在费氏数列各项的个位数字中, 最后出现的阿拉伯数字为 。
(A) 0 (B) 4 (C) 6 (D) 7 (E) 97. 如图,矩形ABCD 中,AD =1,P 在AB 上,且DP 与DB 三等分∠ADC ,试问△BDP 之周长为 。
历届美国数学建模竞赛赛题(汉语版)

历届美国数学建模竞赛赛题, 1985-2006AMCM1985问题-A 动物群体的管理AMCM1985问题-B 战购物资储备的管理AMCM1986问题-A 水道测量数据AMCM1986问题-B 应急设施的位置AMCM1987问题-A 盐的存贮AMCM1987问题-B 停车场AMCM1988问题-A 确定毒品走私船的位置AMCM1988问题-B 两辆铁路平板车的装货问题AMCM1989问题-A 蠓的分类AMCM1989问题-B 飞机排队AMCM1990问题-A 药物在脑内的分布AMCM1990问题-B 扫雪问题AMCM1991问题-A 估计水塔的水流量AMCM1992问题-A 空中交通控制雷达的功率问题AMCM1992问题-B 应急电力修复系统的修复计划AMCM1993问题-A 加速餐厅剩菜堆肥的生成AMCM1993问题-B 倒煤台的操作方案AMCM1994问题-A 住宅的保温AMCM1994问题-B 计算机网络的最短传输时间AMCM1995问题-A 单一螺旋线AMCM1995问题-B A1uacha Balaclava学院AMCM1996问题-A 噪音场中潜艇的探测AMCM1996问题-B 竞赛评判问题AMCM1997问题-A Velociraptor(疾走龙属)问题AMCM1997问题-B为取得富有成果的讨论怎样搭配与会成员AMCM1998问题-A 磁共振成像扫描仪AMCM1998问题-B 成绩给分的通胀AMCM1999问题-A 大碰撞AMCM1999问题-B “非法”聚会AMCM1999问题- C 大地污染AMCM2000问题-A空间交通管制AMCM2000问题-B: 无线电信道分配AMCM2000问题-C:大象群落的兴衰AMCM2001问题- A: 选择自行车车轮AMCM2001问题-B:逃避飓风怒吼(一场恶风…)AMCM2001问题-C我们的水系-不确定的前景AMCM2002问题-A风和喷水池AMCM2002问题-B航空公司超员订票AMCM2002问题-C蜥蜴问题AMCM2003问题-A: 特技演员AMCM2003问题-C航空行李的扫描对策AMCM2004问题-A:指纹是独一无二的吗?AMCM2004问题-B:更快的快通系统AMCM2004问题-C:安全与否?AMCM2005问题-A:.水灾计划AMCM2005问题-B:TollboothsAMCM2005问题-C:.Nonrenewable ResourcesAMCM2006问题-A:用于灌溉的自动洒水器的安置和移动调度AMCM2006问题-B:通过机场的轮椅AMCM2006问题-C:在与HIV/爱滋病的战斗中的交易AMCM85问题-A 动物群体的管理在一个资源有限,即有限的食物、空间、水等等的环境里发现天然存在的动物群体。
2015年美国(国际)大学生数学建模竞赛
比赛时间:美国东部时间:2015年2月5日(星期四)下午8点-2月9日下午8点(共4天)北京时间:2015年2月6日(星期五)上午9点-2月10日上午9点农历:十二月十八~十二月廿二重要说明:●COMAP是所有的规则和政策的最后仲裁者,对不遵循竞赛规则和程序的任何队伍,拥有唯一的自由裁量权,取消参赛资格或拒绝登记。
●评委、竞赛组织者、以及UMAP杂志的编辑拥有最终裁定权。
●如果参赛队伍违反竞赛规则,其指导老师一年内将不能指导其他团队,其所在参赛单位将被处以一年的察看处理。
●如果同一机构第二次被抓到违反规则的队伍,该学校将至少不被允许参加下一年度的赛事。
●以下所有时间都是美国东部时间EST(北京时间比美国东部时间早13个小时)●递交参赛论文后,意味参赛者同意以下条款:⏹论文提交后,出版权归COMAP, Inc所有;⏹COMAP可以使用,编辑,引用和出版论文,用于宣传或任何其他目的,包括在线展示,出版电子版,在UMAP杂志刊登或其他方式,并且没有任何形式的补偿;⏹COMAP可以在没有进一步的通知,许可,或补偿的情形下,使用这次比赛相关材料,团队成员、指导老师的名字,以及和他们的背景资料。
●递交参赛论文后,意味参赛者作出以下承诺:⏹论文中出现的所有的图像,数据,照片,图表,图画,如果未注明,都是由参赛者创建;如果引用其它资源,都在参考文献中列出,并在引用的具体位置标注来源。
⏹不论是直接,还是转述方式的文字引用,都在参考文献中列出,并在引用的具体位置标注来源;直接的文字引用使用引号标注。
比赛之前注册报名1.报名截至时间:2015年2月5日下午2:00 EST。
截止日期后,注册系统将自动关闭,不再接受任何新的注册,没有例外。
2.每支参赛队伍都必须有一位来自参赛机构(institute)的教师担任导师(faculty advisor),不允许学生担任导师。
由指导老师负责为其指导队伍注册报名,每位指导老师可注册的队伍数目没有限制。
美国数学竞赛
附:美国AMC简介American Mathematics Competition又称为American High School Mathematics Examination美国中学数学科考试(AHSME),是由美国数学协会(Mathematics Association of America)于1950年成立,目前总部设于美国际布拉斯加大学林肯校区(University Of Nebraska-Lincoln),是美国数学协会(Mathematics Association of America)的直属机构。
在1985年时,又添加了初中数学科的检定考试American Junior High School Mathematics Examination(AJHSME)、每年仅在北美地域,正式注销应试的先生就超越600,000人次,也因而AMC是世界上目前信度和效度最高的数学科试题。
而全球停止同步检验的国度还有加拿大、新加坡、香港、日本、匈牙利、希腊、土耳其、法国、等二十余国。
此项检验已获美国中学校长推介为每年的次要活动之一。
AMC检验由试题研发、命制到一致阅卷等作业,完全委托素由数理出名的内布拉斯加大学林肯校区University Of Nebraska-Lincoln数学系教授率领专家学者成立委员会全权担任。
该委员会成员皆来自全美一流学府,如麻省理工学院MIT、哈佛大学Harvard、普林斯顿大学Princeton等名校,共同研讨规划。
多年来,AMC还扮演为美国培育世界数学奥林匹克(IMO)选手的重责大任。
AMC 的研讨人员透过AMC 8、AMC 10、AMC 12、AIME一系列检验,找出绩优生参与美国数学奥林匹克(USAMO),再从全美数十州挑选出24至30位菁英,成立数学奥林匹克夏令营(MOSP)。
经过AMC的密集训练,现实证明,以1990年到2000年这十年为例,有九年由AMC集训的美国队博得奖牌。
AMC 美国数学竞赛 2000 AMC 10 试题及答案解析
USA AMC 10 20001In the year , the United States will host the International Mathematical Olympiad. Let , , and be distinct positive integers such that the product . What's the largest possible value of the sum ?SolutionThe sum is the highest if two factors are the lowest.So, and .2Solution.3Each day, Jenny ate of the jellybeans that were in her jar at the beginning of the day. At the end of the second day, remained. How many jellybeans were in the jar originally?Solution4Chandra pays an online service provider a fixed monthly fee plus an hourly charge for connect time. Her December bill was , but in January her bill was because she used twice as much connect time as in December. What is the fixxed monthly fee?SolutionLet be the fixed fee, and be the amount she pays for the minutes she used in the first month.We want the fixed fee, which is5Points and are the midpoints of sides and of . As moves along a line that is parallel to side , how many of the four quantities listed below change?(a) the length of the segment(b) the perimeter of(c) the area of(d) the area of trapezoidSolution(a) Clearly does not change, and , so doesn't change either.(b) Obviously, the perimeter changes.(c) The area clearly doesn't change, as both the base and its corresponding height remain the same.(d) The bases and do not change, and neither does the height, so the trapezoid remains the same.Only quantity changes, so the correct answer is .6The Fibonacci Sequence starts with two 1s and each term afterwards is the sum of its predecessors. Which one of the ten digits is the last to appear in thet units position of a number in the Fibonacci Sequence?SolutionThe pattern of the units digits areIn order of appearance:.is the last.7In rectangle , , is on , and and trisect . What is the perimeter of ?Solution.Since is trisected, .Thus,.Adding, .8At Olympic High School, of the freshmen and of the sophomores took the AMC-10. Given that the number of freshmen and sophomore contestants was the same, which of the following must be true?There are five times as many sophomores as freshmen.There are twice as many sophomores as freshmen.There are as many freshmen as sophomores.There are twice as many freshmen as sophomores.There are five times as many freshmen as sophomores.SolutionLet be the number of freshman and be the number of sophomores.There are twice as many freshmen as sophomores.9If , where , thenSolution, so ...10The sides of a triangle with positive area have lengths , , and . The sides of a second triangle with positive area have lengths , , and . What is the smallest positive number that is not a possible value of ?SolutionFrom the triangle inequality, and . The smallest positive number not possible is , which is .11Two different prime numbers between and are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained?SolutionTwo prime numbers between and are both odd.Thus, we can discard the even choices.Both and are even, so one more than is a multiple of four.is the only possible choice.satisfy this, .12Figures , , , and consist of , , , and nonoverlapping unit squares, respectively. If the pattern were continued, how many nonoverlapping unit squares would there be in figure 100?SolutionSolution 1We have a recursion:.I.E. we add increasing multiples of each time we go up a figure. So, to go from Figure 0 to 100, we add.Solution 2We can divide up figure to get the sum of the sum of the firstodd numbers and the sum of the first odd numbers. If you do not see this, here is the example for :The sum of the first odd numbers is , so for figure , there are unit squares. We plug in to get , which is choice13There are 5 yellow pegs, 4 red pegs, 3 green pegs, 2 blue pegs, and 1 orange peg to be placed on a triangular peg board. In how many ways can the pegs be placed so that no (horizontal) row or (vertical) column contains two pegs of the same color?SolutionIn each column there must be one yellow peg. In particular, in the rightmost column, there is only one peg spot, therefore a yellow peg must go there.In the second column from the right, there are two spaces for pegs. One of them is in the same row as the corner peg, so there is only one remaining choice left for the yellow peg in this column.By similar logic, we can fill in the yellow pegs as shown:After this we can proceed to fill in the whole pegboard, so there is only arrangement of the pegs. The answer is14Mrs. Walter gave an exam in a mathematics class of five students. She entered the scores in random order into a spreadsheet, which recalculated the class average after each score was entered. Mrs. Walter noticed that after each score was entered, the average was always an integer. The scores (listed in ascending order) were , , , , and . What was the last score Mrs. Walter entered? SolutionThe sum of the first scores must be even, so we must choose evens or the odds to be the first two scores.Let us look at the numbers in mod .If we choose the two odds, the next number must be a multiple of , of which there is none.Similarly, if we choose or , the next number must be a multiple of , of which there is none.So we choose first.The next number must be 1 in mod 3, of which only remains.The sum of the first three scores is . This is equivalent to in mod .Thus, we need to choose one number that is in mod . is the only one that works.Thus, is the last score entered.15Two non-zero real numbers, and , satisfy . Which of the following is a possible value of ?SolutionSubstituting , we get16The diagram shows lattice points, each one unit from its nearest neighbors. Segment meets segment at . Find the length of segment .SolutionSolution 1Let be the line containing and and let be the line containing and . If we set the bottom left point at , then , , , and .The line is given by the equation . The -intercept is , so . We are given two points on , hence we cancompute the slope, to be , so is the lineSimilarly, is given by . The slope in this case is , so . Plugging in the point gives us , so is the line .At , the intersection point, both of the equations must be true, soWe have the coordinates of and , so we can use the distance formula here:which is answer choiceSolution 2Draw the perpendiculars from and to , respectively. As it turns out, . Let be the point on for which ., and , so by AA similarity,By the Pythagorean Theorem, we have ,, and . Let , so , thenThis is answer choiceAlso, you could extend CD to the end of the box and create two similar triangles. Then use ratios and find that the distance is 5/9 of the diagonal AB. Thus, the answer is B.17Boris has an incredible coin changing machine. When he puts in a quarter, it returns five nickels; when he puts in a nickel, it returns five pennies; and when he puts in a penny, it returns five quarters. Boris starts with just one penny. Which of the following amounts could Boris have after using the machine repeatedly?SolutionConsider what happens each time he puts a coin in. If he puts in a quarter, he gets five nickels back, so the amount of money he has doesn't change. Similarly, if he puts a nickel in the machine, he gets five pennies back and the money value doesn't change. However, if he puts a penny in, he gets five quarters back, increasing the amount of money he has by cents.This implies that the only possible values, in cents, he can have are the ones one more than a multiple of . Of the choices given, the only one is18Charlyn walks completely around the boundary of a square whose sides are each km long. From any point on her path she can see exactly km horizontally in all directions. What is the area of the region consisting of all points Charlyn can see during her walk, expressed in square kilometers and rounded to the nearest whole number?SolutionThe area she sees looks at follows:The part inside the walk has area . The part outside the walk consists of four rectangles, and four arcs. Each of the rectangles has area . The four arcs together form a circle with radius . Therefore the total area she can see is, which rounded to the nearest integer is .19Through a point on the hypotenuse of a right triangle, lines are drawn parallel to the legs of the triangle so that the trangle is divided into a square and two smaller right triangles. The area of one of the two small right triangles is times the area of the square. The ratio of the area of the other small right triangle to the area of the square is SolutionLet the square have area , then it follows that the altitude of one of the triangles is . The area of the other triangle is .By similar triangles, we haveThis is choice(Note that this approach is enough to get the correct answer in the contest. However, if we wanted a completely correct solution, we should also note that scaling the given triangle times changes each of the areas times, and therefore it does not influence the ratio of any two areas. This is why we can pick the side of the square.)20Let , , and be nonnegative integers such that . What is the maximum value of ? SolutionThe trick is to realize that the sum is similar to the product .If we multiply , we get.We know that , therefore.Therefore the maximum value of is equal to the maximum value of . Now we will find this maximum.Suppose that some two of , , and differ by at least . Then this triple is surely not optimal.Proof: WLOG let . We can then increase the value ofby changing and .Therefore the maximum is achieved in the cases where is a rotation of . The value of in this case is . And thus the maximum of is.21If all alligators are ferocious creatures and some creepy crawlers are alligators, which statement(s) must be true?I. All alligators are creepy crawlers.II. Some ferocious creatures are creepy crawlers.III. Some alligators are not creepy crawlers.SolutionWe interpret the problem statement as a query about three abstract concepts denoted as "alligators", "creepy crawlers" and "ferocious creatures". In answering the question, we may NOT refer to reality -- for example to the fact that alligators do exist.To make more clear that we are not using anything outside the problem statement, let's rename the three concepts as , , and .We got the following information:▪If is an , then is an .▪There is some that is a and at the same time an .We CAN NOT conclude that the first statement is true. For example, the situation "Johnny and Freddy are s, but only Johnny is a "meets both conditions, but the first statement is false.We CAN conclude that the second statement is true. We know that there is some that is a and at the same time an . Pick one such and call it Bobby. Additionally, we know that if is an , then is an. Bobby is an , therefore Bobby is an . And this is enough to prove the second statement -- Bobby is an that is also a .We CAN NOT conclude that the third statement is true. For example, consider the situation when , and are equivalent (represent the same set of objects). In such case both conditions are satisfied, but the third statement is false.Therefore the answer is .22One morning each member of Angela's family drank an -ounce mixture of coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How many people are in the family?SolutionThe exact value "8 ounces" is not important. We will only use the fact that each member of the family drank the same amount.Let be the total number of ounces of milk drank by the family and the total number of ounces of coffee. Thus the whole family drank a total of ounces of fluids.Let be the number of family members. Then each family member drank ounces of fluids.We know that Angela drank ounces of fluids.As Angela is a family member, we have .Multiply both sides by to get .If , we have .If , we have .Therefore the only remaining option is .23When the mean, median, and mode of the list are arranged in increasing order, they form a non-constant arithmetic progression. What is the sum of all possible real values of ? SolutionAs occurs three times and each of the three other values just once, regardless of what we choose the mode will always be .The sum of all numbers is , therefore the mean is .The six known values, in sorted order, are . From this sequence we conclude: If , the median will be . If , the median will be . Finally, if , the median will be .We will now examine each of these three cases separately.In the case , both the median and the mode are 2, therefore we can not get any non-constant arithmetic progression.In the case we have , because. Therefore our three values inorder are . We want this to be an arithmetic progression. From the first two terms the difference must be . Therefore thethird term must be .Solving we get the only solution for this case: . The case remains. Once again, we have ,therefore the order is . The only solution is when , i. e., .The sum of all solutions is therefore .24Let be a function for which . Find the sum of all values of for which .SolutionIn the definition of , let . We get: . As we have , we must have , in other words .One can now either explicitly compute the roots, or use Vieta's formulas. According to them, the sum of the roots ofis . In our case this is .(Note that for the above approach to be completely correct, we should additionally verify that there actually are two distinct real roots. This is, for example, obvious from the facts that and .)25In year , the day of the year is a Tuesday. In year , the day is also a Tuesday. On what day of the week did the of year occur?SolutionClearly, identifying what of these years may/must/may not be a leap year will be key in solving the problem.Let be the day of year , the day of year and the day of year .If year is not a leap year, the day will bedays after . As , that would be a Monday.Therefore year must be a leap year. (Then is days after .) As there can not be two leap years after each other, is not a leap year. Therefore day is days after . We have . Therefore is weekdays before , i.e., is a.(Note that the situation described by the problem statement indeed occurs in our calendar. For example, for we have=Tuesday, October 26th 2004, =Tuesday, July 19th, 2005 and =Thursday, April 10th 2003.)。
美国大学生数学建模竞赛赛前培训心得体会
美国大学生数学建模竞赛赛前培训心得体会数学建模(Mathematical Modeding)是对现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到一个数学结构的过程[1].美国大学生数学建模竞赛(MCM/ICM),是一项国际级的竞赛项目,为现今各类数学建模竞赛之鼻祖。
MCM/ICM 是Mathematical Contest in Modeling 和InterdisciplinaryContest in Modeling 的缩写,即数学建模竞赛和交叉学科建模竞赛[2].MCM始于1985年,ICM始于2000年,由美国自然基金协会和美国数学应用协会共同主办,美国运筹学学会、工业与应用数学学会、数学学会等多家机构协办,比赛每年举办一次。
MCM/ICM着重强调研究问题、解决方案的原创性团队合作、交流以及结果的合理性。
竞赛形式为三名学生组成一队在四天内任选一题,完成该实际问题的数学建模的全过程,并就问题的重述、简化和假设及其合理性的论述、数学模型的建立和求解(及软件)、检验和改进、模型的优缺点及其可能的应用范围的自我评述等内容写出英文论文。
沈阳工业大学从2007年开始参加美国大学生数学建模竞赛,截至到2015年共参加了9届。
2015年共有16组美赛队伍,是我校参加美赛队伍最多一届。
前八届竞赛中,共获得一等奖 6 次,二等奖12 次,三等奖22 次。
2015 年获得一等奖2 组,二等奖3 组,三等奖6 组。
总结我校9 年来参加美国大学生数学建模竞赛的经验,笔者从美国大学生数学建模竞赛的赛前培训工作出发,总结几点心得体会,供同行们参考与讨论。
1 选拔优秀学生组队培训是美国大学生数学建模竞赛赛前培训的前提数学建模竞赛的主角是参赛队员,选拔参赛队员的成功与否直接影响到参赛成绩。
我们首先在参加全国大学生数学建模竞赛并获奖的同学中进行动员报名,经过一个阶段的培训后选拔出参加寒假集训队员,暑期集训结束后通过模拟最终确定参赛队员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015 美国数学竞赛(十年级)中图分类号:G424.79 文献标识码iA 文章编号:1005—6416(2015)07—0026—07 1.计算:(2。
一1+5 一0) X5的值为( ).(A)一125 (B)一120 (C)25(D) (E 12.箱子中放有三角形和正方形的瓷砖共25块,共有84条边.则箱子中的正方形瓷砖有( )块.(A)3 (B)5 (C)7 (D)9 (E)113.如图l,安琪儿用18根牙签拼三层楼梯.照这样计算,要想拼五层楼梯,她还需( )根牙签.(A)9 (B)l8 (C)2O(D)22 (E)24图14.巴勃罗、索菲亚和米娅在一次聚会上各分得一些糖果.巴勃罗的糖果数为索菲亚糖果数的3倍,索菲亚的糖果数为米娅糖果数的2倍.巴勃罗决定将自己的糖果分给索菲亚和米娅一部分,这样三个人的糖果数相等.则巴勃罗分给索菲亚的糖果数占自己原来糖果数的( ).(A) (B1(c1(D) (E)寻5.帕特里克先生是l5名学生的数学老师.一次测验后他发现,去掉佩顿的成绩,其余人的平均成绩为80分,加上佩顿的成绩后,全班的平均成绩为81分.则在这次考试中,佩顿的成绩为( )分.(A)81 (B)85 (C)91 (0)94 (E)95注意到,1D,1C =90。
+_1_ C = C.于是,D、,。
、、C四点共圆.则E= DC,2,CI2F= cD,故GEF= EDIl+ DILE= ADI 一DB + DCIz1= ÷厶( ADC+ BcD)一ADB,GFE :FCI2+ FlC= BCI2一+ ,.1= ÷( Dc+ BcD)一ADB.从而,∞F= G阳,得钮=G又GI3平分AGB,故上F.14.若一共有13个数,则可排列如下:a l,a2,a3,…,a 8,a9,a 2 ,a 3 ,a 4 ,…,a 9 ,a lo ,a 3 ,a 4 ,a 5 ,…,a lo ,a l1,04 ,a5 ,a6,…,0 11,a 12,U 5 ,a 6 ,a 7 ,…,a 12 ,a 13·由已知,其中每行数之和为正,从而,数表中所有数之和为正;另一方面,数表中每列数之和为负,从而,数表中所有数之和为负.矛盾.这表明,满足要求的数串至多有12项.考虑如下的一串数字:一4、一4、一4、15、一4、一4、一4、一4、15、一4、一4、一4,这串数满足题中要求且有12项,故知满足题中要求的,的最大值为12.(张宇鹏提供)2015年第7期276.已知两个正数的和是差的5倍.则较大数与较小数之比为( ).(A5(B3(c9(D)2(E)詈7.等差数列l3,16,19,…,70,73中,共有( )项.(A)20 (B)21 (C)24 (D)60 (E)618.两年前,皮特的年龄为其表弟克莱尔年龄的3倍;四年前,皮特的年龄为克莱尔年龄的4倍.( )年后,皮特和克莱尔的年龄比为2:1.(A)2 (B)4 (C)5 (D)6 (E)89.已知两个圆柱的体积相同,第二个圆柱半径比第一个圆柱半径多10%.下列叙述正确的为( ).(A)第二个圆柱比第一个圆柱低10%(B)第一个圆柱比第二个圆柱高10%(c)第二个圆柱比第一个圆柱低21%(D)第一个圆柱比第二个圆柱高21%(E)第二个圆柱的高是第一个圆柱高的80%10.对于字母排列abed,有( )种不同的重排,使得原来排列中相邻的两个字母重排后不能相邻(如ab、ba在重排后不能出现).(A)0 (B)1 (C)2 (D)3 (E)411.已知矩形的长与宽之比为4:3,对角线的长为d.若用|l} 表示矩形的面积,则k 的值为( ).(A)号(B)号(c) (D) (E)12.已知A(√7c,a)、B(√7c,b)为曲线Y + =2x Y +I_ L的两不同点.则Ia—bI的值为( ).(A)1 (B)詈(c)2(D) (E)1+13.克劳迪娅有5分和10分的硬币共12枚,用这些硬币中的一部分或者全部硬币恰可以组合成17种不同的币值.则克劳迪娅有( )枚1O分的硬币.(A)3 (B)4 (C)5 (D)6 (E)714.钟表圆盘的半径为2O厘米,它与另一个半径为10厘米的小圆盘在12点位置外切,小圆盘上有一个固定指针,开始时指针竖直指向上方.当小圆盘按顺时针方向沿大表盘外沿滚动,且始终保持相切,直到小圆盘上的指针再一次竖直指向上方时停止.此时,两圆盘外切的切点位于大表盘上的( )点位置.(A)2 (B)3 (C)4 (D)6 (E)815.考虑分数(x,y为两个互素的正整Y数)组成的集合.若分子和分母均增加1,则分数的值增加10%.那么,集合中这样的分数有( )个.(A)0 (B)1 (C)2 (D)3(E)无数多16.若Y+4=( 一2),+4=(Y一2),且x#y,则+ 的值为( ).(A)10 (B)15 (C)20 (D)25 (E)3017.一条经过坐标原点的直线,与直线= 1、Y=1+ 围成一个等边三角形.则这个等边三角形的周长为( ).(A)2./6 (B)2+2,3 (c)6(D)3+2√3 (E)6+18.已知十六进制数是由O一9十个数码和A至F六个字母构成的,其中,A,B,…,F分别代表1O,11,…,15.在前1000个正整数中,找出所有只用数码表示的十六进制数.求出这些数的个数n,此时,凡的各位数码之和为( ).(A)17 (B)18 (C)19 (D)20 (E)2119.在等腰Rt△ABC中,已知BC=AC,28 中等数学C=90。
,面积为l2.5,ACB的三等分线分别与斜边AB交于点D、E.则△CDE的面积为( ).(A) (B)(c)学(D) (E)252O.一个矩形的长和宽均为正整数,面积为A平方厘米,周长为P厘米.则下面不可能为+P的数是( ).(A)100 (B)102 (C)104(D)106 (E)10821-在四面体ABCD中,已知AB=5,AC:3,曰c:4,j5}D:-4,AD:3,cD:.贝0四面体ABCD的体积为( ).(A)3√2 (B)2,3 (c)3√3(D)24、(E)半22.八人围坐在一张圆桌旁,每人面前放着一枚完全相同的硬币,所有人同时翻转自己的硬币.若硬币的头像朝上,则这个人站起来;若硬币的头像朝下,则这个人继续坐着.那么,没有相邻的两人站起来的概率为( ).(A 47 (B 3 (c)(D 25 (E)23.若函数)= 一+2口的零点为整数,则系数a的所有可能值之和为( ).(A)7 (B)8 (C)16 (D)17 (E)1824.已知四边形ABCD各边长均为正整数,周长为P,B与C均为直角,AB=2,CD=AD.若P<2015,则正整数P有( )个不同的可能值.(A)30 (B)31 (C)61 (D)62 (E)6325.设是边长为1的正方形,在U的边上任取两点,这两点的距离不小于的概率为(a,b、c∈Z+,(0,bre):1).则口+b+c的值为( ).(A)59 (B)60 (C)61 (D)62 (E)63参考答案1.E.(2。
一1+5一。
×5=去×5=.2.D.设箱子中有a块三角形瓷砖,b块正方形瓷砖.依题意得f{I3,a,0++b4=b2=58,4 (、a,.b,)):=(16,.9一).3.D.如图2,注意到,拼一层楼梯需要4根牙签;拼两层楼梯需要1O根牙签,增加6根;拼三层楼梯需要18根牙签,增加8根.于是,增加的牙签数成等差数列.从而,要拼5层楼图2梯,需要增加1O+12=22根牙签.4.B.设米娅的糖果数为m.于是,索菲亚的糖果数为2m,巴勃罗的糖果数为6m.若三人的糖果数一样多,则每人应有糖果数:3m.因此,巴勃罗要给索菲亚m块糖果,给米娅2m块糖果.从而,巴勃罗给索菲亚的糖果数占自己原来糖果数的0m=÷0.5.E.】5×81一】4 ×80 :1215 1 120 :95.2015年第7期29 设这两个正数为0、6(0>b).由题意得口+6=5(口一6) 詈=吾.注意到,该等差数列的首列为13,公差为3,末项为73.故其项数为+1:21.设两年前皮特的年龄为 3 ,克莱尔的年龄为;年后,皮特与克莱尔的年龄之比为则由题意知匿【+±2+±Y一一1i:4.所以,4年后皮特与克莱尔的年龄之比设第一个圆柱半径为,.,第二个圆柱半径为r2.则由题意得一又7cr 1=V1= =7cr 2。
h1 r2 121h2一r21—100hl=1.21h2.故第一个圆柱比第二个圆柱高21%.对于排列abcd的不同重排,若a在首位,则第二位只能放c或d,不妨设为c.此时,第三位没有字母可放.若不然,放b,则cb 相邻;放d,则cd相邻,矛盾.于是,首位不能类似地,也不能放d.若b在首位,则第二位只能放d,第三位放a,则末位放c,即bdac.类似地,cadb也符合.故共有两个符合条件的重排.11.C。
设矩形的长为4 ,宽为3纸则d=5x.于是,=詈.故s:3·4x=122= = .12.C.由题意将= 代入方程得),2+( )=2( )Y+1= (Y一丁c) =1= Y=7c±1.故In—bl=l(7c+1)一(7c一1)l=2.13.C.设克劳迪娅有枚5分硬币,12一枚lO分的硬币.则5 +1o(12一)=120—5x=5(24一).由于用这些硬币恰可以组合成17种不同的币值,因此,24 一= 17 = =7.从而,所求为12—7=5.14.C.如图3.图3设在大圆运动的角位移为则在小圆运动的角位移为360。
一故200=10(360。
一)= =120。
.从而,两圆盘外切于大表盘E的4点位置15.B.由题意得:xy+ 11 一10Y:030 中等数学= ( 一lO)(Y+11)=一110.由、Y为正整数知一10 > 一10.Y+11>11.故( 一10,Y+l1)= (一1,110),(一2,55),(一5,22)(X,Y)=(9,99)或(8,44)或(5,11).注意到,、Y互素.所以,(,Y)=(5,11).16.B.由题意知一4x:y,y2—4y= .两式相加得戈+y2=5( +Y),两式相减得一Y =3( 一Y).由≠y,知+Y=3.故+Y=5( +Y)=15.17.D.叟口图4.注意到,等边三角形的一条边经过坐标原点,另两边在直线=1和y:1+ 上.则第三边的直线方程为y 一.故三条直线交点为(1'1+ 3-)J1二y/.//O\\图4,,因此,正三角形边长为1+ ,周长为3+2 .18.E.注意到,表示1000的十六进制数为(3E8) .要找的数为小于1000且只用数码表示的十六进制数(abc)。