九年级上册青岛数学期末试卷模拟练习卷(Word版 含解析)
青岛版九年级上学期期末数学测试题及参考答案

青岛版九年级上学期期末数学测试题注意事项:本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,36分,第Ⅱ卷为非选择题,84分,共120分,考试时间120分钟。
第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选择出来并填在第4页的答题栏中,每小题选对得3分,选错,不选或选出的答案超过一个,均记零分)1. 如图,它们是一个物体的三视图,该物体的形状是( )俯视图正视图左视图A. 圆柱B. 正方体C. 圆锥D. 长方体2..顺次连结等腰梯形各边中点得到的四边形是()A、矩形B、菱形C、正方形D、平行四边形3.小明拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能...是A.B.C.D.4. 根据下列表格的对应值:02=++c bx ax 的范围是A . 3<x <3.23B . 3.23<x <3.24C . 3.24<x <3.25D .3.25 <x <3.26 5. 下列函数中,属于反比例函数的是 A 、3x y = B 、13y x=C 、52y x =-D 、21y x =+ 6. 将方程122=-x x 进行配方,可得 A .2)1(2=+x B .5)2(2=-x C .2)1(2=-x D .1)1(2=-x7. 对于反比例函数2y x=,下列说法不正确...的是 A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小 8. 到三角形三条边的距离相等的点是三角形 A 、三条角平分线的交点 B 、三条高的交点 C 、三边的垂直平分线的交点 D 、三条中线的交点9. 一元二次方程2560--=的根是x xA、x1=1,x2=6B、x1=2,x2=3C、x1=1,x2=-6D、x1= -1,x2=610. 如果矩形的面积为6cm2,那么它的长y cm与宽x cm 之间的函数关系用图象表示大致A B C D11. 顺次连结等腰梯形各边中点得到的四边形是A、矩形B、菱形C、正方形D、平行四边形12. 如图,△ABC中,∠A=30°,∠C=90° AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是Array A、AD=DBB、DE=DCC、BC=AED、AD=BC一、选择题(每小题3分,共36分)填写最后结果,每小题填对得3分)13.在“W el i k e m a t h s.”这个句子的所有字母中,字母“e”出现的频率约为(结果保留2个有效数字).14.任意写出一个经过一、三象限的反比例函数图象的表达式.15.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次鱼共200条,有10条做了记号,则估计湖里有_____________条鱼.16.小明想知道某塔的高度,可是又不能爬上去,便灵机一动,发现身高1.80米的他在阳光下影长为2.4米,而塔的影子正好为36米,则塔的高度为______米17.某商品成本为500元,由于连续两年降低成本,现为190元.若每年成本降低率相同,设成本降低率为x,则所列方程为:.18.菱形的一条对角线长是6cm,周长是20cm,则菱形的面积是 cm2.19. 等腰△ABC一腰上的高为3,这条高与底边的夹角为60°,则△ABC的面积;三、解答题(本大题共7小题,满分63分,解答应写出必要的文字说明、证明过程或推演步骤)20. (本小题满分8分, 每小题答对得4分)解方程:(1)2 x2 + 5 x - 1= 0(2)2(2)-=-x x x21.(本小题满分6分)如图,树、红旗、人在同一直线上。
青岛青大附中初三数学数学九年级上册期末数学模拟试题及答案

青岛青大附中初三数学数学九年级上册期末数学模拟试题及答案一、选择题1.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 722.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度 3.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1) B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)4.若25x y =,则x y y+的值为( ) A .25 B .72C .57D .755.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC = C .12DE BC = D .2ACAE= 6.sin30°的值是( ) A .12B .22C 3D .17.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .128.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x <B .2x >C .0x <D .0x >9.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断10.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80° 11.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-312.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π-C .3π-D .3π-13.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2B .2C .-3D .314.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C 10D 31015.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°二、填空题16.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.17.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.18.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2. 19.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.20.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)21.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.22.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.23.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.24.方程290x 的解为________.25.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.26.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________. 27.已知3a =4b ≠0,那么ab=_____. 28.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)29.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.30.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题31.如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC= 43,BC=4.(1)求证:DE为圆O的切线;(2)求阴影部分面积.32.某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就要减少.根据经验估计,每增种1棵树,平均每棵树就少结5个橙子.设果园增种x棵橙子树,果园橙子的总产量为y个.(1)求y与x之间的关系式;(2)增种多少棵橙子树,可以使橙子的总产量在60420个以上?33.如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)34.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?35.解方程:(1)3x2-6x-2=0;(2)(x-2)2=(2x+1)2.四、压轴题36.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.37.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、FC ,且EC EF ⊥.(1)求证:AEF BCE ∽; (2)若23AC =,求AB 的长;(3)在(2)的条件下,求出ABC 的外接圆圆心与CEF △的外接圆圆心之间的距离? 38.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.39.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.40.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P 3,2),Q 3,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点,∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDS S =四边形, ∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B. 【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.2.C解析:C 【解析】 【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到. 【详解】解:∵y =2(x -1)2+3的顶点坐标为(1,3),y=2x 2的顶点坐标为(0,0),∴将抛物线y=2x 2向右平移1个单位,再向上平移3个单位,可得到抛物线y =2(x -1)2+3 故选:C .本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.3.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.4.D解析:D【解析】【分析】由已知可得x与y的关系,然后代入所求式子计算即可.【详解】解:∵25xy=,∴25x y =,∴2755y yx yy y++==.故选:D.【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键. 5.D解析:D【解析】【分析】只要证明AC ABAE AD=,即可解决问题.【详解】解:A. 12AE EC = ,可得AE :AC=1:1,与已知2AB AD=不成比例,故不能判定 B.2ECAC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2ABAD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定; 12DE BC = D.2AC ABAE AD ==,可得DE//BC , 故选D. 【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.A解析:A 【解析】 【分析】根据特殊角的三角函数值计算即可. 【详解】 解:sin30°=12. 故选:A . 【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.7.C解析:C 【解析】 【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 的度数,再由OB =OC 判断出△OBC 是等边三角形,由此可得出结论. 【详解】解:连接OB ,OC , ∵∠BAC =30°, ∴∠BOC =60°. ∵OB =OC ,BC =8, ∴△OBC 是等边三角形, ∴OB =BC =8. 故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.8.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围.【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x 1<时,y 随着x 的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增. 9.B解析:B【解析】【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可.【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦- ()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦ ∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B .【点睛】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.10.C解析:C【解析】【分析】 设∠A 、∠C 分别为x 、2x ,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A 、∠C 分别为x 、2x ,∵四边形ABCD 是圆内接四边形,∴x +2x =180°,解得,x =60°,即∠A =60°,故选:C .【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.11.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x 2=-3x ,x 2+3x=0,x (x+3)=0,解得:x 1=0,x 2=-3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.12.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 13.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m ,则1•m=2,解得m=2.故选B .【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a.要求熟练运用此公式解题. 14.C解析:C【解析】【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.【详解】tan A =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.15.C解析:C【解析】【分析】根据切线的性质,由PD 切⊙O 于点C 得到∠OCD =90°,再利互余计算出∠DOC =50°,由∠A =∠ACO ,∠COD =∠A +∠ACO ,所以1252A COD ∠=∠=︒,然后根据三角形外角性质计算∠PCA 的度数.【详解】解:∵PD 切⊙O 于点C ,∴OC ⊥CD ,∴∠OCD =90°,∵∠D =40°,∴∠DOC =90°﹣40°=50°,∵OA =OC ,∴∠A =∠ACO ,∵∠COD =∠A +∠ACO , ∴1252A COD ∠=∠=︒, ∴∠PCA =∠A +∠D =25°+40°=65°.故选C .【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.二、填空题16.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF 和Rt△DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM,∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X 字型”全等模型是解答此题的突破口,也是解答此题的关键.17.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算.【详解】 解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数 解析:-22【解析】 【分析】 1,2,32020的整数部分的规律,根据题意确定算式123420192020⎡⎡⎡⎤⎡-+-+⋅⋅⋅⋅⋅⋅+-⎣⎣⎣⎦⎣的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4……2020中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在1⎡⎤⎣⎦、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22 【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.18.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 19.【解析】【分析】由正方形的性质易证△ABC ∽△FEC ,可设BC=x ,只需求出BC 即可求出图中阴影部分的面积.【详解】如图所示:设BC =x ,则CE =1﹣x ,∵AB ∥EF ,∴△ABC ∽△解析:16 【解析】【分析】由正方形的性质易证△ABC ∽△FEC ,可设BC=x ,只需求出BC 即可求出图中阴影部分的面积.【详解】如图所示:设BC =x ,则CE =1﹣x ,∵AB ∥EF ,∴△ABC ∽△FEC∴AB EF =BC CE, ∴12=x 1x- 解得x =13, ∴阴影部分面积为:S △ABC =12×13×1=16, 故答案为:16. 【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答. 20.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y随x的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>21.1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC=45°∴tan∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB=90°是解此题的关键.22.3【解析】【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵=,AE=2,EC=6,AB=12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键. 23.40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠ 解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°, ∴3∠OCP=120°,∴∠OCP=40°24.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这x=±解析:3【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.x=±.故答案为3【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.25.3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA解析:3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.26.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数k<解析:3【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.a,231=方程有两个不相等的实数根,b=-,c k241240∴∆=-=->,b ac k∴<.k3k<.故答案为:3【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.27..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.28.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.29.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.30.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题31.(1)证明见解析;(2)S阴影=43-2π【解析】【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S阴影=2S△ECO-S扇形COD即可求解.【详解】(1)连接DC、DO.因为AC为圆O直径,所以∠ADC=90°,则∠BDC=90°,因为E为Rt△BDC斜边BC中点,所以DE=CE=BE=12 BC,所以∠DCE=∠EDC,因为OD=OC,所以∠DCO=∠CDO.因为BC为圆O 切线,所以BC⊥AC,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED⊥OD,所以DE为圆O的切线.(2)S阴影=2S△ECO-S扇形COD=-2π【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.32.(1)y=600-5x(0≤x<120);(2)7到13棵【解析】【分析】(1)根据增种1棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,然后根据函数关系式y=-5x2+100x+60000=60420,结合一元二次方程解法得出即可.【详解】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600-5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600-5x)(100+x)=-5x2+100x+60000当y=-5x2+100x+60000=60420时,整理得出:x2-20x+84=0,解得:x1=14,x2=6,∵抛物线对称轴为直线x=1002(5)-⨯-=10,∴增种7到13棵橙子树时,可以使果园橙子的总产量在60420个以上.【点睛】此题主要考查了二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.33.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据四边形ABCD是平行四边形可得AD∥BC,∠FGE=FBC,再根据已知∠FBC=∠DCE,进而可得结论;(2)作三角形FBC的外接圆交AD于点P即可证明.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC∴∠FGE=∠FBC∵∠FBC=∠DCE,∴∠FGE=∠DCE∵∠FEG=∠DEC∴∠D=∠F.(2)如图所示:点P 即为所求作的点.证明:作BC 和BF 的垂直平分线,交于点O ,作△FBC 的外接圆,连接BO 并延长交AD 于点P ,∴∠PCB =90°∵AD ∥BC∴∠CPD =∠PCB =90°由(1)得∠F =∠D∵∠F =∠BPC∴∠D =∠BPC∴△BPC ∽△CDP .【点睛】此题主要考查圆的综合应用,解题的关键是熟知平行四边形的性质、外接圆的性质及相似三角形的判定与性质.34.(1)1502y x =-+(2)当x 为10时,超市每天销售这种玩具可获利润2250元(3)当x 为20时w 最大,最大值是2400元【解析】【分析】 (1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到()213024502w x =--+,根据二次函数的性质得到当30x <时,w 随x 的增大而增大,于是得到结论.【详解】(1)根据题意得,1502y x =-+;(2)根据题意得,()1405022502x x ⎛⎫+-+= ⎪⎝⎭, 解得:150x =,210x =,∵每件利润不能超过60元,∴10x =, 答:当x 为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,()211405030200022w x x x x ⎛⎫=+-+=-++ ⎪⎝⎭()213024502x =--+, ∵102a =-<, ∴当30x <时,w 随x 的增大而增大, ∴当20x时,2400w =增大,答:当x 为20时w 最大,最大值是2400元. 【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.35.(1)x 1=1+3,x 2=1-3;(2)x 1=13,x 2=-3 【解析】【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23 x 2-2x +1=23+1 (x -1)2=53x -1=∴x 1=1x 2=1 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.四、压轴题36.(1)2+2)610t ≤或1016-≤-3)325m ≤-或0m ≥ 【解析】【分析】 (1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,根据只有一个交点可求出b ,再联立求出P 的坐标,从而判断出PQ 平分∠AOB ,再利用直线1l 表达式求A 、B 坐标证明OA=OB ,从而证出PQ 即为最小距离,最后利用勾股定理计算即可;(2)过点T 作TH ⊥直线2l ,可判断出T 上的点到直线2l的最大距离为TH +后根据最大距离的范围求出TH 的范围,从而得到FT 的范围,根据范围建立不等式组求解即可;(3)把点P 坐标带入表达式,化简得到关于a 、b 的等式,从而推出直线3l 的表达式,根据点E 的坐标可确定点E 所在直线表达式,再根据最小距离为0,推出直线3l 一定与图形K 相交,从而分两种情况画图求解即可.【详解】解:(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,∵ 直线:y x b =-+与H 相交于点P , ∴2x b x-+=,即220x bx -+=,只有一个解, ∴24120b ∆=-⨯⨯=,解得b =∴y x =-+联立2y x y x ⎧=-+⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩P ,∴PM OM ==P 在第一、三象限夹角的角平分线上,即PQ 平分∠AOB , ∴Rt POM 为等腰直角三角形,且OP=2,∵直线1l :2y x =--,∴当0y =时,2x =-,当0x =时,2y =-,∴A(-2,0),B(0,-2),∴OA=OB=2,。
山东省青岛市2022-2023学年数学九上期末质量检测模拟试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在□ABCD 中,R 为BC 延长线上的点,连接AR 交BD 于点P ,若CR :AD =2:3,则AP :PR 的值为( )A .3:5B .2:3C .3:4D .3:22.如图所示的图案是按一定规律排列的,照此规律,在第1至第2018个图案中“♣”共有( ) 个.A .504B .505C .506D .5073.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2为( )A .13124π-B .9π1?24-C .1364π+D .6 4.下列函数中,函数值y 随自变量x 的值增大而增大的是( ) A .3x y = B .-3x y = C .3y x = D .3y x=- 5.如图,在平面直角坐标系中,正方形OABC 的顶点O 、B 的坐标分别是(0,0),(2,0),则顶点C 的坐标是( )A .(1,1)B .(﹣1,﹣1)C .(1,﹣1)D .(﹣1,1)6.已知OA ,OB 是圆O 的半径,点C ,D 在圆O 上,且//OA BC ,若26ADC ∠=︒,则B 的度数为( )A .30B .42︒C .46︒D .52︒7.已知一元二次方程1–(x –3)(x +2)=0,有两个实数根x 1和x 2(x 1<x 2),则下列判断正确的是( )A .–2<x 1<x 2<3B .x 1<–2<3<x 2C .–2<x 1<3<x 2D .x 1<–2<x 2<38.已知点()()121,,2,A y B y -都在双曲线3m y x +=上,且12y y >,则m 的取值范围是( ) A .m 0< B .0m > C .3m >-D .m 3<- 9.如图,二次函数y =ax 2+bx+c (a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,且对称轴为x =1,点B 坐标为(﹣1,0),则下面的四个结论,其中正确的个数为( )①2a+b =0②4a ﹣2b+c <0③ac >0④当y >0时,﹣1<x <4A .1个B .2个C .3个D .4个10.已知关于x 的一元二次方程230x mx +=+有两个实数根11x =,2x n =,则代数式()2020m n +的值为( )A .0B .1C .20203D .20207 二、填空题(每小题3分,共24分)11.已知线段a =4,b =16,则a ,b 的比例中项线段的长是_______.12.已知正方形ABCD 2,分别以B 、D 为圆心,以正方形的边长为半径在正方形内画弧,得到如图所示的阴影部分,若随机向正方形ABCD 内投掷一颗石子,则石子落在阴影部分的概率为_____.(结果保留π)13.在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m 2下降到12月份的5670元/m 2,则11、12两月平均每月降价的百分率是_____.14.如图,王师傅在一块正方形钢板上截取了 4 cm 宽的矩形钢条,剩下的阴影部分的面 积是296cm ,则原来这块正方形钢板的边长是__________cm.15.如图,在ABC 中,点E 是边BC 的中点,⊙O 经过A 、C 、E 三点,交AB 于点D ,CD 是⊙O 的直径,F 是EC 上的一个点,且24B ∠=︒,则AFC ∠=___________︒.16.在本赛季CBA 比赛中,某运动员最后六场的得分情况如下:17、15、21、28、12、19,则这组数据的方差为______.17.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts ,当t =__________时,△CPQ 与△CBA 相似.18.在一个不透明的布袋中装有4个白球和n 个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是14,则n =__.三、解答题(共66分)19.(10分)某农户生产经销一种农副产品,已知这种产品的成本价为20元/kg ,市场调查发现,在一段时间内该产品每天的销售量W(kg)与销售单价x (元/kg)有如下关系:W=280x -+,设这种产品每天的销售利润为y (元) . (1)求y 与x 之间的函数关系式;(2)当销售单价定为多少元时,每天的销售利润最大?最大利润是多少?20.(6分)如图,在△ABC 中,D 是BC 边上的中点,且AD =AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若S △ABC =20,BC =10,求DE 的长.21.(6分)如图,一次函数y =kx+b 与反比例函数y =m x (x <0)的图象相交于点A 、点B ,与X 轴交于点C ,其中点A (﹣1,3)和点B (﹣3,n ).(1)填空:m = ,n = .(2)求一次函数的解析式和△AOB 的面积.(3)根据图象回答:当x 为何值时,kx+b≥m x(请直接写出答案) .22.(8分)如图,PB 与⊙O 相切于点B ,过点B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连结PA ,AO ,AO 的延长线交⊙O 于点E ,与PB 的延长线交于点D .(1)求证:PA 是⊙O 的切线;(2)若tan ∠BAD=23, 且OC=4,求PB 的长.23.(8分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.24.(8分)如图,BD是⊙O的直径.弦AC垂直平分OD,垂足为E.(1)求∠DAC的度数;(2)若AC=6,求BE的长.25.(10分)已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式;26.(10分)阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标B x的取值范围.参考答案一、选择题(每小题3分,共30分)1、A【分析】证得△ADP∽△RBP,可得AD APBR PR=,由AD=BC,可得AD APAD RC PR=+.【详解】∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADP∽△RBP,∴AD AP BR PR=,∴AD AP AD RC PR=+.∴AD AP2PRAD AD3=+=35.故选:A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的对应线段成比例.2、B【分析】根据题意可知所示的图案每四个为一组,交替出现,从而可以计算出在第1至第2018个图案中“♣”共有多少个,进行分析即可求解.【详解】解:由图可知,所示的图案每四个为一组,交替出现,∵2018÷4=504…2,∴在第1至第2018个图案中“♣”共有504+1=505(个).故选:B.【点睛】本题考查图形的变化类,解答本题的关键是明确题意以及发现题目中图形的变化规律并利用数形结合的思想进行分析解答.3、A【解析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-22903902360360ππ⨯⨯⨯⨯-=13124π-,故选A.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.4、A【解析】一次函数当0a >时,函数值y 总是随自变量x 的增大而增大,反比例函数当k 0<时,在每一个象限内,y 随自变量x 增大而增大.【详解】A 、该函数图象是直线,位于第一、三象限,y 随x 增大而增大,故本选项正确;B 、该函数图象是直线,位于第二、四象限,y 随x 增大而减小,故本选项错误;C 、该函数图象是双曲线,位于第一、三象限,在每一象限内,y 随x 增大而减小,故本选项错误;D 、该函数图象是双曲线,位于第二、四象限,在每一象限内,y 随x 增大而增大,故本选项错误.故选:A .【点睛】本题考查了一次函数、反比例函数的增减性;熟练掌握一次函数、反比例函数的性质是关键.5、C【详解】解:由图可知,点B 在第四象限.各选项中在第四象限的只有C .故选C .6、D【分析】连接OC ,根据圆周角定理求出∠AOC ,再根据平行得到∠OCB ,利用圆内等腰三角形即可求解.【详解】连接CO ,∵26ADC ∠=︒∴∠AOC=252ADC ∠=︒∵//OA BC∴∠OCB=∠AOC=52︒∵OC=BO ,∴B =∠OCB=52︒故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.7、B【解析】设y=-(x ﹣3)(x+2),y 1=1﹣(x ﹣3)(x+2)根据二次函数的图像性质可知y 1=1﹣(x ﹣3)(x+2)的图像可看做y=-(x ﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x ﹣3)(x+2),y 1=1﹣(x ﹣3)(x+2)∵y=0时,x=-2或x=3,∴y=-(x ﹣3)(x+2)的图像与x 轴的交点为(-2,0)(3,0),∵1﹣(x ﹣3)(x+2)=0,∴y 1=1﹣(x ﹣3)(x+2)的图像可看做y=-(x ﹣3)(x+2)的图像向上平移1,与x 轴的交点的横坐标为x 1、x 2, ∵-1<0,∴两个抛物线的开口向下,∴x 1<﹣2<3<x 2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.8、D【分析】分别将A ,B 两点代入双曲线解析式,表示出1y 和2y ,然后根据12y y >列出不等式,求出m 的取值范围.【详解】解:将A (-1,y 1),B (2,y 2)两点分别代入双曲线3m y x+=,得 13y m =--,232m y +=, ∵y 1>y 2,332m m +∴-->, 解得3m <-,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,解不等式.反比例函数图象上的点的坐标满足函数解析式. 9、B【分析】①函数对称轴为:x =﹣2b a=1,解得:b =﹣2a ,即可求解;②x =﹣2时,y =4a ﹣2b+c <0,即可求解;③a <0,c >0,故ac <0,即可求解;④当y >0时,﹣1<x <3,即可求解.【详解】点B 坐标为(﹣1,0),对称轴为x =1,则点A (3,0),①函数对称轴为:x =﹣2b a=1,解得:b =﹣2a ,故①正确,符合题意; ②x =﹣2时,y =4a ﹣2b+c <0,故②正确,符合题意;③a <0,c >0,故ac <0,故③错误,不符合题意;④当y >0时,﹣1<x <3,故④错误,不符合题意;故选:B .【点睛】本题考查二次函数图像问题,熟悉二次函数图形利用数形结合解题是本题关键.10、B【分析】由题意根据根与系数的关系以及方程的解的概念即可求出答案.【详解】解:由根与系数的关系可知:12123x x m x x +=-=,,∴1+n=-m ,n=3,∴m=-4,n=3,∴()20202020(1)1m n +=-=.故选:B .【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系求值与代入求值.二、填空题(每小题3分,共24分)11、1【分析】设线段a ,b 的比例中项为c ,根据比例中项的定义可得c 2=ab ,代入数据可直接求出c 的值,注意两条线段的比例中项为正数.【详解】解:设线段a ,b 的比例中项为c ,∵c 是长度分别为4、16的两条线段的比例中项,∴c 2=ab =4×16, ∴c 2=64,∴c =1或-1(负数舍去),∴a 、b 的比例中项为1;故答案为:1.【点睛】本题主要考查了比例线段.掌握比例中项的定义,是解题的关键.12、22π-【分析】先求出空白部分面积,进而得出阴影部分面积,再利用石子落在阴影部分的概率=阴影部分面积÷正方形面积,进而得出答案.【详解】∵扇形ABC 中空白面积=222π=-, ∴正方形中空白面积=2×(2﹣2π)=4﹣π, ∴阴影部分面积=2﹣(4﹣π)=π﹣2,∴随机向正方形ABCD 内投掷一颗石子,石子落在阴影部分的概率=22π- . 故答案为:22π-. 【点睛】本题主要考查扇形的面积公式和概率公式,通过割补法,求出阴影部分面积,是解题的关键.13、10%【分析】设11、12两月平均每月降价的百分率是x ,那么11月份的房价为7000(1−x ),12月份的房价为7000(1−x )2,然后根据12月份的价格即可列出方程解决问题.【详解】解:设11、12两月平均每月降价的百分率是x ,由题意,得:7000(1﹣x )2=5670,解得:x 1=0.1=10%,x 2=1.9(不合题意,舍去).故答案为:10%.【点睛】本题是一道一元二次方程的应用题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14、12【分析】设原来正方形钢板的边长为xcm,根据题意可知阴影部分的矩形的长和宽分别为xcm,(x-4)cm,然后根据题意列出方程求解即可.【详解】解:设原来正方形钢板的边长为xcm,根据题意可知阴影部分的矩形的长和宽分别为xcm,(x-4)cm,根据题意可得:(4)96x x -=整理得:24960x x --=解得:1212;8x x ==-(负值舍去)故答案为:12.【点睛】本题考查一元二次方程的应用,根据题意列出阴影部分的面积的方程是本题的解题关键.15、1【分析】根据题意得到△BDC 是等腰三角形,外角和定理可得∠ADC 也就是要求的∠AFC .【详解】连接DE ,∵CD 是⊙O 的直径,∴∠DEC =90°,DE ⊥BC ,∵E 是BC 的中点,∴DE 是BC 的垂直平分线,则BD =CD ,∴∠DCE =∠B =24°,∴∠ADC =∠DCE +∠B =1°,∴∠AFC =∠ADC =1°,故填:1.【点睛】本题考查了线段垂直平分线的性质、外角和定理、同弧所对的圆周角相等,综合性较强,是中考填空题、选择题的常见题型.16、5259. 【分析】先计算出这组数据的平均数,然后根据方差公式求解. 【详解】解:平均数=12(171521281219)1863+++++= 所以方差是S 2=2222221222222[(1718)(1518)(2118)(2818)(1218)(1918)]6333333-+-+-+-+-+- =5259故答案为:5259.【点睛】本题考查方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 17、4.8或6411 【分析】根据题意可分两种情况,①当CP 和CB 是对应边时,△CPQ ∽△CBA 与②CP 和CA 是对应边时,△CPQ ∽△CAB ,根据相似三角形的性质分别求出时间t 即可.【详解】①CP 和CB 是对应边时,△CPQ ∽△CBA , 所以CP CB =CQ CA, 即16216t -=12t , 解得t =4.8;②CP 和CA 是对应边时,△CPQ ∽△CAB , 所以CP CA =CQ CB, 即16212t -=16t , 解得t =6411. 综上所述,当t =4.8或6411时,△CPQ 与△CBA 相似. 【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.18、1【分析】根据白球的概率公式列出方程求解即可.【详解】解:不透明的布袋中的球除颜色不同外,其余均相同,共有(n+4)个球,其中白球4个,根据概率公式知:P (白球)=4144n =+, 解得:n =1,故答案为:1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P ()m A n=.三、解答题(共66分)19、(1)221201600y x x =-+-;(2)当销售单价定为30元时每天的销售利润最大,最大利润是1元【分析】(1)每天的销售利润y=每天的销售量×每件产品的利润;(2)根据(1)得到的函数关系式求得相应的最值问题即可.【详解】(1)2(20)(20)(280)21201600y x W x x x x =-=--+=-+-;∴y 与x 之间的函数关系式为221201600y x x =-+-;(2)22212016002(30)200y x x x =-+-=--+,∵20-<,∴当30x =时,y 有最大值,其最大值为1.答:销售价定为30元时,每天的销售利润最大,最大利润是1元.【点睛】本题考查了二次函数的实际应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法求得二次函数的最值问题是常用的解题方法.20、(1)见解析;(2)83DE = 【分析】(1)根据题目条件证明ADC ACD ∠=∠和EBC ECB ∠=∠,利用两组对应角相等的三角形相似,证明ABC FCD ;(2)过点A 作AM CD ⊥于点M ,先通过ABC 的面积求出AM 的长,根据//DE AM 得到23DE BD AM BM ==,再算出DE 的长.【详解】解:(1)∵AD AC =,∴ADC ACD ∠=∠,∵D 是BC 边上的中点且DE BC ⊥∴EB EC =,∴EBC ECB ∠=∠,∴ABC FCD ;(2)如图,过点A 作AM CD ⊥于点M , ∵1202ABC SBC AM =⋅=, ∴110202AM ⨯=,解得4AM =, ∵AD AC =,AM CD ⊥,∴DM MC =,∵BD CD =,∴2BD DM =,∵DE BC ⊥,AM CD ⊥,∴//DE AM , ∴23DE BD AM BM ==, ∴83DE =.【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质和判定定理.21、 (1) ﹣3,1;(2) y=x+4,4;(3)﹣3≤x≤﹣1.【分析】(1)已知反比例函数y=m x 过点A (﹣1,3),B (﹣3,n )分别代入求得m 、n 的值即可;(2)用待定系数法求出一次函数的解析式,再求得一次函数与x 轴的交点坐标,根据S △AOB =S △AOC ﹣S △BOC 即可求得△AOB 的面积;(3)观察图象,确定一次函数图象在反比例函数图象上方时对应的x 的取值范围即可.【详解】(1)∵反比例函数y=过点A (﹣1,3),B (﹣3,n )∴m=3×(﹣1)=﹣3,m=﹣3n∴n=1故答案为﹣3,1(2)设一次函数解析式y=kx+b ,且过(﹣1,3),B (﹣3,1)∴解得:∴解析式y=x+4∵一次函数图象与x 轴交点为C∴0=x+4∴x=﹣4∴C(﹣4,0)∵S△AOB=S△AOC﹣S△BOC∴S△AOB =×4×3﹣×4×1=4(3)∵kx+b≥∴一次函数图象在反比例函数图象上方∴﹣3≤x≤﹣1故答案为﹣3≤x≤﹣1【点睛】本题考查了反比例函数与一次函数交点问题、用待定系数法求解析式、用图象法解不等式及用三角形面积的和差求三角形的面积,知识点较为综合但题目难度不大.22、(1)证明见解析(2)PB=313【分析】(1)通过证明△PAO≌△PBO可得结论;(2)根据tan∠BAD=23,且OC=4,可求出AC=6,再证得△PAC∽△AOC,最后利用相似三角形的性质以及勾股定理求得答案.【详解】解:(1)连结OB,则OA=OB,如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵PA PB PO PO OA OB=⎧⎪=⎨⎪=⎩,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO,∵PB为⊙O的切线,B为切点,∴PB⊥OB,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)∵在Rt△AOC中,tan∠BAD=tan∠CAO=23OCAC=,且OC=4,∴AC=6,则BC=6,∴2264213 OA,在Rt△APO中,AC⊥OP,易得△PAC∽△AOC,∴OC ACAC PC,即AC2=OC•PC,∴PC=9,∴OP=PC+OC=13,在Rt△PBC中,由勾股定理,得=【点睛】此题考查了切线的判定与性质、勾股定理、全等三角形的判定与性质、锐角三角函数、相似三角形的判定和性质,考查的知识点较多,关键是熟练掌握一些基本性质和定理,在解答综合题目时能灵活运用.23、(1)正方形、矩形、直角梯形均可;(1)①证明见解析②证明见解析【分析】(1)根据定义和特殊四边形的性质,则有矩形或正方形或直角梯形;(1)①首先证明△ABC≌△DBE,得出AC=DE,BC=BE,连接CE,进一步得出△BCE为等边三角形;②利用等边三角形的性质,进一步得出△DCE是直角三角形,问题得解.【详解】解:(1)正方形、矩形、直角梯形均可;(1)①∵△ABC≌△DBE,∴BC=BE,∵∠CBE=60°,∴△BCE是等边三角形;②∵△ABC≌△DBE,∴BE=BC,AC=ED;∴△BCE为等边三角形,∴BC=CE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,在Rt△DCE中,DC1+CE1=DE1,∴DC1+BC1=AC1.考点:四边形综合题.24、(1)30°;(2)33【分析】(1)由题意证明△CDE≌△COE,从而得到△OCD是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=12AC=3,然后利用30°角的正切值求得DE=3,然后根据题意求得OD=2DE=23,直径BD=2OD=43,从而使问题得解. 【详解】解:连接OA,OC∵弦AC垂直平分OD∴DE=OE,∠DEC=∠OEC=90°又∵CE=CE∴△CDE≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD是等边三角形∴∠DOC=60°∴∠DAC=30°(2)∵弦AC垂直平分OD∴AE=12AC=3又∵由(1)可知,在Rt△DAE中,∠DAC=30°∴tan 30DE AE =,即3DE =∴∵弦AC 垂直平分OD∴∴直径∴【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.25、(1)y =(x -1)2-1或y =x 2-2x -3;(2)y =-(x -1)2+1【分析】(1)由表格中的数据,得出顶点坐标,设出函数的顶点式,将(0,-3)代入顶点式即可;(2)由(1)得顶点坐标和顶点式,再根据关于x 轴对称的点的横坐标相同,纵坐标互为相反数求出抛物线的顶点坐标,然后根据新抛物线与原抛物线形状相同,开口方向向下写出解析式即可.【详解】(1)根据题意,二次函数图像的顶点坐标为(1,-1),设二次函数的表达式为y =a (x -1)2-1把(0,-3)代入y =a (x -1)2-1得,a =1∴y =(x -1)2-1或y =x 2-2x -3(2)解:∵y= y =(x -1)2-1,∴原函数图象的顶点坐标为(1,-1),∵描出的抛物线与抛物线y =x 2-2x -3关于x 轴对称,∴新抛物线顶点坐标为(1,1),∴这条抛物线的解析式为y =-(x -1)2+1,故答案为:y =-(x -1)2+1.【点睛】本题考查了本题考查了待定系数法求二次函数解析式、二次函数的图象、二次函数的性质以及二次函数图象与几何变换,根据顶点的变化确定函数的变化,根据关于x 轴对称的点的坐标特征求出描出的抛物线的顶点坐标是解题的关键.26、(1)②;(2)±1;(3)2<B x <3或3-<B x <2-【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF 度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【详解】(1)如下图所示:∵PM是⊙O的切线,∴∠PMO=90°,当⊙O的半径OM是定值时,22PM OP OM=-,∵1=2PMOS PM OM••,∴要使PMO△面积最小,则PM最小,即OP最小即可,当OP⊥l时,OP最小,符合最美三角形定义.故在图1三个三角形中,因为AO⊥x轴,故△AOP为⊙A与x轴的最美三角形.故选:②.(2)①当k<0时,按题意要求作图并在此基础作FM⊥x轴,如下所示:按题意可得:△AEF是直线y=kx与⊙A的最美三角形,故△AEF为直角三角形且AF⊥OF.则由已知可得:111=1222AEFS AE EF EF••=⨯⨯=,故EF=1.在△AEF中,根据勾股定理得:22AF==∵A(0,2),即OA=2,∴在直角△AFO中,22=2OF OA AF AF-=,∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F 点代入y=kx 可得:1k =-.②当k >0时,同理可得k=1.故综上:1k =±.(3)记直线33y x =+与x 、y 轴的交点为点D 、C ,则(3,0)D -,(0,3)C ,①当⊙B 在直线CD 右侧时,如下图所示:在直角△COD 中,有3OC =,3OD =tan 3OC ODC OD∠==ODC=60°. ∵△BMN 是直线33y x =+与⊙B 的最美三角形,∴MN ⊥BM ,BN ⊥CD ,即∠BND=90°,在直角△BDN 中,sin BN BDN BD∠=, 故23==sin sin 60?3BN BN BD BN BDN =∠. ∵⊙B 3, ∴3BM =.当直线CD 与⊙B 相切时,3BN BM ==因为直线CD 与⊙B 相离,故BN 3,此时BD >2,所以OB=BD-OD >23. 由已知得:113=322BMN S MN BM MN MN ••=•=3MN <1. 在直角△BMN 中,2223BN MN BM MN =+=+1+3=2,此时可利用勾股定理算得BD 43,OB BD OD =- <333-=33, 则23-<B x 3②当⊙B 在直线CD 左侧时,同理可得:B x <2-故综上:2<B x <3或3-<B x <2- 【点睛】 本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.。
青岛市初三数学九年级上册期末模拟试题(含标准答案)

青岛市初三数学九年级上册期末模拟试题(含标准答案)一、选择题1.二次函数y =3(x -2)2-1的图像顶点坐标是( ) A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)2.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度 3.若25x y =,则x y y+的值为( ) A .25B .72 C .57D .754.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π 5.一元二次方程x 2=9的根是( )A .3B .±3C .9D .±96.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 7.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80° B .40°C .50°D .20°8.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 9.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( )A .4B .4.5C .5D .610.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A.1 B.1.5 C.2 D.2.511.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是( ) A.2 B.3 C.4 D.512.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.8913.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()A.14B.13C.12D.2314.如图所示的网格是正方形网格,则sin A的值为()A.12B.22C.35D.4515.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=600二、填空题16.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.17.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.18.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.19.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.20.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.21.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.22.抛物线2(-1)3y x =+的顶点坐标是______.23.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____. 24.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.25.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.26.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.27.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.28.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 . 29.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.30.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题31.如图1,AB 、CD 是圆O 的两条弦,交点为P .连接AD 、BC .OM ⊥ AD ,ON ⊥BC ,垂足分别为M 、N.连接PM 、PN.图1 图2 (1)求证:△ADP ∽△CBP ;(2)当AB ⊥CD 时,探究∠PMO 与∠PNO 的数量关系,并说明理由; (3)当AB ⊥CD 时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON 的面积. 32.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标; (2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.33.“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A .全程马拉松;B .半程马拉松;C .迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组. (1)小明被分配到“迷你马拉松”项目组的概率为 ;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率. 34.解方程:3x 2﹣4x +1=0.(用配方法解)35.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.()1求一次函数y kx b =+的表达式;()2若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?四、压轴题36.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?37.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 38.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D.【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k).2.C解析:C【解析】【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.3.D解析:D【解析】【分析】由已知可得x与y的关系,然后代入所求式子计算即可.【详解】解:∵25xy=,∴25x y =,∴2755y yx yy y++==.故选:D.【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键.解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.5.B解析:B 【解析】 【分析】两边直接开平方得:3x =±,进而可得答案. 【详解】 解:29x =,两边直接开平方得:3x =±, 则13x =,23x =-. 故选:B . 【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解.6.A解析:A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .7.C解析:C 【解析】∵∠BOC=2∠BAC ,∠BAC=40° ∴∠BOC=80°, ∵OB=OC ,∴∠OBC=∠OCB=(180°-80°)÷2=50° 故选C .8.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.9.C解析:C 【解析】 【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可. 【详解】由3、4、6、7、x 的平均数是5, 即(3467)55++++÷=x 得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5. 故选C 【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.10.C解析:C 【解析】 【分析】因为OCP 和ODQ 为直角三角形,根据勾股定理可得OP 、DQ 、PQ 的长度,又因为CP //DQ ,两直线平行内错角相等,∠PCE=∠EDQ ,且∠CPE=∠DQE=90°,可证CPE ∽DQE ,可得CP DQ =PE EQ,设PE=x ,则EQ=14-x ,解得x 的取值,OE= OP-PE ,则OE 的长度可得. 【详解】解:∵在⊙O 中,直径AB=20,即半径OC=OD=10,其中CP ⊥AB ,QD ⊥AB , ∴OCP 和ODQ 为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP⊥AB,QD⊥AB,垂直于用一直线的两直线相互平行,∴CP//DQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.11.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数. 12.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.13.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12; 故选:C .【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数, 14.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E , ∵224225AC BC =+==BC =2AD 2232AC CD +=, ∵S △ABC =12AB •CE =12BC •AD ,∴CE=22326525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.17.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.19.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.20.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.21.2﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,解析:25﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 22.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.23.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5180n ⨯=6π, 解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.24.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-.【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.25.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴OC ===∴2CP OC OP =-=2.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.26.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 27.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 28.m≤且m≠1.【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=即1-4(-1)(m-1)≥0解得m≥,又一元二次方程所以m-1≠0综上m≥且m≠1.解析:m≤54且m≠1. 【解析】【分析】【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1.29.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.30.2【解析】【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即解析:5【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时, =0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。
2022-2023年青岛版初中数学(初三)九年级上册期末考试综合检测试卷及部分答案(三套)

2022-2023年青岛版数学九年级上册期末考试测试卷及答案(一)1.如图,已知点A(0,4),A(4,0),点A为线段AA的中点,且AA⊥AA,AA⊥A轴,则点A的坐标为( )A. (4,3)B. (4,2)C. (4,1.5)D. (4,1)2.一元二次方程x2+4x=5配方后可变形为()A.(x+2)2=5B.(x+2)2=9C.(x﹣2)2=9D.(x﹣2)2=21 3.如图,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子DA恰好与甲影子CA在同一条直线上,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙两同学相距()米.A.1B.2C.3D.54.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽P A等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米5.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b6.如图,在正方形ABCD中,AB=2,E是AD中点,BE交AC于点F,DF的长为()A.B.C.D.7.如图,二次函数y=ax2+c的图象与反比例函数y=的图象相交于A(﹣,1),则关于x的不等式ax2+c>的解集为()A.x<﹣B.x>﹣C.x<﹣或x>0D.﹣<x<1 8.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应如下表所示:x…﹣10123…y…﹣23676…下列说法:①abc>0;②a+b+c=6;③b2﹣4ac>0;④当y<6时,x<1;⑤关于x的方程ax2+bx+c=3的解是x1=0,x2=4.正确的有()个.A.2B.3C.4D.5二、填空题(本题满分18分,共6道小题,每小题3分)9.若关于x的一元二次方程x2+4x+k=0有实数根,则k的取值范围是.10.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是.11.已知函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),则+的值为.12.如图,矩形ABCD的对角线交于点O,点E是矩形外一点,CE∥BD,BE∥AC,∠ABD =30°,连接AE交BD于点F、连接CF.若AC=8,则线段CF的长为.13.体育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处为喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下(如图1).A点距离水平面为米,即OA=.如果曲线APB表示的是落点B离点O最远的一条水流(如图2),水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=ax2+bx+c(x>0),该抛物线的顶点是(2,),那么圆形水池的半径至少为米时,才能使喷出的水流不至于落在池外.14.如图是由若干个小正方体组成的.阴影部分是空缺的通道,一直通到对面.这个立体图形由个小正方体组成.三、作图题(本题满分4分)15.(4分)尺规作图:如图,已知∠α和线段a,求作:菱形ABCD,使∠DAB=∠α,对角线AC=a.四、解答题:16.(6分)(1)解方程:(x﹣3)2=7x﹣21(2)计算:tan260°﹣2sin30°﹣cos45°.17.(6分)在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色.(1)从袋中随机摸出1个,求摸到的是蓝色小球的概率;(2)从袋中随机摸出2个,用列表法或树状图法求摸到的都是红色小球的概率;(3)在这个袋中加入x个红色小球,进行如下试验:随机摸出1个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在0.9,则可以推算出x的值大约是多少?18.(8分)心理学家研究发现,一般情况下,一节课45分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC分别为线段,BC∥x轴,CD为双曲线的一部分),其中AB段的关系式为y=2x+20.(1)根据图中数据,求出CD段双曲线的关系式;(2)一道数学竞赛题,需要讲20分钟,为了效果较好,要求学生的注意力指标数最低达到32,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?19.(6分)小明家所在居民楼的对面有一座大厦AB=74米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)20.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元21.(8分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2BC,E、F、G分别是OC、OD、AB的中点.求证:(1)BE⊥AC;(2)连接AF,求证:四边形AGEF是菱形.22.(10分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?23.(10分)问题提出:将一个边长为n(n≥2)的菱形的四条边分别n等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?【问题探究】要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的菱形的四条边分别2等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.(2)第二行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.为便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行.因此第二行还包括斜边长为2,底长为1~2的平行四边形,共有2+1=1×(2+1)个.即:第二行平行四边形总共有2×(2+1)个.所以如图1,平行四边形共有2×(2+1)+1×(2+1)=(2+1)(2+1)=(2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有2个,边长为2的菱形共有12个.所以:如图1,菱形共有22+12=5=×2×3×5个.探究二:将一个边长为3的菱形的四条边分别3等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.(2)第二行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第二行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第二行平行四边形总共有2×(3+2+1)个.(3)第三行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为3,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第三行平行四边形总共有3×(3+2+1)个.所以:如图2,平行四边形共有3×(3+2+1)+2×(3+2+1)+1×(3+2+1)=(3+2+1)(3+2+1)=(3+2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个.所以:如图2,菱形共有32+22+12=14=×3×4×7个.探究三:将一个边长为4的菱形的四条边4等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.(2)第二行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第二行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.即:第二行平行四边形总共有2×(4+3+2+1)个.(3)模仿上面的探究,写出图3中第三行探究过程;(4)按照以上规律,第四行平行四边形总共有个.所以:如图3,平行四边形共有个.我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个.所以:如图3,菱形共有42+32+22+12=30=×4×5×9个.【问题解决】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数是,菱形的个数是(用n表示).【实际应用】将一个边长为n(n≥2)的菱形的四条边都n等分,连接对边对应的等分点,得出该菱形被剖分的网格中的平行四边形的个数是225个,则n=.【拓展延伸】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数与菱形的个数之比是135:19时,n 的值=.24.(12分)如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm和1cm,FQ⊥BC,分别交AC、BC于点P和点Q,连接EF、EP,设运动时间为t(s)(0<t<4)(1)连接DQ,若四边形EQDF为平行四边形,则t的值是;(2)设△EPF的面积为ycm2,求y与t的函数关系式;(3)运动时间t为何值时,EF⊥AC?参考答案:1.略2.一元二次方程x2+4x=5配方后可变形为()A.(x+2)2=5B.(x+2)2=9C.(x﹣2)2=9D.(x﹣2)2=21【分析】两边配上一次项系数一半的平方可得.【解答】解:∵x2+4x=5,∴x2+4x+4=5+4,即(x+2)2=9,故选:B.3.如图,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子DA恰好与甲影子CA在同一条直线上,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙两同学相距()米.A.1B.2C.3D.5【分析】根据甲的身高与影长构成的三角形与乙的身高和影长构成的三角形相似,列出比例式解答.【解答】解:设两个同学相距x米,∵△ADE∽△ACB,∴,∴,解得:x=1.故选:A.4.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽P A等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米【分析】根据正切函数可求小河宽P A的长度.【解答】解:∵P A⊥PB,PC=100米,∠PCA=35°,∴小河宽P A=PC tan∠PCA=100tan35°米.故选:C.5.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.6.如图,在正方形ABCD中,AB=2,E是AD中点,BE交AC于点F,DF的长为()A.B.C.D.【分析】先在Rt△ABE中利用勾股定理求出BE=,再证明△AFE∽△CFB,根据相似三角形对应边成比例得出BF=BE=,然后证明△ADF≌△ABF,即可得出DF =BF=.【解答】解:∵在正方形ABCD中,AB=2,E是AD中点,∴∠BAE=90°,AE=AD=AB=1,∴BE==.∵AE∥BC,∴△AFE∽△CFB,∴==,∴BF=2EF,∵BF+EF=BE,∴BF=BE=.在△ADF与△ABF中,,∴△ADF≌△ABF,∴DF=BF=.故选:C.7.如图,二次函数y=ax2+c的图象与反比例函数y=的图象相交于A(﹣,1),则关于x的不等式ax2+c>的解集为()A.x<﹣B.x>﹣C.x<﹣或x>0D.﹣<x<1【分析】把点P的纵坐标代入反比例函数解析式求出点P的坐标,再根据函数图象写出抛物线在双曲线上方部分的x的取值范围即可.【解答】解:∵点A横坐标为﹣,∴不等式ax2+c>的解集是x<﹣或x>0.故选:C.8.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应如下表所示:x…﹣10123…y…﹣23676…下列说法:①abc>0;②a+b+c=6;③b2﹣4ac>0;④当y<6时,x<1;⑤关于x的方程ax2+bx+c=3的解是x1=0,x2=4.正确的有()个.A.2B.3C.4D.5【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,本题得以解决.【解答】解:由表格可得,该函数的对称轴是直线x==2,∴该函数的顶点坐标是(2,7),有最大值,开口向下,∴a<0,∵x=0时,y=c=3,∴c>0,∵﹣=2,∴b=﹣4a>0,∴abc<0,故①错误;∵图像经过点(1,6),∴a+b+c=6,故②正确;∵由表格可得,抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;由表格可得,当y<6时,x<1,故④正确;∵函数的对称轴为直线x=2,∴点(0,3)关于对称轴的对称点为(4,3),∴关于x的方程ax2+bx+c=3的解是x1=0,x2=4.故⑤正确;故选:C.二、填空题(本题满分18分,共6道小题,每小题3分)9.若关于x的一元二次方程x2+4x+k=0有实数根,则k的取值范围是k≤4.【分析】根据判别式的意义得到△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故答案为:k≤4.10.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是(﹣1,2)或(1,﹣2).【分析】利用位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,把A点的横纵坐标分别乘以或﹣即可得到点A′的坐标.【解答】解:∵以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣2×,4×)或[﹣2×(﹣),4×(﹣)],即点A′的坐标为:(﹣1,2)或(1,﹣2).故答案为:(﹣1,2)或(1,﹣2).11.已知函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),则+的值为﹣.【分析】根据函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),得出ab=﹣6,a+b =1,再把要求的式子进行变形,然后代值计算即可.【解答】解:∵函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),∴b=﹣,b=﹣a+1,∴ab=﹣6,a+b=1,∴+==﹣;故答案为﹣.12.如图,矩形ABCD的对角线交于点O,点E是矩形外一点,CE∥BD,BE∥AC,∠ABD=30°,连接AE交BD于点F、连接CF.若AC=8,则线段CF的长为2.【分析】根据平行四边形的判定定理得到四边形OBEC是平行四边形,根据矩形的性质得到OB=OC,根据菱形的判定定理即可得到平行四边形OBEC是菱形,可得BE=OC =AO,由“AAS”可证△AOF≌△EBF,可得BF=OF,推出△OBC是等边三角形,根据等边三角形的性质得到CF⊥OB,解直角三角形即可得到结论.【解答】解:(1)∵CE∥BD,BE∥AC,∴四边形OBEC是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OB=BD,OC=AC,∴OB=OC,∴平行四边形OBEC是菱形;∴OC=BE=OA,∵BE∥AC,∴∠OAF=∠BEF,在△AOF与△EBF中,,∴△AOF≌△EBF(AAS),∴OF=BF,∵AC=8,∴BD=8,∴OC=OB=4,∵∠ABD=30°,∴∠OBC=60°,∴△OBC是等边三角形,∴CF⊥OB,∴CF=OC=2.故答案为:2.13.体育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处为喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下(如图1).A点距离水平面为米,即OA=.如果曲线APB表示的是落点B离点O最远的一条水流(如图2),水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=ax2+bx+c(x>0),该抛物线的顶点是(2,),那么圆形水池的半径至少为 4.5米时,才能使喷出的水流不至于落在池外.【分析】直接利用顶点式求出二次函数解析式,进而得出a的值,求出答案即可.【解答】解:由题意可得,设抛物线解析式为:y=a(x﹣2)2+,当x=0时,y=,则=a(0﹣2)2+,解得:a=﹣1,故抛物线解析式为:y=﹣(x﹣2)2+,当y=0时,0=﹣(x﹣2)2+,解得:x1=4.5,x2=﹣0.5,故圆形水池的半径至少为4.5米时,才能使喷出的水流不至于落在池外.故答案为:4.5.14.如图是由若干个小正方体组成的.阴影部分是空缺的通道,一直通到对面.这个立体图形由38个小正方体组成.【分析】由题意,阴影部分是空缺的通道,一直通到对面,即中间有重复,因此可分层计数,从前往后分为4层,画出每层的示意图进行计数即可.【解答】解:从前往后分层数,如图所示:共有13+6+6+13=38个,答:这个立体图形由38个小正方体组成.故答案为:38.三、作图题(本题满分4分)15.(4分)尺规作图:如图,已知∠α和线段a,求作:菱形ABCD,使∠DAB=∠α,对角线AC=a.【分析】作∠MAN=α,作∠MAN的角平分线AP,在射线AP时截取AC=a,作线段AC 的垂直平分线交AM于D,交AN于B,连接CD,BC,四边形ABCD即为所求作.【解答】解:如图,四边形ABCD即为所求作.四、解答题:16.(6分)(1)解方程:(x﹣3)2=7x﹣21(2)计算:tan260°﹣2sin30°﹣cos45°.【分析】(1)利用因式分解法求解即可;(2)代入特殊锐角的三角函数值,再计算乘方和乘法,最后计算加减即可.【解答】解:(1)∵(x﹣3)2=7x﹣21,∴(x﹣3)2﹣7(x﹣3)=0,则(x﹣3)(x﹣10)=0,∴x﹣3=0或x﹣10=0,解得x1=3,x2=10;(2)原式=()2﹣2×﹣×=3﹣1﹣1=1.17.(6分)在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色.(1)从袋中随机摸出1个,求摸到的是蓝色小球的概率;(2)从袋中随机摸出2个,用列表法或树状图法求摸到的都是红色小球的概率;(3)在这个袋中加入x个红色小球,进行如下试验:随机摸出1个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在0.9,则可以推算出x的值大约是多少?【分析】(1)根据概率公式可得;(2)画树状图列出所有等可能结果,再根据概率公式计算可得;(3)根据大量重复实验时,频率可估计概率列出方程求解可得.【解答】解:(1)∵4个小球中,有1个蓝色小球,∴P(蓝色小球)=;(2)画树状图如下:共有12种情况,摸到的都是红色小球的情况有6种,P(摸到的都是红色小球)==;(3)∵大量重复试验后发现,摸到红色小球的频率稳定在0.9,∴摸到红色小球的概率等于0.9,∴=0.9,解得:x=6.18.(8分)心理学家研究发现,一般情况下,一节课45分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC分别为线段,BC∥x 轴,CD为双曲线的一部分),其中AB段的关系式为y=2x+20.(1)根据图中数据,求出CD段双曲线的关系式;(2)一道数学竞赛题,需要讲20分钟,为了效果较好,要求学生的注意力指标数最低达到32,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【分析】(1)分别从图象中找到其经过的点,利用待定系数法求得函数的解析式即可;(2)分别求出注意力指数为32时的两个时间,再将两时间之差和20比较,大于20则能讲完,否则不能.【解答】解:(1)∵AB段的关系式为y=2x+20,∴当x=10时,y=40,∴点B的坐标为(10,40),点C的坐标为(24,40),设C、D所在双曲线的解析式为y2=,把C(24,40)代入得,k=960,∴y=(x>24).(2)令y=2x+20=32,∴32=2x+20,∴x=6令y==32,∴x=30,∵30﹣6=24>20,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.19.(6分)小明家所在居民楼的对面有一座大厦AB=74米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)【分析】利用所给角的三角函数用CD表示出AD、BD;根据AB=AD+BD=74米,即可求得居民楼与大厦的距离.【解答】解:设CD=x米.在Rt△ACD中,tan37°=,则=,∴AD=x;在Rt△BCD中,tan48°=,则=,∴BD=x.∵AD+BD=AB,∴x+x=74,解得:x=40,答:小明家所在居民楼与大厦的距离CD的长度是40米.20.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元【分析】根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.【解答】解:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.21.(8分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2BC,E、F、G分别是OC、OD、AB的中点.求证:(1)BE⊥AC;(2)连接AF,求证:四边形AGEF是菱形.【分析】(1)由平行四边形的性质可得OB=BC,由等腰三角形的性质可得出BE⊥AC;(2)由直角三角形的性质和三角形中位线定理可得到EG=EF,根据平行四边形的性质和菱形的判定定理即可得到结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴BO=BD,即BD=2BO,又∵BD=2BC,∴OB=BC,又∵点E是OC的中点,∴BE⊥AC;(2)∵E、F分别是OC、OD的中点,∴EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AG=AB,∴又∵平行四边形ABCD中,AB=CD,AB∥CD,∴EG=EF=AG,EF∥AG,∴四边形AGEF是菱形.22.(10分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?【分析】(1)根据表格中的x、y的值利用待定系数法确定一次函数的解析式即可;(2)根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.【解答】解:(1)由表格数据可推想函数表达式为一次函数,设:函数y与x的表达式为:y=kx+b,将(30,500),(40,400)代入表达式得:k=﹣10,b=800.函数关系式为:y=﹣10x+800;(2)工艺品每天获得的利润为W元,由题意得:W=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000,∴当x=50时,每天获得的利润最大,为9000元.23.(10分)问题提出:将一个边长为n(n≥2)的菱形的四条边分别n等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?【问题探究】要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的菱形的四条边分别2等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.(2)第二行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.为便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行.因此第二行还包括斜边长为2,底长为1~2的平行四边形,共有2+1=1×(2+1)个.即:第二行平行四边形总共有2×(2+1)个.所以如图1,平行四边形共有2×(2+1)+1×(2+1)=(2+1)(2+1)=(2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有2个,边长为2的菱形共有12个.所以:如图1,菱形共有22+12=5=×2×3×5个.探究二:将一个边长为3的菱形的四条边分别3等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.(2)第二行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第二行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第二行平行四边形总共有2×(3+2+1)个.(3)第三行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为3,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第三行平行四边形总共有3×(3+2+1)个.所以:如图2,平行四边形共有3×(3+2+1)+2×(3+2+1)+1×(3+2+1)=(3+2+1)(3+2+1)=(3+2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个.所以:如图2,菱形共有32+22+12=14=×3×4×7个.探究三:将一个边长为4的菱形的四条边4等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.(2)第二行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第二行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.即:第二行平行四边形总共有2×(4+3+2+1)个.(3)模仿上面的探究,写出图3中第三行探究过程;(4)按照以上规律,第四行平行四边形总共有4×(4+3+2+1)个.所以:如图3,平行四边形共有(4+3+2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个.所以:如图3,菱形共有42+32+22+12=30=×4×5×9个.【问题解决】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数是(n+n﹣1+n﹣2+…+1)2,菱形的个数是(用n表示).【实际应用】将一个边长为n(n≥2)的菱形的四条边都n等分,连接对边对应的等分点,得出该菱形被剖分的网格中的平行四边形的个数是225个,则n=5.【拓展延伸】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数与菱形的个数之比是135:19时,n 的值=9.【分析】本题是找规律的试题,通过第一行,第二行,第三行,进而推出第四行的规律为4×(4+3+2+1)个,在通过边数得到平行四边形的个数(n+n﹣1+n﹣2+…+1)2,菱形的个数为,再通过找规律得到其他答案.【解答】解:【问题探究】第三行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第三行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第三行还包括斜边长为3,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.即:第三行平行四边形总共有3×(4+3+2+1)个.按照以上规律,第四行平行四边形共有4×(4+3+2+1)个,所以,如图3,平行四边形共有4x(4+3+2+1)+3×(4+3+2+1)+2×(4+3+2+1)+1×(4+3+2+1)=(4+3+2+1)×(4+3+2+1)=(4+3+2+1)2个.【问题解决】将一个边长为n(n>2)的菱形的四条边都几等分,连接对边对应的等分点,根据上面的规律,得出该菱形的补剖分的网格中的平行四边形的个数是(n+n﹣1+n﹣2+…+1)2个,菱形的个数n(n+1)(2n+1)个.根据题意可得,(n+n﹣1+n﹣2+…+1)2=225,n+n﹣1+n﹣2+…+1=15,。
【5套打包】青岛市初三九年级数学上期末考试测试题(解析版)

A.人教版九年级第一学期期末模拟数学试卷【含答案】一.选择题(共14 小题,满分42 分,每小题3 分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>5 2.下列计算正确的是()A.+ =B.3 ﹣=3C.÷2=D.=23.如果与最简二次根式是同类二次根式,则a的值是()A.a=7 B.a=﹣2 C.a=1 D.a=﹣1 4.方程x2=4x 的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 5.已知关于x的一元二次方程x2﹣kx﹣6=0 的一个根为x=3,则另一个根为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=36.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15 场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.77.将函数y=2(x+1)2﹣3 的图象向右平移2个单位,再向上平移5个单位,可得到抛物线的顶点为()A.(﹣3,2)B.(3,8)C.(1,﹣8)D.(1,2)8.在正方形网格中,△ABC 在网格中的位置如图,则c os B 的值为()B.C.D.29.河堤横断面如图所示,河堤高B C=6m,迎水坡A B 的坡比为1:,则A B 的长为()A.12 m B.4 m C.5 m D.6 m10.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3 的数的概率是()A.B.C.D.11.如图,在R t△ABC 中,∠ACB=90°,点D,E 分别是A B,BC 的中点,点F是B D 的中点.若AB=10,则E F=()A.2.5 B.3 C.4 D.512.如图,在△ABC 中,点D 在BC 边上,连接AD,点G 在线段AD 上,GE∥BD,且交AB 于点E,GF∥AC,且交C D 于点F,则下列结论一定正确的是()A.=B.=C.=D.=13.如图,AB 是圆O 的直径,弦AC,BD 相交于点E,AC=BD,若∠BEC=60°,C 是的中点,则t an∠ACD 值是()A.B.C.D.14.二次函数y=ax2+bx+c 的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一坐标系内的大致图象是()A.B.C.D.二.填空题(共4 小题,满分16 分,每小题 4 分)15.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为把△ABO 缩小,则点A的对应点A'的坐标是.16.已知关于x的函数y=(m﹣1)x2+2x+m 图象与坐标轴只有2个交点,则m=.17.如图,在⊙O 中,半径O C 与弦A N 垂直于点D,且A B=16,OC=10,则C D 的长是.18.如图,点D 在△ABC 的边AC 上,若要使△ABD 与△ACB 相似,可添加的一个条件是(只需写出一个).三.解答题(共6 小题,满分62 分)19.完成下列各题:(1)解方程:x2﹣4x+3=0;(2)计算:cos60°+ sin45°﹣3tan30°.20.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市汽车零部件生产企业的利润逐年提高,据统计,2015 年利润为2 亿元,2017 年利润为2.88 亿元.(1)求该企业从2015 年到2017 年利润的年平均增长率;(2)若2018 年保持前两年利润的年平均增长率不变,该企业2018 年的利润能否超过3.5 亿元?21.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2 的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.22.如图1,2 分别是某款篮球架的实物图与示意图,已知AB⊥BC 于点B,底座BC 的长为1 米,底座BC 与支架AC 所成的角∠ACB=60°,点H 在支架AF 上,篮板底部支架EH∥BC,EF⊥EH 于点E,已知A H HF 长米,HE 长1米.(1)求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)23.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD 中,点E、F、G、H 分别是AB、BC、CD、DA 边的中点,连接EG,HF 交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD 均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1 中正方形ABCD 分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC 中,∠ACB=90°,AC=4,BC=3,小明发现△ABC 也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD 与△ABC 的相似比为;(3)现有一个矩形A BCD是自相似图形,其中长A D=a,宽A B=b(a>b).请从下列A、B 两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD 纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD 纵向分割成n 个全等矩形,且与原矩形都相似,则a =(用含n,b的式子表示);B:①如图4﹣1,若将矩形A BCD 先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD 先纵向分割出m 个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b 的式子表示).24.如图,在平面直角坐标系中,抛物线y=ax2﹣5ax+c 交x 轴于点A,点A 的坐标为(4,0).(1)用含a 的代数式表示c.(2)当a=时,求x为何值时y取得最小值,并求出y的最小值.(3)当a=时,求0≤x≤6 时y的取值范围.(4)已知点B的坐标为(0,3),当抛物线的顶点落在△AOB外接圆内部时,直接写出a 的取值范围.参考答案一.选【解答】解:择题(共14 小题,满分42 分,每小题3 分)1.∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.2.【解答】解:A、与不能合并,所以A选项错误;B、原式=2 ,所以B选项错误;C、原式=,所以C选项错误;D、原式==2 ,所以D选项正确.故选:D.3.【解答】解:∵与最简二次根式是同类二次根式,=2 ,∴5+a=3,解得:a=﹣2,故选:B.4.【解答】解:方程整理得:x(x﹣4)=0,可得x=0 或x﹣4=0,解得:x1=0,x2=4,故选:C.5.【解答】∵关于x 的一元二次方程x2﹣kx﹣6=0 的一个根为x=3,∴32﹣3k﹣6=0,解得k=1,∴x2﹣x﹣6=0,解得x=3 或x=﹣2,故选:A.6.【解答】解:设共有x 个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.7.【解答】解:y=2(x+1)2﹣3 的图象向右平移2 个单位,再向上平移5 个单位,得y=2(x+1﹣2)2﹣3+5,化简,得y=2(x﹣1)2+2,抛物线的顶点为(1,2),故选:D.8.【解答】解:在直角△ABD 中,BD=2,AD=4,则A B===2 ,则c os B===.故选:A.9.【解答】解:∵BC=6 米,迎水坡A B 的坡比为1:,∴,解得,AC=6 ,∴AB==12,故选:A.10【解答】解:∵共6 个数,大于3 的有3 个,∴P(大于3)==;故选:D.11【解答】解:在Rt△ABC 中,∵AD=BD=5,∴CD=AB=5,∵BF=DF,BE=EC,∴EF=CD=2.5.故选:A.12【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.13【解答】解:连接AD、BC.∵AB 是圆O 的直径,∴∠ADB=∠ACB=90°.在Rt△ADB 与Rt△BCA 中,AB=AB,AC=BD,∴Rt△ADB≌Rt△BCA,(HL)∴AD=BC,=.故∠BDC=∠BAC=∠3=∠4,△DEC 是等腰三角形,∵∠BEC=60°是△DEC 的外角,∴∠BDC+∠3=∠BEC=60°,∴∠3=30°,∴tan∠ACD=tan∠3=tan30°=.故选:B.14【解答】解:由二次函数开口向上可得:a>0,对称轴在y 轴左侧,故a,b 同号,则b >0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b 经过第一、二、三象限.故选:C.二.填空题(共4 小题,满分16 分,每小题 4 分)15【解答】解:∵以原点O为位似中心,相似比为,把△ABO 缩小,∴点A的对应点A′的坐标是(﹣2×,4×)或[﹣2×(﹣),4×(﹣)],即点A′的坐标为:(﹣1,2)或(1,﹣2).故答案为:(﹣1,2)或(1,﹣2).16【解答】解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x 轴只有一个交点,与Y 轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1 或0或.17【解答】解:连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2∴x=4,∴CD=4,故答案为:418【解答】解:要使△ABC 与△ABD 相似,还需具备的一个条件是∠ABD=∠C 或∠ADB =∠ABC 等,故答案为:∠ABD=∠C.三.解答题(共6 小题,满分62 分)19.【解答】解:(1)∵x2﹣4x+3=0,(x﹣3)=0,则x﹣1∴(x﹣1)=0 或x﹣3=0,解得:x1=1,x2=3;(2)原式=+ ×﹣3×=+ ﹣=1﹣.20【解答】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这两年该企业年利润平均增长率为20%;(2)如果2018 年仍保持相同的年平均增长率,那么2018 年该企业年利润为:2.88(1+20%)=3.456,3.456<3.5答:该企业2018 年的利润不能超过3.5 亿元.21【解答】解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2 的有2 种结果,所以转出的数字是﹣2 的概率为= ;(2)列表如下:由表可知共有 36 种等可能结果,其中数字之积为正数的有 20 种结果, 所以这两次分别转出的数字之积为正数的概率为= .22【解答】解:(1)在 R t △EFH 中,cos ∠FHE = =,∴∠FHE =45°,答:篮板底部支架 HE 与支架 AF 所成的角∠FHE 的度数为 45°;(2)延长 FE 交 CB 的延长线于 M ,过点 A 作 AG ⊥FM 于 G ,过点 H 作 HN ⊥AG 于 N ,则四边形 ABMG 和四边形 HNGE 是矩形,∴GM =AB ,HN =EG , 在 R t △ABC 中,∵tan ∠ACB =,∴AB=BC tan60°=1× =,∴GM=AB=,在Rt△ANH 中,∠F AN=∠FHE=45°,∴HN=AH sin45°=× =,∴EM=EG+GM=+ ,答:篮板底部点E到地面的距离是(+ )米.23【解答】解:(1)∵点H是A D的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC 中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD 与△ABC 相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为: b②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为: bB、①如图2,由①②可知纵向2 块矩形全等,横向3 块矩形也全等,∴DN=b,Ⅰ、当FM 是矩形DFMN 的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即F D:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF 是矩形DFMN 的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD 即FD:b=b:a解得F D=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为: b 或b;②如图3,由①②可知纵向m 块矩形全等,横向n 块矩形也全等,∴DN=b,Ⅰ、当FM 是矩形DFMN 的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即F D:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF 是矩形DFMN 的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD 即FD:b=b:a解得F D=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为: b 或24.【解答】解:(1)将A(4,0)代入y=ax2﹣5ax+c,得:16a﹣20a+c=0,解得:c=4a.(2)当a=时,c=2,∴抛物线的解析式为y=x2﹣x+2=(x﹣)2﹣.∵a=>0,∴当x=时,y 取得最小值,最小值为﹣.(3)当a=﹣时,c=﹣2,∴抛物线的解析式为y=﹣x2+ x﹣2=﹣(x﹣)2+ .∵a=﹣<0,∴当x=时,y 取得最大值,最大值为;当x=0 时,y=﹣2;当x=6 时,y=﹣×62+ ×6﹣2=﹣5.∴当0≤x≤6 时,y 的取值范围是﹣5≤y≤.(4)∵抛物线的解析式为y=ax2﹣5ax+4a=a(x﹣)2﹣a,∴抛物线的对称轴为直线x=,顶点坐标为(,﹣a).设线段AB 的中点为O,以AB 为直径作圆,设抛物线对称轴与⊙O 交于点C,D,过点O 作OH⊥CD 于点H,如图所示.∵点A的坐标为(4,0),点B的坐标(0,3),∴AB=5,点O的坐标为(2,),点H的坐标为(,).在R t△COH中,OC=AB=,OH=,∴CH=,∴点C的坐标为(人教版九年级第一学期期末模拟数学试卷【含答案】一.选择题(共14 小题,满分42 分,每小题3 分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>5 2.下列计算正确的是()A.+ =B.3 ﹣=3C.÷2=D.=23.如果与最简二次根式是同类二次根式,则a的值是()A.a=7 B.a=﹣2 C.a=1 D.a=﹣1 4.方程x2=4x 的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 5.已知关于x的一元二次方程x2﹣kx﹣6=0 的一个根为x=3,则另一个根为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15 场比赛,则共有多少个班级参赛?()A.A.4 B.5 C.6 D.79.将函数y=2(x+1)2﹣3 的图象向右平移2个单位,再向上平移5个单位,可得到抛物线的顶点为()A.(﹣3,2)B.(3,8)C.(1,﹣8)D.(1,2)8.在正方形网格中,△ABC 在网格中的位置如图,则c os B 的值为()B.C.D.220.河堤横断面如图所示,河堤高B C=6m,迎水坡A B 的坡比为1:,则A B 的长为()A.12 m B.4 m C.5 m D.6 m21.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3 的数的概率是()A.B.C.D.22.如图,在R t△ABC 中,∠ACB=90°,点D,E 分别是A B,BC 的中点,点F是B D 的中点.若AB=10,则E F=()A.2.5 B.3 C.4 D.523.如图,在△ABC 中,点D 在BC 边上,连接AD,点G 在线段AD 上,GE∥BD,且交AB 于点E,GF∥AC,且交C D 于点F,则下列结论一定正确的是()A.=B.=C.=D.=24.如图,AB 是圆O 的直径,弦AC,BD 相交于点E,AC=BD,若∠BEC=60°,C 是的中点,则t an∠ACD 值是()A.B.C.D.25.二次函数y=ax2+bx+c 的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一坐标系内的大致图象是()A.B.C.D.二.填空题(共4 小题,满分16 分,每小题 4 分)26.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为把△ABO 缩小,则点A的对应点A'的坐标是.27.已知关于x的函数y=(m﹣1)x2+2x+m 图象与坐标轴只有2个交点,则m=.28.如图,在⊙O 中,半径O C 与弦A N 垂直于点D,且A B=16,OC=10,则C D 的长是.29.如图,点D 在△ABC 的边AC 上,若要使△ABD 与△ACB 相似,可添加的一个条件是(只需写出一个).三.解答题(共6 小题,满分62 分)30.完成下列各题:(1)解方程:x2﹣4x+3=0;(2)计算:cos60°+ sin45°﹣3tan30°.20.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市汽车零部件生产企业的利润逐年提高,据统计,2015 年利润为2 亿元,2017 年利润为2.88 亿元.(3)求该企业从2015 年到2017 年利润的年平均增长率;(4)若2018 年保持前两年利润的年平均增长率不变,该企业2018 年的利润能否超过3.5 亿元?21.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(3)转动转盘一次,求转出的数字是﹣2 的概率;(4)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.22.如图1,2 分别是某款篮球架的实物图与示意图,已知AB⊥BC 于点B,底座BC 的长为1 米,底座BC 与支架AC 所成的角∠ACB=60°,点H 在支架AF 上,篮板底部支架EH∥BC,EF⊥EH 于点E,已知A H HF 长米,HE 长1米.(3)求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数.(4)求篮板底部点E到地面的距离.(结果保留根号)23.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD 中,点E、F、G、H 分别是AB、BC、CD、DA 边的中点,连接EG,HF 交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD 均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(4)图1 中正方形ABCD 分割成的四个小正方形中,每个正方形与原正方形的相似比为;(5)如图2,已知△ABC 中,∠ACB=90°,AC=4,BC=3,小明发现△ABC 也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD 与△ABC 的相似比为;(6)现有一个矩形A BCD是自相似图形,其中长A D=a,宽A B=b(a>b).请从下列A、B 两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD 纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD 纵向分割成n 个全等矩形,且与原矩形都相似,则a =(用含n,b的式子表示);B:①如图4﹣1,若将矩形A BCD 先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD 先纵向分割出m 个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b 的式子表示).24.如图,在平面直角坐标系中,抛物线y=ax2﹣5ax+c 交x 轴于点A,点A 的坐标为(4,0).(5)用含a 的代数式表示c.(6)当a=时,求x为何值时y取得最小值,并求出y的最小值.(7)当a=时,求0≤x≤6 时y的取值范围.(8)已知点B的坐标为(0,3),当抛物线的顶点落在△AOB外接圆内部时,直接写出a 的取值范围.参考答案一.选【解答】解:择题(共14 小题,满分42 分,每小题3 分)1.∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.9.【解答】解:A、与不能合并,所以A选项错误;B、原式=2 ,所以B选项错误;C、原式=,所以C选项错误;D、原式==2 ,所以D选项正确.故选:D.10.【解答】解:∵与最简二次根式是同类二次根式,=2 ,∴5+a=3,解得:a=﹣2,故选:B.1.【解答】解:方程整理得:x(x﹣4)=0,可得x=0 或x﹣4=0,解得:x1=0,x2=4,故选:C.12.【解答】∵关于x 的一元二次方程x2﹣kx﹣6=0 的一个根为x=3,∴32﹣3k﹣6=0,解得k=1,∴x2﹣x﹣6=0,解得x=3 或x=﹣2,故选:A.13.【解答】解:设共有x 个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.14.【解答】解:y=2(x+1)2﹣3 的图象向右平移2 个单位,再向上平移5 个单位,得y=2(x+1﹣2)2﹣3+5,化简,得y=2(x﹣1)2+2,抛物线的顶点为(1,2),故选:D.15.【解答】解:在直角△ABD 中,BD=2,AD=4,则A B===2 ,则c os B===.故选:A.9.【解答】解:∵BC=6 米,迎水坡A B 的坡比为1:,∴,解得,AC=6 ,∴AB==12,故选:A.10【解答】解:∵共6 个数,大于3 的有3 个,∴P(大于3)==;故选:D.11【解答】解:在Rt△ABC 中,∵AD=BD=5,∴CD=AB=5,∵BF=DF,BE=EC,∴EF=CD=2.5.故选:A.12【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.13【解答】解:连接AD、BC.∵AB 是圆O 的直径,∴∠ADB=∠ACB=90°.在Rt△ADB 与Rt△BCA 中,AB=AB,AC=BD,∴Rt△ADB≌Rt△BCA,(HL)∴AD=BC,=.故∠BDC=∠BAC=∠3=∠4,△DEC 是等腰三角形,∵∠BEC=60°是△DEC 的外角,∴∠BDC+∠3=∠BEC=60°,∴∠3=30°,∴tan∠ACD=tan∠3=tan30°=.故选:B.14【解答】解:由二次函数开口向上可得:a>0,对称轴在y 轴左侧,故a,b 同号,则b >0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b 经过第一、二、三象限.故选:C.二.填空题(共4 小题,满分16 分,每小题 4 分)15【解答】解:∵以原点O为位似中心,相似比为,把△ABO 缩小,∴点A的对应点A′的坐标是(﹣2×,4×)或[﹣2×(﹣),4×(﹣)],即点A′的坐标为:(﹣1,2)或(1,﹣2).故答案为:(﹣1,2)或(1,﹣2).16【解答】解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(4)当m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(5)函数为二次函数时,还有一种情况是:与x 轴只有一个交点,与Y 轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1 或0或.17【解答】解:连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2∴x=4,∴CD=4,故答案为:418【解答】解:要使△ABC 与△ABD 相似,还需具备的一个条件是∠ABD=∠C 或∠ADB =∠ABC 等,故答案为:∠ABD=∠C.三.解答题(共6 小题,满分62 分)19.【解答】解:(1)∵x2﹣4x+3=0,(x﹣3)=0,则x﹣1∴(x﹣1)=0 或x﹣3=0,解得:x1=1,x2=3;(2)原式=+ ×﹣3×=+ ﹣=1﹣.20【解答】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:这两年该企业年利润平均增长率为20%;(2)如果2018 年仍保持相同的年平均增长率,那么2018 年该企业年利润为:2.88(1+20%)=3.456,3.456<3.5答:该企业2018 年的利润不能超过3.5 亿元.21【解答】解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2 的有2 种结果,所以转出的数字是﹣2 的概率为= ;(2)列表如下:由表可知共有 36 种等可能结果,其中数字之积为正数的有 20 种结果, 所以这两次分别转出的数字之积为正数的概率为= .22【解答】解:(1)在 R t △EFH 中,cos ∠FHE = =,∴∠FHE =45°,答:篮板底部支架 HE 与支架 AF 所成的角∠FHE 的度数为 45°;(2)延长 FE 交 CB 的延长线于 M ,过点 A 作 AG ⊥FM 于 G ,过点 H 作 HN ⊥AG 于 N ,则四边形 ABMG 和四边形 HNGE 是矩形,∴GM =AB ,HN =EG , 在 R t △ABC 中,∵tan ∠ACB =,∴AB=BC tan60°=1× =,∴GM=AB=,在Rt△ANH 中,∠F AN=∠FHE=45°,∴HN=AH sin45°=× =,∴EM=EG+GM=+ ,答:篮板底部点E到地面的距离是(+ )米.23【解答】解:(1)∵点H是A D的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(5)在Rt△ABC 中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD 与△ABC 相似的相似比为:=,故答案为:;(6)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为: b②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为: bB、①如图2,由①②可知纵向2 块矩形全等,横向3 块矩形也全等,∴DN=b,Ⅰ、当FM 是矩形DFMN 的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即F D:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF 是矩形DFMN 的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD 即FD:b=b:a解得F D=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为: b 或b;②如图3,由①②可知纵向m 块矩形全等,横向n 块矩形也全等,∴DN=b,Ⅰ、当FM 是矩形DFMN 的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即F D:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF 是矩形DFMN 的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD 即FD:b=b:a解得F D=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为: b 或24.【解答】解:(1)将A(4,0)代入y=ax2﹣5ax+c,得:16a﹣20a+c=0,解得:c=4a.(2)当a=时,c=2,∴抛物线的解析式为y=x2﹣x+2=(x﹣)2﹣.∵a=>0,∴当x=时,y 取得最小值,最小值为﹣.(3)当a=﹣时,c=﹣2,∴抛物线的解析式为y=﹣x2+ x﹣2=﹣(x﹣)2+ .∵a=﹣<0,∴当x=时,y 取得最大值,最大值为;当x=0 时,y=﹣2;当x=6 时,y=﹣×62+ ×6﹣2=﹣5.∴当0≤x≤6 时,y 的取值范围是﹣5≤y≤.(7)∵抛物线的解析式为y=ax2﹣5ax+4a=a(x﹣)2﹣a,∴抛物线的对称轴为直线x=,顶点坐标为(,﹣a).设线段AB 的中点为O,以AB 为直径作圆,设抛物线对称轴与⊙O 交于点C,D,过点O 作OH⊥CD 于点H,如图所示.∵点A的坐标为(4,0),点B的坐标(0,3),∴AB=5,点O的坐标为(2,),点H的坐标为(,).在R t△COH中,OC=AB=,OH=,∴CH=,∴点C的坐标为(人教版九年级第一学期期末模拟数学试卷【含答案】一.选择题(共14 小题,满分42 分,每小题3 分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>5 2.下列计算正确的是()A.+ =B.3 ﹣=3C.÷2=D.=23.如果与最简二次根式是同类二次根式,则a的值是()A.a=7 B.a=﹣2 C.a=1 D.a=﹣1 4.方程x2=4x 的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 5.已知关于x的一元二次方程x2﹣kx﹣6=0 的一个根为x=3,则另一个根为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=310.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15 场比赛,则共有多少个班级参赛?()A.A.4 B.5 C.6 D.711.将函数y=2(x+1)2﹣3 的图象向右平移2个单位,再向上平移5个单位,可得到抛物线的顶点为()A.(﹣3,2)B.(3,8)C.(1,﹣8)D.(1,2)8.在正方形网格中,△ABC 在网格中的位置如图,则c os B 的值为()B.C.D.231.河堤横断面如图所示,河堤高B C=6m,迎水坡A B 的坡比为1:,则A B 的长为()A.12 m B.4 m C.5 m D.6 m32.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3 的数的概率是()A.B.C.D.33.如图,在R t△ABC 中,∠ACB=90°,点D,E 分别是A B,BC 的中点,点F是B D 的中点.若AB=10,则E F=()A.2.5 B.3 C.4 D.534.如图,在△ABC 中,点D 在BC 边上,连接AD,点G 在线段AD 上,GE∥BD,且交AB 于点E,GF∥AC,且交C D 于点F,则下列结论一定正确的是()A.=B.=C.=D.=35.如图,AB 是圆O 的直径,弦AC,BD 相交于点E,AC=BD,若∠BEC=60°,C 是的中点,则t an∠ACD 值是()A.B.C.D.36.二次函数y=ax2+bx+c 的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一坐标系内的大致图象是()A.B.C.D.二.填空题(共4 小题,满分16 分,每小题 4 分)37.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为把△ABO 缩小,则点A的对应点A'的坐标是.38.已知关于x的函数y=(m﹣1)x2+2x+m 图象与坐标轴只有2个交点,则m=.39.如图,在⊙O 中,半径O C 与弦A N 垂直于点D,且A B=16,OC=10,则C D 的长是.40.如图,点D 在△ABC 的边AC 上,若要使△ABD 与△ACB 相似,可添加的一个条件是(只需写出一个).三.解答题(共6 小题,满分62 分)41.完成下列各题:(1)解方程:x2﹣4x+3=0;(2)计算:cos60°+ sin45°﹣3tan30°.20.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市汽车零部件生产企业的利润逐年提高,据统计,2015 年利润为2 亿元,2017 年利润为2.88 亿元.(5)求该企业从2015 年到2017 年利润的年平均增长率;(6)若2018 年保持前两年利润的年平均增长率不变,该企业2018 年的利润能否超过3.5 亿元?21.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(5)转动转盘一次,求转出的数字是﹣2 的概率;(6)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.22.如图1,2 分别是某款篮球架的实物图与示意图,已知AB⊥BC 于点B,底座BC 的长为1 米,底座BC 与支架AC 所成的角∠ACB=60°,点H 在支架AF 上,篮板底部支架EH∥BC,EF⊥EH 于点E,已知A H HF 长米,HE 长1米.(5)求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数.(6)求篮板底部点E到地面的距离.(结果保留根号)23.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD 中,点E、F、G、H 分别是AB、BC、CD、DA 边的中点,连接EG,HF 交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD 均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(7)图1 中正方形ABCD 分割成的四个小正方形中,每个正方形与原正方形的相似比为;(8)如图2,已知△ABC 中,∠ACB=90°,AC=4,BC=3,小明发现△ABC 也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD 与△ABC 的相似比为;(9)现有一个矩形A BCD是自相似图形,其中长A D=a,宽A B=b(a>b).请从下列A、B 两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD 纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD 纵向分割成n 个全等矩形,且与原矩形都相似,则a =(用含n,b的式子表示);B:①如图4﹣1,若将矩形A BCD 先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD 先纵向分割出m 个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b 的式子表示).24.如图,在平面直角坐标系中,抛物线y=ax2﹣5ax+c 交x 轴于点A,点A 的坐标为(4,0).(9)用含a 的代数式表示c.(10)当a=时,求x为何值时y取得最小值,并求出y的最小值.(11)当a=时,求0≤x≤6 时y的取值范围.(12)已知点B的坐标为(0,3),当抛物线的顶点落在△AOB外接圆内部时,直接写出a 的取值范围.参考答案一.选【解答】解:择题(共14 小题,满分42 分,每小题3 分)1.∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.16.【解答】解:A、与不能合并,所以A选项错误;B、原式=2 ,所以B选项错误;C、原式=,所以C选项错误;D、原式==2 ,所以D选项正确.故选:D.17.【解答】解:∵与最简二次根式是同类二次根式,=2 ,∴5+a=3,解得:a=﹣2,故选:B.18.【解答】解:方程整理得:x(x﹣4)=0,可得x=0 或x﹣4=0,解得:x1=0,x2=4,故选:C.19.【解答】∵关于x 的一元二次方程x2﹣kx﹣6=0 的一个根为x=3,∴32﹣3k﹣6=0,解得k=1,∴x2﹣x﹣6=0,解得x=3 或x=﹣2,故选:A.20.【解答】解:设共有x 个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.。
2022-2023学年山东省青岛市市北区九年级(上)期末数学试卷+答案解析(附后)
一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A.B.C.D.2.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是2023-2024学年山东省青岛市市北区九年级(上)期末数学试卷( )A. B. C. D.3.若关于x 的方程有实数根,则实数m 的取值范围是( )A.B.C.D.4.已知反比例函数的图象经过点,那么该反比例函数图象也一定经过点( )A. B. C.D.5.如图,在中,,,若,则( )A. B. C.D.6.如图,一条河的两岸互相平行,为了测量河的宽度与河岸PQ垂直,测量得P,Q两点间距离为m米,,则河宽PT的长为( )A.B.C.D.7.如图,在中,分别以点A和点C为圆心,大于的长为半径作弧,两弧相交于M,N两点,作直线直线MN与AB相交于点D,连接CD,若,则CD的长是( )A. 6B. 3C.D. 18.抛物线上有两点,,若,则下列结论正确的是( )A. B.C. 或D. 以上都不对9.在同一平面直角坐标系中,函数与其中a,b是常数,的大致图象是( )A. B.C. D.10.如图1,在菱形ABCD中,,M是AB的中点,N是对角线BD上一动点,设DN长为x,线段MN与AN长度的和为y,图2是y关于x的函数图象,图象右端点F的坐标为,则图象最低点E的坐标为( )A. B. C. D.二、填空题:本题共7小题,每小题3分,共21分。
11.质检部门对某批产品的质量进行随机抽检,结果如下表所示:抽检产品数n1001502002503005001000合格产品数m89134179226271451904合格率在这批产品中任取一件,恰好是合格产品的概率约是结果保留一位小数______.12.如图,点在双曲线的图象上,轴,垂足为A,若,则该反比例函数的解析式为______.13.据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程______ .14.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作于点E,连接BE,若,,则矩形ABCD的面积为______ .15.如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为,反射角为反射角等于入射角,于点C,于点D,且,,,则的值为______.16.图1是装了液体的高脚杯示意图数据如图,用去一部分液体后如图2所示,此时液面______.17.当时,二次函数有最大值m,则______.三、解答题:本题共8小题,共64分。
2022-2023学年山东省青岛市青岛实验数学九年级第一学期期末考试模拟试题含解析
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为()4,0A ,其部分图象如图所示.下列叙述中:①24b ac <;②关于x 的方程20ax bx c ++=的两个根是122,4x x =-=;③20a b +=;④0a b c ++<;⑤当04x <<时,y 随x 增大而增大.正确的个数是( )A .4B .3C .2D .12.如图,Rt △ABC 中,∠A=90°,AD ⊥BC 于点D ,若BD :CD=3:2,则tanB=( )A .B .C .D .3.如图,ABC 内接于圆O ,65B ∠=︒,70C ∠=︒,若22BC =BC 的长为( )A .πB .2πC .2πD .22π4.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AC =8,BD =6,则菱形的周长等于( )A .40B .47C .24D .205.将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为( ) A .y=﹣(x+1)2+1B .y=﹣(x ﹣1)2+3C .y=﹣(x+1)2+5D .y=﹣(x+3)2+36.某学校要种植一块面积为100 m 2的长方形草坪,要求两边长均不小于5 m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A .B .C .D .7.若函数y =m 2x-的图象在其象限内y 的值随x 的增大而增大,则m 的取值范围是( ) A .m>2B .m <2C .m>-2D .m <-28.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y <<B .123y y <<C .213y y <<D .213y y <<9.一元二次方程x 2-2x+1=0的根的情况是( ) A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根10.已知抛物线y =ax 2+bx +c (a<0)过A (-3,0),B (1,0),C (-5,y 1),D (5,y 2)四点,则y 1与y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定二、填空题(每小题3分,共24分)11.如图,假设可以在两个完全相同的正方形拼成的图案中随意取点,那么这个点取在阴影部分的概率是______.12.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则tan ABC ∠=______.13.定义符号max{a ,b}的含义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b}=b .如max{1,﹣3}=1,则max{x 2+2x+3,﹣2x+8}的最小值是_____.14.如图,角α的两边与双曲线y =kx(k <0,x <0)交于A 、B 两点,在OB 上取点C ,作CD ⊥y 轴于点D ,分别交双曲线y =k x 、射线OA 于点E 、F ,若OA =2AF ,OC =2CB ,则CEEF的值为______.15.已知x =2y ﹣3,则代数式4x ﹣8y +9的值是_____.16.已知抛物线()2121y x =-+,当03x <<时,y 的取值范围是______________ 17.将一元二次方程2410x x -=+变形为2()x m k +=的形式为__________. 18.已知x =﹣1是方程x 2﹣2mx ﹣3=0的一个根,则该方程的另一个根为_____. 三、解答题(共66分)19.(10分)如图,矩形ABCD 中,() 4,0AB BC m m ==>.P 为边BC 上一动点(不与,B C 重合),过P 点作⊥PE AP交直线CD 于E .(1)求证:ABP PCE ∆∆;(2)当P 为BC 中点时,E 恰好为CD 的中点,求m 的值.20.(6分)如图,四边形ABCD 内接于⊙O ,点E 在CB 的延长线上,BA 平分∠EBD ,AE =AB . (1)求证:AC =AD . (2)当32AE EB =,AD =6时,求CD 的长.21.(6分)利川市南门大桥是上世纪90年代修建的一座石拱桥,其主桥孔的横截面是一条抛物线的一部分,2019年在维修时,施工队测得主桥孔最高点P 到水平线OM 的高度为30m .宽度OM 为60m .如图所示,现以O 点为原点,OM 所在直线为x 轴建立平面直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数解析式;(3)施工队计划在主桥孔内搭建矩形“脚手架”ABCD ,使A D 、点在抛物线上,B C 、点在水平线OM 上,为了筹备材料,需求出“脚手架”三根钢管、、AB AD DC 的长度之和的最大值是多少?请你帮施工队计算.22.(8分)九年级甲班和乙班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球;将两班选手的进球数绘制成如下尚不完整的统计图表: 进球数/个1098743乙班人数/个 1 1 2 4 1 1平均成绩 中位数 众数 甲班 7 7 c 乙班ab7(1)表格中b = ,c = 并求a 的值;(2)如果要从这两个班中选出一个成绩较为稳定的班代表年级参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班,请说明理由;如果要争取个人进球数进入学校前三名,你认为应该选择哪个班,请说明理由. 23.(8分)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE . 求证:AF=CE .24.(8分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB ⊥BC ,BE =CE ,连接DE . (1)求证:△BDE ≌△BCE ;(2)试判断四边形ABED 的形状,并说明理由.25.(10分)如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(1,0)A -,(4,)B m 两点,且抛物线经过点(5,0)C(1)求抛物线的解析式.(2)点P是抛物线上的一个动点(不与点A点B重合),过点P作直线PD x⊥轴于点D,交直线AB于点E.当2PE ED=时,求P点坐标;(3)如图所示,设抛物线与y轴交于点F,在抛物线的第一象限内,是否存在一点Q,使得四边形OFQC的面积最大?若存在,请求出点Q的坐标;若不存在,说明理由.26.(10分)如图,已知反比例函数kyx=与一次函数y x b=+的图象在第一象限相交于点()1,4A k-+.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图像写出使反比例函数的值大于一次函数的值的x取值范围.参考答案一、选择题(每小题3分,共30分) 1、B【分析】由抛物线的对称轴是 1x =,可知系数a b ,之间的关系,由题意,与 x 轴的一个交点坐标为() 4,0A ,根据抛物线的对称性,求得抛物线与x 轴的一个交点坐标为() 0B -2,,从而可判断抛物线与 x 轴有两个不同的交点,进而可转化求一元二次方程根的判别式,当 1x =时,代入解析式,可求得函数值,即可判断其y 的值是正数或负数. 【详解】抛物线的对称轴是 1x =1202ba b a∴-=+=,;③正确, 与x 轴的一个交点坐标为() 4,0A ∴抛物线与与 x 轴的另一个交点坐标为() 0B -2,∴关于x 的方程20ax bx c ++=的两个根是122,4x x =-=;②正确, 当x=1时,y=0a b c ++<;④正确∴抛物线与x 轴有两个不同的交点 ∴2b -4ac>0,2b >4ac 则①错误;当01x <<时,y 随x 增大而减小 当14x ≤<时,y 随 x 增大而增大,⑤错误; ∴②③④正确,①⑤错误故选:B. 【点睛】本题考查二次函数图象的基本性质:对称性、增减性、函数值的特殊性、二次函数与一元二次方程的综合运用,是常见考点,难度适中,熟练掌握二次函数图象基本性质是解题关键. 2、D【分析】首先证明△ABD ∽△ACD ,然后根据BD :CD=3:2,设BD=3x ,CD=2x ,利用对应边成比例表示出AD 的值,继而可得出tanB 的值. 【详解】在Rt △ABC 中, ∵AD ⊥BC 于点D , ∴∠ADB=∠CDA .∵∠B+∠BAD=90°,∠BAD+DAC=90°, ∴∠B=∠DAC .∴△ABD∽△CAD.∴DB:AD=AD:DC.∵BD:CD=3:2,∴设BD=3x,CD=2x.∴.,∴.故选D.【点睛】本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应边成比例求边长.3、A【分析】连接OB,OC.首先证明△OBC是等腰直角三角形,求出OB即可解决问题.【详解】连接OB,OC.∵∠A=180°-∠ABC-∠ACB=180°-65°-70°=45°,∴∠BOC=90°,∵2,∴OB=OC=2,∴BC的长为902180π⨯⨯=π,故选A.【点睛】本题考查圆周角定理,弧长公式,等腰直角三角形的性质的等知识,解题的关键是熟练掌握基本知识4、D【分析】根据菱形的性质可求得BO、AO的长,AC⊥BD,根据勾股定理可求出AB,进而可得答案.【详解】解:∵四边形ABCD是菱形,∴AB =BC =CD =DA ,132==BO BD ,142AO AC ==,AC ⊥BD , 则在Rt △ABO 中,根据勾股定理得:22345AB =+=, ∴菱形ABCD 的周长=4×5=1. 故选:D . 【点睛】本题考查了菱形的性质和勾股定理,属于基础题目,熟练掌握菱形的性质是解题的关键. 5、B【解析】解:∵将抛物线y =﹣(x +1)2+1向右平移2个单位,∴新抛物线的表达式为y =﹣(x +1﹣2)2+1=﹣(x ﹣1)2+1.故选B . 6、C【详解】由草坪面积为100m 2,可知x 、y 存在关系y=,然后根据两边长均不小于5m ,可得x≥5、y≥5,则x≤20,故选 :C . 7、B【分析】先根据反比例函数的性质列出关于m 的不等式,求出m 的取值范围即可. 【详解】∵函数y =2m x-的图象在其象限内y 的值随x 值的增大而增大, ∴m−1<0,解得m <1. 故选:B . 【点睛】本题考查的是反比例函数的性质,熟知反比例函数y =kx(k≠0)中,当k <0时,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大是解答此题的关键. 8、A【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.9、B【解析】△=b2-4ac=(-2)2-4×1×1=0,∴原方程有两个相等的实数根.故选B.【点睛】,本题考查根的判别式,一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10、A【分析】根据二次函数图象的对称轴位置以及开口方向,可得C(-5,y 1)距对称轴的距离比D(5,y 2)距对称轴的距离小,进而即可得到答案.【详解】∵抛物线y=ax2+bx+c(a<0)过A(-3,0),B(1,0),∴抛物线的对称轴是:直线x=-1,且开口向下,∵C(-5,y 1)距对称轴的距离比D(5,y 2)距对称轴的距离小,∴y1>y2,故选A.【点睛】本题主要考查二次函数的性质,掌握用抛物线的轴对称性比较二次函数值的大小,是解题的关键.二、填空题(每小题3分,共24分)11、3 7【分析】先设一个阴影部分的面积是x,可得整个阴影面积为3x,整个图形的面积是7x,再根据几何概率的求法即可得出答案.【详解】设一个阴影部分的面积是x,∴整个阴影面积为3x,整个图形的面积是7x,∴这个点取在阴影部分的概率是37xx=37,故答案为:3 7【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.12、1 2【分析】连接AC,根据网格特点和正方形的性质得到∠BAC=90°,根据勾股定理求出AC、AB,根据正切的定义计算即可.【详解】连接AC,由网格特点和正方形的性质可知,∠BAC=90°,根据勾股定理得,AC=2,AB=22,则tan∠ABC=12 ACAB,故答案为:12.【点睛】本题考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.13、1【分析】根据题意,利用分类讨论的方法、二次函数的性质和一次函数的性质可以求得各段对应的最小值,从而可以解答本题.【详解】∵(x2+2x+3)﹣(﹣2x+8)=x2+4x﹣5=(x+5)(x﹣1),∴当x=﹣5或x=1时,(x2+2x+3)﹣(﹣2x+8)=0,∴当x≥1时,max{x2+2x+3,﹣2x+8}=x2+2x+3=(x+1)2+2≥1,当x≤﹣5时,max{x2+2x+3,﹣2x+8}=x2+2x+3=(x+1)2+2≥18,当﹣5<x<1时,max{x2+2x+3,﹣2x+8}=﹣2x+8>1,由上可得:max{x2+2x+3,﹣2x+8}的最小值是1.故答案为:1.【点睛】本题考查了二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.14、4 9【解析】过C,B,A,F分别作CM⊥x轴,BN⊥x轴,AG⊥x轴,FH⊥x轴,设DO为2a,分别求出C,E,F的坐标,即可求出CEEF的值.【详解】如图:过C ,B ,A ,F 分别作CM ⊥x 轴,BN ⊥x 轴,AG ⊥x 轴,FH ⊥x 轴,设DO 为2a ,则E (2k a ,2a ), ∵BN ∥CM , ∴△OCM ∽△OBN , ∴CO CM BO BN ==23, ∴BN =3a , ∴B (3k a ,3a ), ∴直线OB 的解析式y =29a kx , ∴C (29k a,2a ), ∵FH ∥AG ,∴△OAG ∽△OFH ,∴23OA AG OF FH ==, ∵FH=OD=2a ,∴AG =43a , ∴A (34k a ,43a ), ∴直线OA 的解析式y =2169a kx , ∴F (98k a,2a ), ∴CE EF =292928k k a a k k a a --=49,故答案为:49【点睛】本题考查反比例函数图象上点的特征,相似三角形的判定,关键是能灵活运用相似三角形的判定方法.15、-1.【分析】根据x =2y ﹣1,可得:x ﹣2y =﹣1,据此求出代数式4x ﹣8y +9的值是多少即可.【详解】∵x =2y ﹣1,∴x ﹣2y =﹣1,∴4x ﹣8y +9=4(x ﹣2y )+9=4×(﹣1)+9=﹣12+9=﹣1故答案为:﹣1.【点睛】本题考查的是求代数式的值,解题关键是由x =2y ﹣1得出x ﹣2y =﹣1.16、1≤y <9【分析】根据二次函数的图象和性质求出抛物线在03x <<上的最大值和最小值即可.【详解】20a =>∴抛物线开口向上∴当1x =时,y 有最小值,最小值为1当3x =时,y 有最大值,最小值为()223119y =-+=∴当03x <<时,y 的取值范围是19y ≤<故答案为:19y ≤<.【点睛】本题主要考查二次函数在一定范围内的最大值和最小值,掌握二次函数的图象和性质是解题的关键.17、2(2)5x +=【分析】根据完全平方公式配方即可.【详解】解:2410x x -=+ 241x x +=24414x x ++=+()225x +=故答案为:()225x +=.【点睛】此题考查的是配方法,掌握完全平方公式是解决此题的关键.18、1【分析】根据根与系数的关系即可求出答案.【详解】解:设另外一个根为x ,由根与系数的关系可知:﹣x =﹣1,∴x =1,故答案为:1.【点睛】本题考查了一元二次方程根与系数的关系,熟知根与系数的关系是解题的关键.三、解答题(共66分)19、 (1)见解析;(2) m的值为【分析】(1)根据矩形的性质可得90B C ∠=∠=︒,根据余角的性质可得 APB CEP ∠=∠,进而可得结论; (2)根据题意可得BP 、CP 、CE 的值,然后根据(1)中相似三角形的性质可得关于m 的方程,解方程即得结果.【详解】解:(1)证明:四边形ABCD 是矩形,90B C ∴∠=∠=︒,PE AP ⊥,90APB CPE ∴∠+∠=,90CPE CEP ∠+∠=︒, APB CEP ∴∠=∠,∴ABP △∽PCE ;(2)P 为BC 中点,E 为CD 的中点,且BC m =,4CD =,2m BP CP ∴==, 2CE =, ∵ABP △∽PCE ,AB BP PC CE∴=,即4222mm =,解得:m =m的值为.【点睛】本题考查了矩形的性质和相似三角形的判定和性质,属于常考题型,熟练掌握基本知识是解题关键.20、(1)证明见解析;(2)CD=1.【分析】(1)利用BA 平分∠EBD 得到∠ABE =∠ABD ,再根据圆周角定理得到∠ABE =∠ADC ,∠ABD =∠ACD ,利用等量代换得到∠ACD =∠ADC ,从而得到结论;(2)根据等腰三角形的性质得到∠E =∠ABE ,则可证明△ABE ∽△ACD ,然后根据相似比求出CD 的长.【详解】(1)证明:∵BA 平分∠EBD ,∴∠ABE =∠ABD ,∵∠ABE =∠ADC ,∠ABD =∠ACD ,∴∠ACD =∠ADC ,∴AC =AD ;(2)解:∵AE =AB ,∴∠E =∠ABE ,∴∠E =∠ABE =∠ACD =∠ADC ,∴△ABE ∽△ACD , ∴AE BE =AD CD =32, ∴CD =23AD =23×6=1. 【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了圆周角定理.21、(1)()()60,0,30,30M P ;(2)21230=-+y x x ,()060≤≤x ;(3)三根钢管、、AB AD DC 的长度之和的最大值是75m .【分析】(1)根据题意,即可写出点M 及抛物线顶点P 的坐标;(2)抛物线过原点O ,故设抛物线为2y ax bx =+,将M 和P 的坐标代入即可求出抛物线的解析式;(3)设(),A x y ,分别用含x 的式子表示出、、AB AD DC 的长度,设“脚手架”三根钢管、、AB AD DC 的长度之和为L ,即可求出L 与x 的函数关系式,最后利用二次函数求最值即可.【详解】解:(1)由题意可知:()60,0,M 抛物线顶点()30,30P ;(2)抛物线过原点O ,故设抛物线为2y ax bx =+,由()()60,0,30,30M P 在抛物线上有2206060303030a b a b ⎧=+⎨=+⎩,解得1302a b ⎧=-⎪⎨⎪=⎩, 所以抛物线的函数解析式为21230=-+y x x ,由图象可知060x ≤≤; (3)设(),A x y ,根据点A 在抛物线上和矩形的性质可得21230===-+AB CD y x x , ∵点A 和点D 关于抛物线的对称轴对称∴点D 的坐标为(60-x ,y )∴602=-AD x设“脚手架”三根钢管、、AB AD DC 的长度之和为L ,则212260230⎛⎫=-++- ⎪⎝⎭L x x x , 即()21157515=--+L x 当15x =时,75=最大值L ,所以,三根钢管、、AB AD DC 的长度之和的最大值是75m .【点睛】此题考查的是二次函数的应用,掌握用待定系数法求二次函数的解析式和利用二次函数求最值是解决此题的关键.22、(1)1,1,a 的值为1;(2)要选出一个成绩较稳定的班级争夺团体第一名,选择甲班,因为乙班数据的离散程度较大,发挥不稳定;要争取个人进球数进入学校前三名,则选择乙班,要看出现高分的可能性,乙班个人成绩在9分以上的人数比甲班多,因此选择乙班.【分析】(1)根据已知信息,将乙班的选手的进球数量从小到大排列,计算处在正中间的两个数的平均数即可;根据已知信息,甲班选手的进球数量中出现次数最多的进球数即为c 的值;先计算乙班总进球数,再用总数除以人数即可; (2)从这两个班中选出一个成绩较为稳定的班代表年级参加学校的投篮比赛,要看两个班的数据离散程度;如果要争取个人进球数进入学校前三名,要根据个人进球数在9个以上的人数,哪个班多就从哪个班选.【详解】解:(1)乙班进球数从小到大排列后处在第5、6位的数都是1个,因此乙班进球数的中位数是77=2+1个;根据图表,甲班进球数出现次数最多的是1个,因此甲班进球数的众数为c=1; a=()11019182744131=710⨯⨯+⨯+⨯+⨯+⨯+⨯. 故答案为:1;1;a 的值为1.(2)要想选取成绩较稳定的班级来争夺总进球数团体第一名,选择甲班较好,甲班的平均数虽然与乙班相同,但是()()()()()()()()()()222222222221=9787877777777767675710S ⎡⎤-+-+-+-+-+-+-+-+-+-⎣⎦甲 =1.2 ()()()()()()()()()()222222222221=10797878777777777473710S ⎡⎤-+-+-+-+-+-+-+-+-+-⎣⎦乙 =4 ∴乙班数据的离散程度较大,发挥不稳定,因此选择甲班;要争取个人进球数进入学校前三名,则选择乙班,要看出现高分的可能性,乙班个人成绩在9分以上的人数比甲班多.因此选择乙班.【点睛】本题主要考查平均数、中位数、众数以及方差的意义,掌握平均数、中位数、众数的求解方法以及方差的意义是解答本题的关键.23、证明见解析【解析】由SAS 证明△ADF ≌△CBE ,即可得出AF =CE .【详解】证明:∵四边形ABCD 是矩形,∴∠D =∠B =90°,AD =BC ,在△ADF 和△CBE 中,AD BC D B DF BE ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CBE (SAS ),∴AF =CE .【点睛】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.24、证明见解析.【分析】(1)根据旋转的性质可得DB=CB ,∠ABD=∠EBC ,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS 证明△BDE ≌△BCE ;(2)根据(1)以及旋转的性质可得,△BDE ≌△BCE ≌△BDA ,继而得出四条棱相等,证得四边形ABED 为菱形.【详解】(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得,∴DB=CB ,∠ABD=∠EBC ,∠ABE=60°,∵AB ⊥EC ,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE 和△BCE 中,∵DB CB DBE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△BCE ;(2)四边形ABED 为菱形;由(1)得△BDE ≌△BCE ,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BEC ,∴BA=BE ,AD=EC=ED ,又∵BE=CE ,∴BA=BE=ED= AD∴四边形ABED 为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.25、(1)245y x x =-++;(2)P 点坐标为(2,9)或(6,-7);(3)存在点Q (53524,)使得四边形OFQC 的面积最大,见解析.【分析】(1)先由点B 在直线1y x =+上求出点B 的坐标,再利用待定系数法求解可得;(2)可设出P 点坐标,则可表示出E 、D 的坐标,从而可表示出PE 和ED 的长,由条件可知到关于P 点坐标的方程,则可求得P 点坐标;(3)作QP x ⊥轴于点P ,设(Q m ,245)(0)m m m -++>,知PO m =,245PQ m m =-++,5CP m =-,根据四边形OFQC 的面积PQC PQFO S S ∆=+四边形建立关于m 的函数,再利用二次函数的性质求解可得.【详解】解:(1)点(4,)B m 在直线1y x =+上,415m ∴=+=,(4,5)B ∴,把A 、B 、C 三点坐标代入抛物线解析式可得016402550a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,解得145a b c =-⎧⎪=⎨⎪=⎩,∴抛物线解析式为245y x x =-++;(2)设2(,45)P x x x -++,则(,1)E x x +,(,0)D x ,则22|45(1)||34|PE x x x x x =-++-+=-++,|1|DE x =+,2PE ED =,2|34|2|1|x x x ∴-++=+,当2342(1)x x x -++=+时,解得1x =-或2x =,但当1x =-时,P 与A 重合不合题意,舍去,(2,9)P ∴;当2342(1)x x x -++=-+时,解得1x =-或6x =,但当1x =-时,P 与A 重合不合题意,舍去,(6,7)P ∴-;综上可知P 点坐标为(2,9)或(6,7)-;(3)存在这样的点Q ,使得四边形OFQC 的面积最大.如图,过点Q 作QP x ⊥轴于点P ,设(Q m ,245)(0)m m m -++>,则PO m =,245PQ m m =-++,5CP m =-,四边形OFQC 的面积PQC PQFO S S ∆=+四边形2211(455)(5)(45)22m m m m m m =⨯-++++⨯-⨯-++ 252525222m m =-++ 255225()228m =--+, 当52m =时,四边形OFQC 的面积取得最大值,最大值为2258,此时点Q 的坐标为5(2,35)4. 【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及利用割补法列出四边形面积的函数关系式.26、(1)2y x=,1y x =+;(2)x <-2,或0<x <1 【分析】(1)把A (1,-k+4)代入解析式k y x=,即可求出k 的值;把求出的A 点坐标代入一次函数y x b =+的解析式,即可求出b 的值;从而求出这两个函数的表达式;(2)将两个函数的解析式组成方程,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x 的取值范围.【详解】解:(1)由题意,得4k k =-+,∴k =2,∴A (1,2),2=b +1∴b =1,∴反比例函数表达式为:2y x=, 一次函数表达式为:1y x =+. (2)又由题意,得21x x=+, 220x x +=-,解得121,2x x ==-∴B (-2,-1),∴当x <-2,或0<x <1时,反比例函数大于一次函数的值.【点睛】本题考查了一次函数与反比例函数的综合,能正确看图象是解题的关键.。
青岛市九年级上册期末数学试题(含答案)
青岛市九年级上册期末数学试题(含答案)一、选择题1.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( )A .相离B .相切C .相交D .无法判断2.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .193.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm π B .290cm πC .2130cm πD .2155cm π 4.对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.5.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .4 6.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+7.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .433B .23C .334D .3228.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( ) A .-2B .2C .-1D .1 9.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .180 10.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( )A .45B .35C .43D .3411.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .5 12.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .1213.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80° 14.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ 的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④ 15.2的相反数是( )A .12-B .12C .2D .2- 二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.18.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.19.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .20.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.21.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).22.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________23.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表x… -1 0 1 2 3 … y … -3 -3 -1 39 … 关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.24.抛物线2(-1)3y x =+的顶点坐标是______.25.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.27.把函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.28.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.29.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.30.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题31.某校为了丰富学生课余生活,计划开设以下社团:A.足球、B.机器人、C.航模、D.绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.32.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.33.如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.(1)求证:∠ABC=∠ABO;(2)若AB=10,AC=1,求⊙O的半径.34.已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b=,c=;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x <2时,y 的取值范围是.35.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.四、压轴题36.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 .问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.37.如图,已知矩形ABCD 中,BC =2cm ,AB =23cm ,点E 在边AB 上,点F 在边AD 上,点E 由A 向B 运动,连结EC 、EF ,在运动的过程中,始终保持EC ⊥EF ,△EFG 为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.38.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.39.如图,在⊙O 中,弦AB 、CD 相交于点E ,AC =BD ,点D 在AB 上,连接CO ,并延长CO 交线段AB 于点F ,连接OA 、OB ,且OA 5tan ∠OBA =12. (1)求证:∠OBA =∠OCD ;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.40.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..2.B解析:B【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B . 考点:平行线分线段成比例. 3.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.4.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 5.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确; ②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x 轴有2个交点,故b 2﹣4ac >0,故③错误;④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0),∴A (3,0),故当y >0时,﹣1<x <3,故④正确.故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.6.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.7.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =, ∴223BD 2OB OD =-=, ∴BC 3=∴13224ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.8.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x 2+bx-6=0得4+2b-6=0,解得b=1.故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π, ∴42180n ππ⨯=解得:90n =,即其圆心角度数是90︒故选C .【点睛】 此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.10.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解.【详解】如图,∵∠C =90°,AC =8,BC =6,∴AB 222268BC AC +=+10,∴sin B =84105AC AB ==. 故选:A .【点睛】 本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.11.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B .【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.12.A解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以232CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =,∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴22632CE OC ==⨯=, ∴262CD CE ==.故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.13.C解析:C【解析】【分析】连接OD ,根据∠AOD =2∠ACD ,求出∠AOD ,利用等腰三角形的性质即可解决问题.【详解】连接OD .∵∠ACD =20°,∴∠AOD =2∠ACD =40°.∵OA =OD ,∴∠BAD =∠ADO =12(180°﹣40°)=70°. 故选C .【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.14.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽,∴AP AF=,AB AD∴⋅=⋅,AP AD AF AB∠=∠=︒,AFC ACB∠=∠,90CAF BAC∴∆∆∽,ACF ABC可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∽,可得2∴∆∆CAQ CBA=⋅,AC CQ CB∴⋅=⋅.故④正确,AP AD CQ CB故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.15.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.19.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD , ∴AB BD EC CD=, 即BD EC AB CD ⨯=, 解得:AB=1205060⨯ =100(米). 故答案为100.【点睛】 本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.20.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.21.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.22.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC 是⊙O 的切线,∵C 解析:32【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵CF 是⊙O 的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.23.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x =−1-2<0,∵-4≤-3,∴322-≤≤-,∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.24.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.25.2【解析】【分析】连接OA ,先根据垂径定理求出AO 的长,再设ON=OA ,则MN=ON-OM 即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.26.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴5AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.27.y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y =2(x ﹣3)2﹣2.【解析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y=2(x﹣3)2﹣2,故答案为y=2(x﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.28.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.29.相离【解析】r=2,d=3, 则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离30.4π【解析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 三、解答题31.(1)14;(2)716; 【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=14. (2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=7 16.【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.32.(1)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为1;(3)点Q 坐标为:(﹣2,2)或(﹣515或(﹣155)或(2,﹣2).【解析】【分析】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.【详解】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A(﹣2,0),B(0,﹣2),C(1,0)三点代入,得4202a b cca b c-+=⎧⎪=-⎨⎪++=⎩,解得:112 abc=⎧⎪=⎨⎪=-⎩,∴此函数解析式为:y=x2+x﹣2.(2)如图,过点M作y轴的平行线交AB于点D,∵M点的横坐标为m,且点M在第三象限的抛物线上,∴设M点的坐标为(m,m2+m﹣2),﹣2<m<0,设直线AB的解析式为y=kx﹣2,把A(﹣2,0)代入得,-2k-2=0,解得:k=﹣1,∴直线AB的解析式为y=﹣x﹣2,∵MD∥y轴,∴点D的坐标为(m,﹣m﹣2),∴MD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,∴S△MAB=S△MDA+S△MDB=12 MD•OA=12×2(m2﹣2m)=﹣m2﹣2m=﹣(m+1)2+1,∵﹣2<m<0,∴当m=﹣1时,S△MAB有最大值1,综上所述,S关于m的函数关系式是S=﹣m2﹣2m(﹣2<m<0),S的最大值为1.(3)设P(x,x2+x﹣2),①如图,当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,∴Q的横坐标等于P的横坐标,∵直线的解析式为y=﹣x,则Q(x,﹣x),由PQ=OB,得|﹣x﹣(x2+x﹣2)|=2,即|﹣x2﹣2x+2|=2,当﹣x2﹣2x+2=2时,x1=0(不合题意,舍去),x2=﹣2,∴Q(﹣2,2),当﹣x2﹣2x+2=﹣2时,x1=﹣1+5,x2=﹣1﹣5,∴Q(﹣1+5,1﹣5)或(﹣1﹣5,1+5),②如图,当BO为对角线时,OQ∥BP,∵直线AB的解析式为y=-x-2,直线OQ的解析式为y=-x,∴A与P重合,OP=2,四边形PBQO为平行四边形,∴BQ=OP=2,点Q的横坐标为2,把x=2代入y=﹣x得y=-2,∴Q(2,﹣2),综上所述,点Q的坐标为(﹣2,2)或(﹣515155(2,﹣2).【点睛】本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,熟练掌握二次函数的性质把运用分类讨论的思想是解题关键.33.(1)详见解析;(2)⊙O 的半径是13. 【解析】【分析】(1)连接OA ,求出OA ∥BC ,根据平行线的性质和等腰三角形的性质得出∠OBA =∠OAB ,∠OBA =∠ABC ,即可得出答案;(2)根据矩形的性质求出OD =AC =1,根据勾股定理求出BC ,根据垂径定理求出BD ,再根据勾股定理求出OB 即可.【详解】(1)证明:连接OA ,∵OB =OA ,∴∠OBA =∠OAB ,∵AC 切⊙O 于A ,∴OA ⊥AC ,∵BC ⊥AC ,∴OA ∥BC ,∴∠OBA =∠ABC ,∴∠ABC =∠ABO ;(2)解:过O 作OD ⊥BC 于D ,∵OD ⊥BC ,BC ⊥AC ,OA ⊥AC ,∴∠ODC =∠DCA =∠OAC =90°,∴OD =AC =1,在Rt △ACB 中,AB 10AC =1,由勾股定理得:BC ()22101-=3, ∵OD ⊥BC ,OD 过O ,∴BD =DC =12BC =132⨯=1.5,。
青岛版本初中九年级的数学上册的期末综合检测试卷习题有包括答案.docx
【期末专题复习】青岛版九年级数学上册期末综合检测试卷一、单选题(共 10 题;共 30 分)1.方程 x( x﹣ 2) =3x 的解为()A. x=5B. x1=0, x2=5C. x1=2, x2=0D. x1=0, x2=﹣ 52.如图,点A, B,C 在⊙ O 上,∠ AOB=72°,则∠ ACB等于()A. 28 °B. 54C. 18 °D. 36°°3.一个多边形有9 条对角线,则这个多边形的边数是()A. 52﹣3x B. 6 C. 7 D. 84.方程 2x﹣ 5=0 的二次项系数、一次项系数、常数项分别为()A. 3、 2、 5B. 2、 3、5C. 、2﹣ 3、﹣ 5D.﹣ 2、 3、 55.一个人从 A 点出发向北偏东60°方向走了一段距离到达 B 点,再从 B 点出发向南偏西15°方向走了一段距离到 C 点,则∠ ABC的度数为()A. 15 °B. 75 °C. 105 °D. 45°6.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为A. 120oB. 约 156oC. 180oD. 约 208o7.如图 3,CD 是⊙ O 的弦,直径 AB 过 CD 的中点 M ,若∠ BOC=40°,则∠ ABD=()A. 40 °B. 60C. 70°D. 80°°8.已知△ ABC中,∠ C=90°, AC=6, BC=8,则 cosB 的值是A. 0.6B. 0.75C. 0.8D.9.已知关于x 的方程 x2+mx﹣ 6=0 的一根为2,则 m 的值是()A. 1B. ﹣ 1C. 2D. 510.如图,在△ ABC中, CA=CB,∠ ACB=90°, AB=2,点 D 为 AB 的中点,以点 D 为圆心作圆心角为90°的扇形DEF,点 C 恰在弧 EF上,则图中阴影部分的面积为()A. B. C. D.二、填空题(共 10 题;共 30 分)11.如果两个相似三角形的面积的比是4: 9,那么它们对应的角平分线的比是________.12.如图,小明用长为 3m 的竹竿 CD 做测量工具,测量学校旗杆 AB 的高度,移动竹竿,使竹竿与旗杆的顶端C 、A 与 O 点在一条直线上,则根据图中数据可得旗杆AB 的高为 ________m .13.若关于 x 的一元二次方程( m-2 )x 2+x+m 2-4=0 的一个根为 0,则 m 值是 ________.14.若 △ ABC ∽△ DEF ,相似比为 △: S △DEF =________.2:3,则 S ABC 15.某药店响应国家政策,某品牌药连续两次降价,由开始每盒 16 元下降到每盒 14 元.设每次降价的平均百 分率是 x ,则列出关于 x 的方程是 ________.16.已知扇形的圆心角为 45°,半径长为 12,则该扇形的弧长为 ________17.已知: m 是方程 x 2﹣ 2x ﹣ 3=0 的一个根,则代数式 2m﹣ m 2=________.18.两棵树种在倾角为24° 36的′斜坡上,它们的坡面距离是 4 米,则它们之间的水平距离是________ 米.(可用计算器计算,精确到 0.1 米)19.如图,⊙ O 的半径为 5cm ,弦 AB 为 8cm ,P 为弦 AB 上的一动点,若 OP 的长度为整数,则满足条件的点 P有 ________个.20.如图所示,某拦水大坝的横断面为梯形 ABCD ,AE 、 DF 为梯形的高,其中迎水坡AB 的坡角 α=45 °,坡长AB=米,背水坡 CD 的坡度 i=1:( i 为 DF 与 FC 的比值),则背水坡 CD 的坡长为 ________米.三、解答题(共 8 题;共 60 分)21.如图所示的网格中,每个小方格都是边长为 1 的小正方形, B (﹣ 1,﹣ 1), C ( 5,﹣ 1)( 1)把 △ ABC 绕点 C 按顺时针旋转 90°后得到 △ A 1B 1C 1,请画出这个三角形并写出点 B 1 的坐标;( 2)以点 A 为位似中心放大 △ ABC ,得到 △ A 2B 2C 2,使放大前后的面积之比为 1:4,请在下面网格内出 △ A 2 B 2 C 2.22.一轮船在 P 处测得灯塔 A 在正北方向,灯塔 B 在南偏东 30°方向,轮船向正东航行了 900m ,到达 Q 处,测得 A 位于北偏西 60°方向, B 位于南偏西 30°方向 .( 1)线段 BQ 与 PQ 是否相等?请说明理由;23.已知:如图, AB 是⊙ O 的直径, BC 是和⊙ O 相切于点 B 的切线,⊙ O 的弦 AD 平行于 OC.求证: DC 是⊙ O 的切线 .24.已知关于x 的一元二次方程x2+2x+k﹣ 2=0 有两个不相等的实数根.(1)求 k 的取值范围;(2)若 k 为大于 1 的整数,求方程的根.25.如图,点 A,B,C,D,E 在圆上,弦的延长线与弦的延长线相交于点, AB 是圆的直径, D 是 BC的中点.求证: AB=AC.26.如图( 1),在□ ABCD中, P 是 CD 边上的一点,AP 与 BP分别平分∠ DAB 和∠ CBA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册青岛数学期末试卷模拟练习卷(Word 版 含解析)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm3.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( ) A .1a =B .1a =-C .1a ≠-D .1a ≠4.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .705.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm6.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=7.已知52x y =,则x y y-的值是( ) A .12 B .2C .32D .238.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断9.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .410.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月11.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( ) A .4B .4.5C .5D .612.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A.50°B.60°C.65°D.75°二、填空题13.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.14.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为__________.15.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.16.将边长分别为2cm,3cm,4cm的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm.17.如图,在Rt△ABC中,BC AC⊥,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.18.如图,在ABCD中,13BE DF BC==,若1BEGS∆=,则ABFS∆=__________.19.如图,四边形ABCD内接于⊙O,若∠BOD=140°,则∠BCD=_____.20.点P在线段AB上,且BP APAP AB=.设4AB cm=,则BP=__________cm.21.△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是____________.22.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m n个数据的平均数等于______.23.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF 的最小值是_____.24.如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.三、解答题25.如图1,AB、CD是圆O的两条弦,交点为P.连接AD、BC.OM⊥ AD,ON⊥BC,垂足分别为M、N.连接PM、PN.图1 图2 (1)求证:△ADP ∽△CBP ;(2)当AB ⊥CD 时,探究∠PMO 与∠PNO 的数量关系,并说明理由; (3)当AB ⊥CD 时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON 的面积. 26.如图,二次函数2y x bx c =-++的图像经过()0,3M ,()2,5N --两点.(1)求该函数的解析式;(2)若该二次函数图像与x 轴交于A 、B 两点,求ABM ∆的面积;(3)若点P 在二次函数图像的对称轴上,当MNP ∆周长最短时,求点P 的坐标. 27.如图,矩形OABC 中,A (6,0)、C (0,23)、D (0,33),射线l 过点D 且与x 轴平行,点P 、Q 分别是l 和x 轴正半轴上动点,满足∠PQO =60°.(1)①点B 的坐标是 ;②当点Q 与点A 重合时,点P 的坐标为 ;(2)设点P 的横坐标为x ,△OPQ 与矩形OABC 的重叠部分的面积为S ,试求S 与x 的函数关系式及相应的自变量x 的取值范围.28.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形; (2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.29.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;(3)点Q 为抛物线上一点,若8QABS=,求出此时点Q 的坐标.30.如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm ,开始的时候BD=1cm ,现在三角板以2cm/s 的速度向右移动.(1)当点B 于点O 重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B 点和E 点重合时,AC 与半圆相切于点F ,连接EF ,如图2所示.①求证:EF 平分∠AEC ; ②求EF 的长.31.某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.32.如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,求证:△EAF∽△CBA;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.B解析:B 【解析】 【分析】先过点O 作OD ⊥AB 于点D ,连接OA ,由垂径定理可知AD =12AB ,设OA =r ,则OD =r ﹣2,在Rt △AOD 中,利用勾股定理即可求出r 的值. 【详解】解:如图所示:过点O 作OD ⊥AB 于点D ,连接OA , ∵OD ⊥AB , ∴AD =12AB =4cm , 设OA =r ,则OD =r ﹣2,在Rt △AOD 中,OA 2=OD 2+AD 2,即r 2=(r ﹣2)2+42, 解得r =5cm .∴该输水管的半径为5cm ; 故选:B .【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.3.D解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D.本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键. 4.D解析:D【解析】【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ ADC=110°,即优弧ABC的度数是220°,∴劣弧ADC的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=12∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.6.D解析:D 【解析】 【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.7.C解析:C 【解析】 【分析】设x=5k (k ≠0),y=2k (k ≠0),代入求值即可. 【详解】 解:∵52x y =∴x=5k (k ≠0),y=2k (k ≠0) ∴52322x y k k y k --== 故选:C . 【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.8.B解析:B 【解析】 【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可. 【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1, 根据平均数的定义可知:算上小明后,平均身高仍为172cm根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦- ()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦ ()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦ ∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B .【点睛】 此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.9.B解析:B【解析】【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x时,y<0;故此选项正确;综上:①④两项正确,故选:B .【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点. 10.D解析:D【解析】【分析】【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D11.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.12.C解析:C【解析】【分析】根据切线的性质,由PD 切⊙O 于点C 得到∠OCD =90°,再利互余计算出∠DOC =50°,由∠A =∠ACO ,∠COD =∠A +∠ACO ,所以1252A COD ∠=∠=︒,然后根据三角形外角性质计算∠PCA 的度数.【详解】解:∵PD 切⊙O 于点C ,∴OC ⊥CD ,∴∠OCD =90°,∵∠D =40°,∴∠DOC =90°﹣40°=50°,∵OA =OC ,∴∠A =∠ACO ,∵∠COD =∠A +∠ACO ,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.二、填空题13.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.14.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:,解得所以解析:16【解析】【分析】【详解】设扇形的圆心角为n °,则根据扇形的弧长公式有:π·4=8180n ,解得360πn = 所以22360S ==16360360扇形π4πr π=n 15.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径5121322r +-==, 16.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL 的面积减去梯形BEN K 的面积,再利用相似三角形的性质求出BK 、EN 的长从而求出梯形的面积即可得出答案.【详解】解:如解析:133【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL 的面积减去梯形BENK 的面积,再利用相似三角形的性质求出BK 、EN 的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH 为正方形,∴NE GH∴△AEN ~△AHG∴NE :GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9 ∴NE=209同理可求BK=89梯形BENK 的面积:12081432993⎛⎫⨯+⨯= ⎪⎝⎭ ∴阴影部分的面积:14133333⨯-= 故答案为:133. 【点睛】 本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.17.9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC,∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.18.6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.19.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度. 20.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x,则AP=4-x,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x,则AP=4-x,根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:1212x 622±±===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.21.120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.22..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的 解析:mx ny m n++. 【解析】【分析】 根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数mx nym n+=+.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.23.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF 的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.24.【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……∴OA1=A1A2=A2A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),把P(2020,m)代入得m=﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题25.(1)证明见解析;(2)∠PMO=∠PNO,理由见解析;(3)S平行四边形PMON3【解析】【分析】(1)利用同弧所对的圆周角相等即可证明相似,(2)由OM⊥ AD,ON⊥BC得到M、N为AB、CD的中点,再由直角三角形斜边中线等于斜边一半即可解题,(3)由三角形中位线性质得∠QBC=90°,进而证明∠QCB=∠PBD,得到四边形MONP为平行四边形即可解题.【详解】(1)因为同弧所对的圆周角相等,所以∠A=∠C, ∠D=∠B,所以△ADP∽△CBP.(2)∠PMO=∠PNO因为OM⊥ AD,ON⊥BC,所以点M、N为AB、CD的中点,又AB⊥CD,所以PM=12AD,PN=12BC,所以,∠A=∠APM,∠C=∠CPN,所以∠AMP=∠CNP,得到∠PMO与∠PNO. (3)连接CO并延长交圆O于点Q,连接BD.因为AB⊥CD,AM=12AD,CN=12BC,所以PM=12AD,PN=12BC.由三角形中位线性质得,ON=1BQ 2.因为CQ为圆O直径,所以∠QBC=90°,则∠Q+∠QCB=90°,由∠DPB=90°,得∠PDB+∠PBD=90°,而∠PDB=∠Q,所以∠QCB=∠PBD,所以BQ=AD,所以PM=ON.同理可得,PN=OM.所以四边形MONP为平行四边形.S平行四边形3【点睛】本题考查了相似三角形的判定和性质,圆的基本知识,圆周角的性质,直角三角形的性质,平行四边形的判定,综合性强,熟悉圆周角的性质是求解(1)的关键,利用斜边中线等于斜边一半这一性质是求解(2)的关键,证明四边形MONP为平行四边形是求解(3)的关键.26.(1)2y x 2x 3=-++;(2)6;(3)()1,1P【解析】【分析】(1)将M,N 两点代入2y x bx c =-++求出b,c 值,即可确定表达式;(2)令y=0求x 的值,即可确定A 、B 两点的坐标,求线段AB 长,由三角形面积公式求解.(3)求出抛物线的对称轴,确定M 关于对称轴的对称点G 的坐标,直线NG 与对称轴的交点即为所求P 点,利用一次函数求出P 点坐标.【详解】解:将点()0,3M ,()2,5N --代入2y x bx c =-++中得, 3425c b c =⎧⎨--+=-⎩, 解得,23b c =⎧⎨=⎩, ∴y 与x 之间的函数关系式为2y x 2x 3=-++;(2)如图,当y=0时,2230x x -++=,∴x 1=3,x 2= -1,∴A(-1,0),B(3,0),∴AB=4,∴S △ABM =14362⨯⨯= . 即ABM ∆的面积是6.(3)如图,抛物线的对称轴为直线2122bx a , 点()0,3M 关于直线x=1的对称点坐标为G(2,3),∴PM=PG,连MG 交抛物线对称轴于点P ,此时NP+PM=NP+PG 最小,即MNP ∆周长最短.设直线NG 的表达式为y=mx+n,将N(-2,-5),G(2,3)代入得,2523m nm n-+=-⎧⎨+=⎩,解得,21mn=⎧⎨=-⎩,∴y=2m-1,∴P点坐标为(1,1).【点睛】本题考查抛物线与图形的综合题,涉及待定系数法求解析式,图象的交点问题,利用对称性解决线段和的最小值问题,利用函数观点解决图形问题是解答此题的关键.如图,二次函数y=-x²+bx+c的图像经过M(0,3),N(-2,-5)两点.27.(1)①(6,33,332)))))24343033133335233595439xxx x xSx xx+≤≤⎪⎪+<≤⎪⎪=⎨⎪+<≤⎪>【解析】【分析】(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.【详解】解:(1)①∵四边形OABC 是矩形, ∴AB=OC ,OA=BC ,∵A (6,0)、C (0,23), ∴点B 的坐标为:(6,23);②如图1:当点Q 与点A 重合时,过点P 作PE ⊥OA 于E ,∵∠PQO=60°,D (0,33),∴PE=33,∴AE=3tan 60PE =, ∴OE=OA-AE=6-3=3,∴点P 的坐标为(3,33);故答案为:①(6,23),②(3,33);(2)①当0≤x ≤3时,如图,OI =x ,IQ =PI •tan 60°=3,OQ =OI +IQ =3+x ;由题意可知直线l ∥BC ∥OA ,∴31333EF PE DC OQ PO DO ====, ∴EF =133+x () 此时重叠部分是梯形,其面积为:S 梯形=12(EF +OQ )•OC =33(3+x )∴43433x S =+. 当3<x ≤5时,如图AQ =OI +IO -OA =x +3-6=x -3AH =3(x -3)S=S 梯形﹣S △HAQ =S 梯形﹣12AH •AQ =43(3+x )﹣232x (-3) ∴231333232S x x =-+-. ③当5<x ≤9时,如图∵CE ∥DP∴CO CE DO DP = ∴2333CE x= ∴23CE x = 263BE x =-S=12(BE +OA )•OC 312﹣23x ) ∴23123S x =+. ④当x >9时,如图∵AH ∥PI ∴AO AH OI PI= ∴633x =∴183AH = S=12543. 综上:243430333133335231235935439x x x x x S x x x ⎧+≤≤⎪⎪⎪-<≤⎪⎪=⎨⎪-+<≤⎪⎪⎪>⎪()()()().【点睛】此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用.28.(1)详见解析;(2)①1;51.【解析】【分析】(1)要证明三角形△DPF 为等腰直角三角形,只要证明∠DFP =90°,∠DPF =∠PDF =45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP =90°,∠DPF =∠PDF =45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t 的值即可,注意点P 从A 出发到B 停止,t ≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t 的值.【详解】证明:(1)∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =45°,∵在⊙O中,DF所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CEPA AE=,∴4221t=,解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴DC CEPA AE=,∴4122t=,解得,t=4,∵点P从点A到B,t的最大值是4÷2=2,∴当t=4时不合题意,舍去;由上可得,当t为1时,点E恰好为AC的一个三等分点;②如右图所示,∵∠DPF=90°,∠DPF=∠OPF,∴∠OPF=90°,∴∠DPA+∠QPB=90°,∵∠DPA+∠PDA=90°,∴∠PDA=∠QPB,∵点Q落在BC上,∴∠DAP=∠B=90°,∴△DAP∽△PBQ,∴DA DP PB PQ=,∵DA =AB =4,AP =2t ,∠DAP =90°,∴DP =224(2)t +=224t +,PB =4﹣2t ,设PQ =a ,则PE =a ,DE =DP ﹣a =222t +﹣a ,∵△AEP ∽△CED ,∴AP PE CD DE=, 即22424t t a=+-, 解得,a =224t t +, ∴PQ =224t t +, ∴224244224t t t t +=-+,解得,t 1=﹣5﹣1(舍去),t 2=5﹣1,即t 的值是5﹣1.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.29.(1)223y x x =--;(2)(1,2)P -1032;(3)1(122,4)Q - ,2(122,4)Q + ,3(1,4)Q -【解析】【分析】(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++即可求出b,c 即可求解; (2)根据A,B 关于对称轴对称,连接BC 交对称轴于P 点,即为所求,再求出坐标及PAC 的周长;(3)根据△QAB 的底边为4,故三角形的高为4,令y =4,求出对应的x 即可求解.【详解】(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++得01093b c b c =-+⎧⎨=++⎩解得23b c =-⎧⎨=-⎩∴抛物线的解析式为:223y x x =--;(2)如图,连接BC 交对称轴于P 点,即为所求,∵223y x x =--∴C(0,-3),对称轴x=1 设直线BC 为y=kx+b, 把(30)B ,, C(0,-3)代入y=kx+b 求得k=1,b=-3, ∴直线BC 为y=x-3令x=1,得y=-2,∴P (1,-2),∴PAC 的周长=AC+AP+CP=AC+BC=[]22(10)0(3)--+--+[]22(30)0(3)-+--=1032+;(3)∵△QAB 的底边为AB=4, 182QAB SAB H =⨯= ∴三角形的高为4, 令y =4,即2234x x --=±解得x 1=122-2=122+3=1故点Q 的坐标为1(122,4)Q - , 2(122,4)Q + ,3(1,4)Q -.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法与一次函数的求解.30.(1)2s (2)①证明见解析,②33√【解析】试题分析:(1)由当点B 于点O 重合的时候,BO=OD+BD=4cm ,又由三角板以2cm/s 的速度向右移动,即可求得三角板运动的时间;(2)①连接OF ,由AC 与半圆相切于点F ,易得OF ⊥AC ,然后由∠ACB=90°,易得OF ∥CE ,继而证得EF 平分∠AEC ;②由△AFO 是直角三角形,∠BAC=30°,OF=OD=3cm ,可求得AF的长,由EF平分∠AEC,易证得△AFE是等腰三角形,且AF=EF,则可求得答案.试题解析:(1)∵当点B于点O重合的时候,BO=OD+BD=4cm,∴t=42=2(s);∴三角板运动的时间为:2s;(2)①证明:连接O与切点F,则OF⊥AC,∵∠ACE=90°,∴EC⊥AC,∴OF∥CE,∴∠OFE=∠CEF,∵OF=OE,∴∠OFE=∠OEF,∴∠OEF=∠CEF,即EF平分∠AEC;②由①知:OF⊥AC,∴△AFO是直角三角形,∵∠BAC=30°,OF=OD=3cm,∴tan30°=3AF,∴3,由①知:EF平分∠AEC,∴∠AEF=∠CEF=12∠AEC=30°,∴∠AEF=∠EAF,∴△AFE是等腰三角形,且AF=EF,∴331.(1)①y=-10x+700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.【解析】【分析】(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b即可求解;②设该商品的售价是x元,则月销售利润w= y(x-30),求解即可;(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w取得最大值2400,解关于m的方程即可.【详解】(1)①解:设y =kx +b (k ,b 为常数,k ≠0)根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩∴y =-10x +700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x 元/件时,月销售利润为w 元根据题意得:w =y (x -30)=(x -30)(-10x +700)=-10x 2+1000 x -21000=-10(x -50)2+4000∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元. (2)由题意得:w=[x-(m+30)](-10x+700)=-10x 2+(1000+10m )x-21000-700m对称轴为x=50+2m ∵m >0∴50+2m >50 ∵商家规定该运动服售价不得超过40元/件∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元∴-10×402+(1000+10m )×40-21000-700m=2400解得:m=2∴m 的值为2.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.32.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)连接CD ,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC ,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线;(2)连接BC ,根据直径的性质得出∠ABC=90°,根据B 是EF 的中点得出AB=EF ,即∠BAC=∠AFE ,则得出三角形相似;(3)根据三角形相似得出AB AC AF EF =,根据AF 和CF 的长度得出AC 的长度,然后根据EF=2AB 代入AB AC AF EF=求出AB 和EF 的长度,最后根据Rt △AEF 的勾股定理求出AE 的长度.【详解】。