第30届全国中学生物理竞赛复赛试卷详细解析讲授版(2013年)
第30届全国中学生物理竞赛决赛试题与答案(2013年)

第30届全国中学生物理竞赛决赛考试试题、解答与评分标准一、一质量为m 的小球在距水平地面h落地反弹时水平速度不变,竖直速度大小按同样的比率减小。
若自第一次反弹开始小球的运动轨迹与其在地面的投影之间所包围的面积总和为2821h ,求小球在各次与地面碰撞过程中所受到的总冲量。
提示:小球每次做斜抛运动(从水平地面射出又落至地面)的轨迹与其在地面的投影之间所包围的面积等于其最大高度和水平射程乘积的23。
参考解答:设小球每次落地反弹时,反弹后的竖直速度大小是反弹前的λ倍。
第一次落地时竖直速度为0v =(1)第一次反弹竖直速度大小为01v λ=<<(2) 第一次反弹高度为22112v h h gλ== (3)第一次反弹后飞行时间为1122v t g ==(4)第一次反弹至第二次反弹时水平方向的位移为14x h λ==(5) 小球在第一次反弹至第二次反弹之间的运动轨迹与其在地面 的投影之间所包围的面积为221111833s h x h λ== (6)设第n 次反弹后至1n +次反弹前的最大竖直速度大小和上升的最大高度分别为n v 和n h 。
由题意和上述论证知1n n s v λ+=(7) 21n n h h λ+=(8) 1n n t t λ+= (9) 1n n x x λ+=(10) 31n n s s λ+=(11)12,,s s …构成一无穷递缩等比娄列,其总和为36211318(1)121n n s ss s h λλλ∞==+++⋅⋅⋅==-∑(12) 由(6)、(12)式有12λ=(13) 设n I 表示小球在第(1)n n ≥次碰撞过程中小球受到的作用力的冲量,由动量定理有 11()(1)n n n n I mv m v m v λ--=--=+ (14)由于小球每次反弹前后速度的水平分量不变,小球每次碰撞过程中受到的沿水平方向的总量为零。
小球在各次与地面碰撞过程中所受到的总冲量为20011()(1)(1)1n n I I mv mv λλλλλ∞=+==++++⋅⋅⋅=-∑ (15)方向向上。
第30届全国中学生物理竞赛复赛模拟试题第1套答案

2013年物理竞赛复赛模拟试题—第一套参考解答命题人 蔡子星一、(20分)某人在设计房子的时候尽量节省空间,弄了一个立起来是储物架,放下来时床的家具。
他设计得很精巧,使得在放下的过程中,架子是保持水平的,而且人不怎么费劲。
下面我们给出一种设计。
AB 、CD 、AD 是三根相互铰接的轻杆,AB CD 2.0m ==,AD 0.5m =。
这样就能保证架子上的东西不会掉下来。
但是考虑到负重分别加在D 点和CD 中点O 点110kg P =,220kg P =,直接把床推上放下会比较费力,而且容易砸到人,即使没有砸到人,砸到花花草草也不好。
为了解决这个问题,我们在AB 杆上距离A 点0.5m 处的M 点连一根原长可以忽略的弹簧到D 点。
这样就可以自由的上下推动床而几乎不费力了。
10N/kg g =(1) 为了尽量省力,弹簧的经度系数k 应当为多少?(2) 当床与墙面夹角30θ=︒时,请计算AD 杆上的受力。
【解答】(1)如果势能处处恒定则无需外力。
令 2.0m AB l ==,0.5m AD AM a ===由余弦定理22222cos DM a a a θ=+-(1分)重力势能112cos cos 2p lE Pl P θθ=+ (2分)弹性势能222211(22cos )22p E k DM k a a θ==- (2分) 要求总势能为常数,则有212()cos 2l Pl P ka θ+-为常数,于是 12-1221600Nm lPgl P g k a+== (5分) 注:其它方法只要结果正确,过程无明显错误均给分(2)由于AD 是轻杆,且只在两端受力,所以受力沿杆,设为N对于AB 杆,以B 为支点,由合外力矩等于03sin sin AMD 04lNl k DMθ-∠= (4分) AMD ∆中由正弦定理sin AMD sin AD DMθ∠= (2分)代入力矩方程有3sin sin 04lNl kaθθ-= 由此得到600N N = (4分) 注:其它方法只要结果正确,过程无明显错误均给分二、(22分)天宫一号圆满完成了国内第一次太空授课。
第30届2013全国中学生物理竞赛复赛试题和解答word解析版

第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .【参考解答】以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得:2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应 max max ()θ=v v . (3) 而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即 max ()0θθ=v . (4)(4)式也可用下述方法得到:由 (1)、(2) 式得 22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有 222max max 0max ()2sin tan 0gR θθθθ=-=v v .(4’)将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v . (5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为22max 0max 2sin sin 20gR gR θθ+-=v . (6) 其解为20maxsin 14gR θ⎫=-⎪⎪⎭v . (7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=+v v , (8)考虑到(4)式有max ==v (9)【评分标准】本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.【参考解答】1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C2l r =v v . (1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v .(2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v .(3)由 (1)、(2)、(3) 式解得 2200022222248,,888C D A lr l r l r l r l r ===-+++v v v v v v (4)【代替 (3) 式,可利用弹性碰撞特点0D A =-v v v .(3’)同样可解出(4). 】设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r +∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则 22(2)2mr m l l r x m αα++==++. (7)质心在碰后瞬间的速度为 C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8) 轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9)由此得 2022(2)28r l r F t m l r-∆=+v . (10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r -'∆=-+v , (11) 方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略. 【代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . 】 【也可由对质心的角动量定理代替 (7)-(9) 式. 】2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0=v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式. 【评分标准】本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω= 式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=【参考解答】1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为 kE k L αβγλω= (1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---==== (2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为 ()[]q q q = (3) 式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4) 在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5)[][][][]k E L αβγλω= (6)将 (2)中第四 式代入 (6) 式得 22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是 1,2,3αβγ=== (8)所以 23k E k L λω= (9)2. 由题意,杆的动能为,c ,rk k k E E E =+(10)其中, 22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为32,r2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13)由此解得 16k =(14) 于是E k =16lw 2L 3. (15) 3. 以细杆与地球为系统,下摆过程中机械能守恒 sin 2k L E mg θ⎛⎫= ⎪⎝⎭(16)由(15)、(16)式得w =以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=- (19)()()sin n N L r g L r a λθλ--=- (20)式中,t a 为质心的切向加速度的大小 ()3cos d d d d d 2d 2d dt 4ct L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小 ()23sin 22n L r g L r a Lθω++==. (22) 由(19)、(20)、(21)、(22)式解得()()23cos 4L r r L T mg L θ--=(23)()()253sin 2L r L r N mg L θ-+=(24)【评分标准】本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V . 【参考解答】设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh k m mgR kh R R+=++-v . (1)式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为21(2)(2)2()Qq h R m mg h R kh R R-=---v . (2)从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有 max (2)(2)0()Q q h R mg h R kh R R---=-.(3)由此得max ()mg h R RQ kq-=.(4)容器的最高电势为maxmax Q V k R= (5) 由(4) 和 (5)式得max ()mg h R V q-=(6)【评分标准】本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.【五】(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示. 1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)xy z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变. 2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. ) 【参考解答】1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1)在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+- (2)两参考系中电荷、合力和速度的变换关系为,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v . (6) 为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+- (7)利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9) 可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-. (10)由(9)式中第一式和(10)式得 01V Bd εε⎛⎫=- ⎪⎝⎭v . (11)【评分标准】本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.【六】(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )【参考解答】设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1) 1121()l l T T α∆=- (2) 式中,0.20 mm d =. 对于青铜片 2()2dr l l φ+=+∆ (3) 2221()l l T T α∆=- (4) 联立以上各式得 2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯-- (5)【评分标准】本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等. 1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.【参考解答】1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x 线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率 ()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1) 的均匀介质的光程相同,即 2111112nh h bh δ==+ (2)忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=- (3) 于是()212112y h bh δδδ=+=+. (4)由几何关系有 1tan h y θ=. (5) 故 ()22tan 2b y h y δθ=+. (6)x从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处.对于0y =处,由上式得 d 0()=h . (7)y 处与0y =处的光线的光程差为 ()()220tan 2b y y δδθ-=. (8) 由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ==. (9)由此得 y A θθ=. (10) 除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A . (11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m =,其中m 为任意正整数,则49,,,m m m y y y ===. (12),光线在焦点处依然相互加强而形成亮纹. 【评分标准】本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分;第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰, 1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x . 【参考解答】1.设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,e e E p E p γγ''''. 由能量守恒有 E e +E g =¢E e +¢E g .(1) 由动量守恒有 p e +p g =¢p e+¢p g . (2) 光子的能量和动量满足E g =p g c ,¢E g =¢p g c .(3)第30届2013全国中学生物理竞赛复赛试题和解答word 解析版- 11 - / 11 电子的能量和动量满足 22224e e e E p c m c -=,22224ee e E p c m c ''-= (4) 由(1)、(2)、(3)、(4)式解得e E E E γγ'= (5) 2. 由(5)式可见,为使¢E g >E g , 需有0E E γγ'-=>即E γ 或 e p p γ>(6) 注意已设p e >0、p g <0.3. 由于2e e E mc >>, 因此有 242e e em cE E -.(7) 将(7)式代入(5)式得 ee e E cm E E E E 22242'+≈γγγ.(8) 代入数据,得 ¢E g »29.7´106eV . (9)【评分标准】本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 式2分; 第2问5分,(6) 式5分;第3问5分,(7) 式2分, (8) 式1分, (9) 式2分.。
2013年第30届物理竞赛预赛试卷及答案讲解

第30届全国中学生物理竞赛预赛试卷1.(第30届全国中学生物理竞赛预赛)下列说法正确的是:A.一束单色光从真空射入时,在玻璃表面处发生折射现象,这与光在玻璃中的传播速度不同于在真空中的传播速度有关B.白纸上有两个非常靠近的小黑斑,实际上是分开的,没有重叠部分.但通过某一显微镜所成的象却是两个连在一起的没有分开的光斑,这与光的衍射现象有关C.雨后虹的形成与光的全反射现象有关D.老年人眼睛常变为远视眼,这时近处物体通过眼睛所成的像在视网膜的前方(瞳孔与视网膜之间),故看不清2.(第30届全国中学生物理竞赛预赛)图中A、B是两块金属板,分别与高压直流电源的正负极相连.一个电荷量为q、质量为m的带正电的点电荷自贴近A板处静止释放(不计重力作用).已知当A、B两板平行、两板的面积很大且两板间的距离较小时,它刚到达B板时的速度为u0,在下列情况下以u表示点电荷刚到达B板时的速度A. 若A、B两板不平行,则u< u0B.若A板面积很小,B板面积很大,则u< u0C.若A、B两板间的距离很大,则u< u0D.不论A、B两板是否平行、两板面积大小及两板间距离多少,u都等于u03.(第30届全国中学生物理竞赛预赛)α粒子和β粒子都沿垂直于磁场的方向射入同一均匀磁场中,发现这两种粒子沿相同半径的圆轨道运动.若α粒子的质量是m1,β粒子的质量是m2,则α粒子与β粒子的动能之比是A. m2m1 B.m1m2 C.m14m2 D.4m2m14.(第30届全国中学生物理竞赛预赛)由玻尔理论可知,当氢原子中的核外电子由一个轨道跃迁到另一轨道时,有可能A. 发射出光子,电子的动能减少,原子的势能减少B. 发射出光子,电子的动能增加,原子的势能减少C. 吸收光子,电子的动能减少,原子的势能增加D. 吸收光子,电子的动能增加,原子的势能减少5.(第30届全国中学生物理竞赛预赛)图示两条虚线之间为一光学元件所在处,AB为其主光轴.P是一点光源,其傍轴光线通过此光学元件成像于Q点.该光学元件可能是A.薄凸透镜B.薄凹透镜C.凸球面镜D.凹球面镜6.(第30届全国中学生物理竞赛预赛)国际上已规定133Cs原子的频率f=9192631770Hz(没有误差).这样,秒的定义______________________________.国际上已规定一个公认的光速值c=299792458m/s(没有误差).长度单位由时间单位导出,则米定义为______________________________.7.(第30届全国中学生物理竞赛预赛)质量为m1的小滑块,沿一倾角为θ的光滑斜面滑下,斜面质量为m2,置于光滑的水平桌面上.设重力加速度为g,斜面在水平桌面上运动的加速度的大小为______________________________8.(第30届全国中学生物理竞赛预赛)一线光源,已知它发出的光包含三种不同频率的可见光,若要使它通过三棱镜分光,最后能在屏上看到这三种不同频率的光的谱线,则除了光源、三棱镜和屏外,必须的器件至少还应有______________.其中一个的位置应在______________和______________之间,另一个的位置应在______________和______________之间.9.(第30届全国中学生物理竞赛预赛)如图所示,A为放在水平光滑桌面上的长方形物块,在它上面放有物块B和C.A、B、C的质量分别为m、5m、m.B、C与A之间的静摩擦系数和滑动摩擦系数皆为0.10,K为轻滑轮,绕过轻滑轮连接B和C的轻细绳都处于水平位置.现用水平方向的恒定外力F拉滑轮,使A 的加速度等于0.20g,g为重力加速度.在这种情况时,B、A之间沿水平方向的作用力的大小等于_____________,C、A之间沿水平方向的作用力的大小等于_____________,外力F的大小等于_______________.10.(第30届全国中学生物理竞赛预赛)i.在做“把电流表改装成电压表”的实验中,必须测出电流表的内阻和用标准电压表对改装成的电压表进行校准.某同学对图示的器材进行了连线,使所连成的电路只要控制单刀双掷开关的刀位和调节电阻箱及变阻器,不需改动连线,就能:(1)在与电阻箱断路的条件下测出电流表的内阻;(2)对改装成的电压表所有的刻度进行校准.试在图中画出该同学的全部连线.ii.有一块横截面为矩形的长板,长度在81cm与82cm之间,宽度在5cm与6cm之间,厚度在1cm与2cm之间.现用直尺(最小刻度为mm)、卡尺(游标为50分度)和千分尺(螺旋测微器)去测量此板的长度、宽度和厚度,要求测出后的最后一位有效数字是估读的.试设想一组可能的数据天灾下面的空格处.板的长度_______________cm,板的宽度_______________cm,板的厚度_______________cm,11.(第30届全国中学生物理竞赛预赛)在水平地面某处,以相同的速率v0用不同的抛射角分别抛射两个小球A和B,它们的射程相同.已知小球A在空中运行的时间为T A,求小球B在空中运行的时间T B.重力加速度大小为g,不考虑空气阻力.12.(第30届全国中学生物理竞赛预赛)从地球上看太阳时,对太阳直径的张角θ=53°.取地球表面上纬度为1°的长度l=110km,地球表面处的重力加速度g=10m/s2,地球公转的周期T=365天.试仅用以上数据计算地球和太阳密度之比.假设太阳和地球都是质量均匀分布的球体.13.(第30届全国中学生物理竞赛预赛)一个用电阻丝绕成的线圈,浸没在量热器所盛的油中,油的温度为0℃.当线圈两端加上一定的电压后,油温渐渐上升.0℃时温度升高的速率为5.0K·min-1,持续一段时间后,油温上升到30℃,此时温度升高的速率变为4.5K·min-1,这是因为线圈的电阻与温度有关.设温度为θ℃时线圈的电阻为Rθ,温度为0℃时线圈的电阻为R0,则有Rθ=R0(1+αθ),α称为电阻的温度系数.试求此线圈电阻的温度系数.假设量热器及其中的油以及线圈所构成的系统温度升高的速率与该系统吸收热量的速率(即单位时间内吸收的热量)成正比;对油加热过程中加在线圈两端的电压恒定不变;系统损失的热量可忽略不计.14. (第30届全国中学生物理竞赛预赛)如图所示,一摩尔理想气体,由压强与体积关系的p-V 图中的状态A 出发,经过一缓慢的直线过程到达状态B ,已知状态B 的压强与状态A 的压强之比为12,若要使整个过程的最终结果是气体从外界吸收了热量,则状态B 与状态A 的体积之比应满足什么条件?已知此理想气体每摩尔的内能为32RT ,R 为普适气体常量,T 为热力学温度.15. (第30届全国中学生物理竞赛预赛)如图所示,匝数为N 1的原线圈和在数为N 2的副线圈绕在同一闭合的铁心上,副线圈两端与电阻R 相联,原线圈两端与平行金属导轨相联.两轨之间的距离为L ,其电阻可不计.在虚线的左侧,存在方向与导轨所在平面垂直的匀强磁场,磁感应强度的大小为B . pq 是一质量为m电阻为r 与导轨垂直放置的金属杆,它可在导轨上沿与导轨平行的方向无摩擦地滑动.假设在任何同一时刻通过线圈每一匝的磁通都相同,两个线圈的电阻、铁心中包括涡流在内的各种损耗都忽略不计,且变压器中的电磁场完全限制在变压器铁心中.现于t=0时开始施一外力,使杆从静止出发以恒定的加速度a 向左运动.不考虑连接导线的自感.若已知在某时刻t 时原线圈中电流的大小I 1,i.求此时刻外力的功率ii.此功率转化为哪些其他形式的功率或能量变化率?试分别求出它们的大小.16. (第30届全国中学生物理竞赛预赛)如图所示,一质量为m 半径为R 的由绝缘材料制成的薄球壳,均匀带正电,电荷量为Q ,球壳下面有与球壳固连的底座,底座静止在光滑水平面上.球壳内部有一劲度系数为η的轻弹簧(质量不计),弹簧始终处于水平位置,其一端与球壳内壁固连,另一端恰位于球心处,球壳上开有一小孔C ,小孔位于过球心的水平线上.在此水平线上离球壳很远的O 处有一质量也为m 电荷量也为Q 的带正电的点电荷P ,它以足够大的初速v 0沿水平的OC 方向开始运动.并知P 能通过小孔C 进入球壳内,不考虑重力和底座的影响.已知静电力常量k .求P 刚进入C 孔到刚再由C 孔出来所经历的时间.第30届全国中学生物理竞赛预赛试题参考答案及评分标准1. 答案:AB2. 答案:D3. 答案:D4. 答案:BC5. 答案:D6. 答案:133Cs 跃迁时所对应的电磁波振动9192631770个周期的时间(4分) 光在真空中在1299792458秒的时间内所传播的距离的长度(4分)7. 答案:1221sin cos sin m g m m θθθ+ 8. 答案:两个凸透镜(4分) 光源(1分) 三棱镜(1分) 三棱镜(1分) 屏(1分)9. 答案:0.10mg (4分)0.10mg (4分)2.2mg (4分)10. 答案:i .连线如图所示。
全国中学生物理竞赛复赛试题及答案(全Word版)

第31届全国中学生物理竞赛复赛理论考试试题说明:所有答案 (包括填空)必须写在答题纸上,写在试题纸上无效。
一、(12分)2013年6月20日,“神舟十号”女航天员王亚平在“天宫一号”目标飞行器里成功进行了我国首次太空授课. 授课中的一个实验展示了失重状态下液滴的表面张力引起的效应. 视频中可发现漂浮的液滴处于周期性的“脉动”中(平时在地球表面附近,重力的存在会导致液滴下降太快,以至于很难观察到液滴的这种“脉动”现象). 假设液滴处于完全失重状态,液滴的上述“脉动”可视为液滴形状的周期性的微小变化(振动),如图所示. (1)该液滴处于平衡状态时的形状是__________;(2)决定该液滴振动频率f 的主要物理量是________________________________________; (3)按后面括号中提示的方法导出液滴振动频率与上述物理量的关系式.(提示:例如,若认为,,a b c 是决定该液滴振动频率的相互独立的主要物理量,可将液滴振动频率f 与,,a b c 的关系式表示为αβγ∝f a b c ,其中指数,,αβγ是相应的待定常数.) 二、(16分) 一种测量理想气体的摩尔热容比/p V C C γ≡的方法(Clement-Desormes 方法)如图所示:大瓶G 内装满某种理想气体,瓶盖上通有一个灌气(放气)开关H ,另接出一根U 形管作为压强计M .瓶内外的压强差通过U 形管右、左两管液面的高度差来确定. 初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U 形管液面的高度差i h .然后打开H ,放出少量气体,当瓶内外压强相等时,即刻关闭H . 等待瓶内外温度又相等时,记录此时U 形管液面的高度差f h .试由这两次记录的实验数据i h 和f h ,导出瓶内气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U 形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化)三、(20分)如图所示,一质量为m 、底边AB 长为b 、等腰边长为a 、质量均匀分布的等腰三角形平板,可绕过光滑铰链支点A 和B 的水平轴x 自由转动;图中原点O 位于AB 的中点,y 轴垂直于板面斜向上,z 轴在板面上从原点O 指向三角形顶点C . 今在平板上任一给定点000M (,0,)x z加一垂直于板面的拉振动的液滴力Q .(1)若平衡时平板与竖直方向成的角度为ϕ,求拉力Q 以及铰链支点对三角形板的作用力N A 和N B ;(2)若在三角形平板上缓慢改变拉力Q 的作用点M 的位置,使平衡时平板与竖直方向成的角度仍保持为ϕ,则改变的作用点M 形成的轨迹满足什么条件时,可使铰链支点A 或B 对板作用力的垂直平板的分量在M 变动中保持不变?四、(24分)如图所示,半径为R 、质量为m 0的光滑均匀圆环,套在光滑竖直细轴OO '上,可沿OO '轴滑动或绕OO '轴旋转.圆环上串着两个质量均为m 的小球. 开始时让圆环以某一角速度绕OO '轴转动,两小球自圆环顶端同时从静止开始释放.(1)设开始时圆环绕OO '轴转动的角速度为ω0,在两小球从环顶下滑过程中,应满足什么条件,圆环才有可能沿OO '轴上滑?(2)若小球下滑至30θ=︒(θ是过小球的圆环半径与OO '轴的夹角)时,圆环就开始沿OO '轴上滑,求开始时圆环绕OO '轴转动的角速度ω0、在30θ=︒时圆环绕OO '轴转动的角速度ω和小球相对于圆环滑动的速率v .五、(20分)如图所示,现有一圆盘状发光体,其半径为5cm ,放置在一焦距为10cm 、半径为15cm 的凸透镜前,圆盘与凸透镜的距离为20cm ,透镜后放置一半径大小可调的圆形光阑和一个接收圆盘像的光屏.图中所有光学元件相对于光轴对称放置.请在几何光学近轴范围内考虑下列问题,并忽略像差和衍射效应.(1)未放置圆形光阑时, 给出圆盘像的位置、大小、形状;(2)若将圆形光阑放置于凸透镜后方6cm 处. 当圆形光阑的半径逐渐减小时,圆盘的像会有什么变化?是否存在某一光阑半径a r ,会使得此时圆盘像的半径变为(1)中圆盘像的半径的一半?若存在,请给出a r 的数值.(3)若将圆形光阑移至凸透镜后方18cm 处,回答(2)中的问题; (4)圆形光阑放置在哪些位置时,圆盘像的大小将与圆形光阑的半径有关?(5)若将图中的圆形光阑移至凸透镜前方6cm 处,回答(2)中的问题.六、(22分)如图所示,一电容器由固定在共同导电底座上的N +1片对顶双扇形薄金属板和固定在可旋转的导电对称轴上的N 片对顶双扇形薄金属板组成,所有顶点共轴,轴线与所有板面垂直,两组板面各自在垂直于轴线的平面上的投影重合,板面扇形半径均为R ,圆心角均为0θ(02πθπ≤<);固定金属板和可旋转的金属板相间排列,两相邻金属板之间距离均为s .此电容器的电容C 值与可旋转金属板的转角θ有关.已知静电力常量为k .(1)开始时两组金属板在垂直于轴线的平面上的投影重合,忽略边缘效应,求可旋转金属板的转角为θ(00θθθ-≤≤)时电容器的电容()C θ;(2)当电容器电容接近最大时,与电动势为E 的电源接通充电(充电过程中保持可旋转金属板的转角不变),稳定后断开电源,求此时电容器极板所带电荷量和驱动可旋转金属板的力矩; (3)假设02πθ=,考虑边缘效应后,第(1)问中的()C θ可视为在其最大值和最小值之间光滑变化的函数max min max min 11()()()cos222C C C C C θθ=++- 式中,max C 可由第(1)问的结果估算,而min C 是因边缘效应计入的,它与max C 的比值λ是已知的.若转轴以角速度m ω匀速转动,且m t θω=,在极板间加一交流电压0cos V V t ω=.试计算电容器在交流电压作用下能量在一个变化周期内的平均值,并给出该平均值取最大值时所对应的m ω.七、(26分)Z-箍缩作为惯性约束核聚变的一种可能方式,近年来受到特别重视,其原理如图所示.图中,长20 mm 、直径为5m μ的钨丝组成的两个共轴的圆柱面阵列,瞬间通以超强电流,钨丝阵列在安培力的作用下以极大的加速度向内运动, 即所谓自箍缩效应;钨丝的巨大动量转移到处于阵列中心的直径为毫米量级的氘氚靶球上,可以使靶球压缩后达到高温高密度状态,实现核聚变.设内圈有N 根钨丝(可视为长直导线)均匀地分布在半径为r 的圆周上,通有总电流7210A =⨯内I ;外圈有M 根钨丝,均匀地分布在半径为R 的圆周上,每根钨丝所通过的电流同内圈钨丝.已知通有电流i 的长直导线在距其r 处产生的磁感应强度大小为m ik r,式中比例常量772210T m/A 210N /A m k --=⨯⋅=⨯.(1)若不考虑外圈钨丝,计算内圈某一根通电钨丝中间长为L ∆的一小段钨丝所受到的安N 片可旋转金属板培力;(2)若不考虑外圈钨丝,内圈钨丝阵列熔化后形成了圆柱面,且箍缩为半径0.25cm r =的圆柱面时,求柱面上单位面积所受到的安培力,这相当于多少个大气压?(3)证明沿柱轴方向通有均匀电流的长圆柱面,圆柱面内磁场为零,即通有均匀电流外圈钨丝的存在不改变前述两小题的结果;(4)当1N >>时, 则通有均匀电流的内圈钨丝在外圈钨丝处的磁感应强度大小为m Ik R内,若要求外圈钨丝柱面每单位面积所受到的安培力大于内圈钨丝柱面每单位面积所受到的安培力,求外圈钨丝圆柱面的半径R 应满足的条件;(5)由安培环路定理可得沿柱轴方向通有均匀电流的长圆柱面外的磁场等于该圆柱面上所有电流移至圆柱轴后产生的磁场,请用其他方法证明此结论. (计算中可不考虑图中支架的影响)八、(20分)天文观测表明,远处的星系均离我们而去.著名的哈勃定律指出,星系离开我们的速度大小v =HD ,其中D 为星系与我们之间的距离,该距离通常以百万秒差距(Mpc )为单位;H 为哈勃常数,最新的测量结果为H =67.80km/(s ⋅Mpc).当星系离开我们远去时,它发出的光谱线的波长会变长(称为红移).红移量z 被定义为λλλ'-=z ,其中λ'是我们观测到的星系中某恒星发出的谱线的波长,而λ是实验室中测得的同种原子发出的相应的谱线的波长,该红移可用多普勒效应解释.绝大部分星系的红移量z 远小于1,即星系退行的速度远小于光速.在一次天文观测中发现从天鹰座的一个星系中射来的氢原子光谱中有两条谱线,它们的频率ν'分别为4.549⨯1014Hz 和6.141⨯1014Hz .由于这两条谱线处于可见光频率区间,可假设它们属于氢原子的巴尔末系,即为由n > 2的能级向k =2的能级跃迁而产生的光谱.(已知氢原子的基态能量013.60 eV =-E ,真空中光速82.99810m/s =⨯c ,普朗克常量346.62610J s -=⨯⋅h ,电子电荷量19 1.60210C -=⨯e )(1)该星系发出的光谱线对应于实验室中测出的氢原子的哪两条谱线?它们在实验室中的波长分别是多少?(2)求该星系发出的光谱线的红移量z 和该星系远离我们的速度大小v ;金属极板 外圈钨丝内圈钨丝 支架(3)求该星系与我们的距离D .第31届全国中学生物理竞赛复赛理论考试试题解答2014年9月20日一、(12分) (1)球形(2)液滴的半径r 、密度ρ和表面张力系数σ(或液滴的质量m 和表面张力系数σ) (3)解法一假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 按照这一约定,①式在同一单位制中可写成 {}[]{}{}{}{}[][][]αβγαβγρσρσ=f f k r r由于取同一单位制,上述等式可分解为相互独立的数值等式和单位等式,因而 [][][][]αβγρσ=f r ② 力学的基本物理量有三个:质量m 、长度l 和时间t ,按照前述约定,在该单位制中有 {}[]=m m m ,{}[]=l l l ,{}[]=t t t 于是[][]-=f t 1 ③ [][]=r l ④ [][][]ρ-=m l 3 ⑤ [][][]σ-=m t 2 ⑥ 将③④⑤⑥式代入②式得[][]([][])([][])αβγ---=t l m l m t 132 即[][][][]αββγγ--+-=t l m t 132 ⑦由于在力学中[]m 、[]l 和[]t 三者之间的相互独立性,有30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩ 解为311,,222αβγ=-=-= ⑪将⑪式代入①式得=f ⑫ 解法二假设液滴振动频率与上述物理量的关系式为αβγρσ=f k r ①式中,比例系数k 是一个待定常数. 任一物理量a 可写成在某一单位制中的单位[]a 和相应的数值{}a 的乘积{}[]=a a a . 在同一单位制中,①式两边的物理量的单位的乘积必须相等[][][][]αβγρσ=f r ②力学的基本物理量有三个:质量M 、长度L 和时间T ,对应的国际单位分别为千克(kg )、米(m )、秒(s ). 在国际单位制中,振动频率f 的单位[]f 为s -1,半径r 的单位[]r 为m ,密度ρ的单位[]ρ为3kg m -⋅,表面张力系数σ的单位[]σ为1212N m =kg (m s )m kg s ----⋅⋅⋅⋅=⋅,即有[]s -=f 1 ③ []m =r ④ []kg m ρ-=⋅3 ⑤ []kg s σ-=⋅2 ⑥ 若要使①式成立,必须满足()()s m kg m kg s (kg)m s βγαβγαβγ---+--=⋅⋅=⋅⋅13232 ⑦由于在力学中质量M 、长度L 和时间T 的单位三者之间的相互独立性,有 30αβ-=, ⑧ 0βγ+=, ⑨ 21γ= ⑩解为311,,222αβγ=-=-= ⑪将⑪式代入①式得f = ⑫评分标准:本题12分. 第(1)问2分,答案正确2分;第(2)问3分,答案正确3分;第(3)问7分,⑦式2分,⑪式3分,⑫式2分(答案为f、f =f 的,也给这2分).二、(16分)解法一:瓶内理想气体经历如下两个气体过程:000000(,,,)(,,,)(,,,)−−−−−−−→−−−−−→i i f f f p V T N p V T N p V T N 放气(绝热膨胀)等容升温其中,000000(,,,),(,,,,,,)i i f f f p V T N p V T N p V T N )和(分别是瓶内气体在初态、中间态与末态的压强、体积、温度和摩尔数.根据理想气体方程pV NkT =,考虑到由于气体初、末态的体积和温度相等,有f f iip N p N =①另一方面,设V '是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为0p 时的体积,即000(,,,)(,,,)i i i p V T N p V T N '−−−−→绝热膨胀此绝热过程满足1/00i V p V p γ⎛⎫= ⎪'⎝⎭②由状态方程有0i p V N kT '=和00f p V N kT =,所以 0f iN V N V ='③联立①②③式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭④ 此即lnln i i fp p p γ=⑤由力学平衡条件有0i i p p gh ρ=+ ⑥0f f p p gh ρ=+ ⑦式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由⑤⑥⑦式得00ln(1)ln(1)ln(1)if i h h h hh h γ+=+-+⑧利用近似关系式:1, ln(1)x x x +≈ 当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==--⑨评分标准:本题16分.①②③⑤⑥⑦⑧⑨式各2分.解法二:若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程ab ,再通过等容升温过程bc 达到末态100000(,,)(,,)(,,)−−−−−→−−−−−→i f p V T p V T p V T 绝热膨胀ab 等容升温bc其中,100000(,,),(,,,,)i f p V T p V T p V T )和(分别是留在瓶内的气体在初态、中间态和末态的压强、体积与温度.留在瓶内的气体先后满足绝热方程和等容过程方程1100ab: γγγγ----=i p T p T①00bc://=f p T p T② 由①②式得1/0fi i p p p p γ⎛⎫= ⎪⎝⎭③ 此即lnln i i fp p p p γ=④由力学平衡条件有0i i p p gh ρ=+ ⑤0f f p p gh ρ=+ ⑥式中,00p gh ρ=为瓶外的大气压强,ρ是U 形管中液体的密度,g 是重力加速度的大小.由④⑤⑥式得00ln(1)ln(1)ln(1)if i h h h hh h γ+=+-+⑦利用近似关系式:1, ln(1)x x x +≈ 当,以及 00/1, /1i f h h h h ,有000///i ii f i fh h h h h h h h h γ==--⑧评分标准:本题16分.①②式各3分,④⑤⑥⑦⑧式各2分.三、(20分)(1)平板受到重力C P 、拉力0M Q 、铰链对三角形板的作用力N A 和N B ,各力及其作用点的坐标分别为:C (0,sin ,cos )ϕϕ=--mg mg P ,(0,0,)h ;0M (0,,0)Q =Q , 00(,0,)x z ;A A A A (,,)x y z N N N =N , (,0,0)2b;B B B B (,,)x y z N N N =N ,(,0,0)2b- 式中h =是平板质心到x 轴的距离.平板所受力和(对O 点的)力矩的平衡方程为A B x0=+=∑xxF N N① A B sin 0ϕ=++-=∑yyyF Q N N mg② A B cos 0ϕ=+-=∑zzzF N N mg③ 0sin 0xM mgh Q z ϕ=-⋅=∑④ B A 022=-=∑y zz b bM N N⑤0A B 022z yy b bM Q x N N =⋅+-=∑⑥联立以上各式解得sin mgh Q z ϕ=, A B x x N N =-,000sin 21()2Ay mg h b x N b z z ϕ⎡⎤=-+⎢⎥⎣⎦,000sin 21()2By mg h b x N b z z ϕ⎡⎤=--⎢⎥⎣⎦A B 1cos 2z zN N mg ϕ==即0M 0sin (0,,0)mgh z ϕ=Q ,⑦0A A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=-+⎢⎥⎣⎦N ,⑧0B A 002sin 1(,1(),cos )22x x mg h b N mg b z z ϕϕ⎡⎤=---⎢⎥⎣⎦N⑨(2)如果希望在M(,0,)x z 点的位置从点000M (,0,)x z 缓慢改变的过程中,可以使铰链支点对板的作用力By N 保持不变,则需 sin 21()2By mg h b x N b z z ϕ⎡⎤=--=⎢⎥⎣⎦常量 ⑩M 点移动的起始位置为0M ,由⑩式得 00022-=-b x b x z z z z⑪ 或00022b x b x z z z ⎛⎫-=- ⎪⎝⎭ ⑫这是过A(,0,0)2b点的直线. (*)因此,当力M Q 的作用点M 的位置沿通过A 点任一条射线(不包含A 点)在平板上缓慢改变时,铰链支点B 对板的作用力By N 保持不变. 同理,当力M Q 的作用点M 沿通过B 点任一条射线在平板上缓慢改变时,铰链支点A 对板的作用力Ay N 保持不变.评分标准:本题20分.第(1)问14分,①式1分,②③④⑤⑥式各2分,⑦⑧⑨式各1分;第(2)问6分,⑩⑫式各1分,(*) 2分,结论正确2分.四、(24分)(1)考虑小球沿径向的合加速度. 如图,设小球下滑至θ 角位置时,小球相对于圆环的速率为v ,圆环绕轴转动的角速度为ω .此时与速率v 对应的指向中心C 的小球加速度大小为 21a R=v① 同时,对应于圆环角速度ω,指向OO '轴的小球加速度大小为2(sin )sin R a R ωωθθ= ②该加速度的指向中心C 的分量为22(sin )sin R a a R ωωθθ== ③该加速度的沿环面且与半径垂直的分量为23(sin )cos cot R a a Rωωθθθ== ④由①③式和加速度合成法则得小球下滑至θ 角位置时,其指向中心C 的合加速度大小为2212(sin )v ωθ=+=+R R a a a R R⑤在小球下滑至θ 角位置时,将圆环对小球的正压力分解成指向环心的方向的分量N 、垂直于环面的方向的分量T . 值得指出的是:由于不存在摩擦,圆环对小球的正压力沿环的切向的分量为零. 在运动过程中小球受到的作用力是N 、T 和mg . 这些力可分成相互垂直的三个方向上的分量:在径向的分量不改变小球速度的大小,亦不改变小球对转轴的角动量;沿环切向的分量即sin θmg 要改变小球速度的大小;在垂直于环面方向的分量即T 要改变小球对转轴的角动量,其反作用力将改变环对转轴的角动量,但与大圆环沿'OO 轴的竖直运动无关. 在指向环心的方向,由牛顿第二定律有22(sin )cos R R N mg ma mRωθθ++==v ⑥ 合外力矩为零,系统角动量守恒,有202(sin )L L m R θω=+ ⑦式中L 0和L 分别为圆环以角速度ω0和ω转动时的角动量.如图,考虑右半圆环相对于轴的角动量,在θ角位置处取角度增量∆θ, 圆心角∆θ所对圆弧l ∆的质量为m l λ∆=∆(02m Rλπ≡),其角动量为 2sin L m r l rR Rr z R S ωλωθλωλω∆=∆=∆=∆=∆ ⑧式中r 是圆环上θ 角位置到竖直轴OO '的距离,S ∆为两虚线间窄条的面积.⑧式说明,圆弧l ∆的角动量与S ∆成正比. 整个圆环(两个半圆环)的角动量为2200122222m R L L R m R R πωωπ=∆=⨯=∑ ⑨l[或:由转动惯量的定义可知圆环绕竖直轴OO '的转动惯量J 等于其绕过垂直于圆环平面的对称轴的转动惯量的一半,即2012J m R = ⑧则角动量L 为2012L J m R ωω== ⑨ ]同理有200012L m R ω= ⑩力N 及其反作用力不做功;而T 及其反作用力的作用点无相对移动,做功之和为零;系统机械能守恒. 故22012(1cos )2[(sin )]2k k E E mgR m R θωθ-+⨯-=⨯+v ⑪式中0k E 和k E 分别为圆环以角速度0ω和ω转动时的动能.圆弧l ∆的动能为222111()sin 222k E m r l rR R S ωλωθλω∆=∆=∆=∆整个圆环(两个半圆环)的动能为22220011222224k k m R E E R m R R πωωπ=∆=⋅⋅⋅⋅=∑ ⑫ [或:圆环的转动动能为22201124k E J m R ωω== ⑫ ]同理有2200014k E m R ω= ⑬根据牛顿第三定律,圆环受到小球的竖直向上作用力大小为2cos N θ,当02cos N m g θ≥ ⑭时,圆环才能沿轴上滑.由⑥⑦⑨⑩⑪⑫ ⑬式可知,⑭式可写成2220000220cos 6cos 4cos 102(4sin )ωθθθθ⎡⎤-+--≤⎢⎥+⎣⎦m R m m m m gm m ⑮式中,g 是重力加速度的大小.(2)此时由题给条件可知当=30θ︒时,⑮式中等号成立,即有2020912()m m m m m ⎤⎛-+=- ⎥+⎝⎣⎦或00(m m ω=+ ⑯由⑦⑨⑩⑯式和题给条件得0000200+4sin +m m m m m m ωωωθ=== ⑰ 由⑪⑫⑬⑯⑰式和题给条件得v ⑱评分标准:本题24分.第(1)问18分,①②③④⑤式各1分,⑥⑦式各2分,⑨⑩式各1分,⑪式2分,⑫⑬式各1分,⑭式2分,⑮式1分;第(2)问6分,⑯⑰⑱式各2分.五、(20分)(1)设圆盘像到薄凸透镜的距离为v . 由题意知:20cm u =, 10cm f =,代入透镜成像公式111u f+=v ① 得像距为20cm =v ② 其横向放大率为1uβ=-=-v③ 可知圆盘像在凸透镜右边20cm ,半径为5cm ,为圆盘状,圆盘与其像大小一样. (2)如下图所示,连接A 、B 两点,连线AB 与光轴交点为C 点,由两个相似三角形AOC ∆与BB'C ∆的关系可求得C 点距离透镜为15cm. 1分若将圆形光阑放置于凸透镜后方6cm 处,此时圆形光阑在C 点左侧. 1分 当圆形光阑半径逐渐减小时,均应有光线能通过圆形光阑在B 点成像,因而圆盘像的形状及大小不变,而亮度变暗. 2分此时不存在圆形光阑半径a r 使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半.1分(3)若将圆形光阑移至凸透镜后方18cm 处,此时圆形光阑在C 点(距离透镜为15cm )的右侧. 由下图所示,此时有:CB'=BB'=5cm, R'B'=2cm, 利用两个相似三角形CRR'∆与CBB'∆的关系,得 CR'52RR'=BB'=5cm 3cm CB'5r -=⨯⨯= ④ 可见当圆盘半径3cm r =(光阑边缘与AB 相交)时,圆盘刚好能成完整像,但其亮度变暗. 4分若进一步减少光阑半径,圆盘像就会减小.当透镜上任何一点发出的光都无法透过光阑照在原先像的一半高度处时,圆盘像的半径就会减小为一半,如下图所示.此时光阑边缘与AE相交,AE 与光轴的交点为D ,由几何关系算得D 与像的轴上距离为207cm. 此时有620D R '=c m , D E '=c m , E E '=2.5c m ,77利用两个相似三角形DRR'∆与DEE'∆的关系,得D R '20/72R R '=E E '= 2.5c m 0.75c m D E '20/7a r -=⨯⨯= ⑤ 可见当圆形光阑半径a r =0.75cm ,圆盘像大小的半径的确变为(1)中圆盘像大小的半径的一半. 3分(4)只要圆形光阑放在C 点(距离透镜为15cm )和光屏之间,圆盘像的大小便与圆形光阑半径有关. 2分(5)若将图中的圆形光阑移至凸透镜前方6cm处,则当圆形光阑半径逐渐减小时,圆盘像ACO BB' CRBR'B'DRER' E'的形状及大小不变,亮度变暗; 2分同时不存在圆形光阑半径使得圆盘像大小的半径变为(1)中圆盘像大小的半径的一半. 1分评分标准:第(1)问3分,正确给出圆盘像的位置、大小、形状,各1分;第(2)问5分,4个给分点分别为1、1、2、1分; 第(3)问7分,2个给分点分别为2、3分; 第(4)问2分,1个给分点为2分;第(5)问3分,2个给分点分别为2、1分.六、(22分)(1)整个电容器相当于2N 个相同的电容器并联,可旋转金属板的转角为θ时1()2()C NC θθ=①式中1()C θ为两相邻正、负极板之间的电容1()()4A C ksθθπ=②这里,()A θ是两相邻正负极板之间相互重迭的面积,有2000200200200012(2), 212(), 02()12(), 0212(2), 2R R A R R θπθθθπθθθπθθθθθπθθππθθθ⎧⨯--≤≤-⎪⎪⎪⨯+-≤≤⎪=⎨⎪⨯-≤≤-⎪⎪⎪⨯--<<⎩当当当当③由②③式得2000200120020001(2), 41(), 04()1(), 041(2), 4R ks R ksC R ks R ksθπθθθππθθθπθπθθθθπθπθππθθθπ⎧--≤≤-⎪⎪⎪+-≤≤⎪=⎨⎪-≤≤-⎪⎪⎪--<<⎩当当当当④由①④式得20002002002000(2), 2(), 02()(), 02(2), 2N R ks N R ks C N R ks N R ksθπθθθππθθθπθπθθθθπθπθππθθθπ⎧--≤≤-⎪⎪⎪+-≤≤⎪=⎨⎪-≤≤-⎪⎪⎪--<<⎩当当当当⑤(2)当电容器两极板加上直流电势差E 后,电容器所带电荷为()()θθ=Q C E⑥当0θ=时,电容器电容达到最大值max C ,由⑤式得20max2NR C ksθπ=⑦充电稳定后电容器所带电荷也达到最大值max Q ,由⑥式得20max2NR Q E ksθπ= ⑧断开电源,在转角θ取0θ=附近的任意值时,由⑤⑧式得,电容器内所储存的能量为2222max 0000() 2()4()θθθθπθθπθθ==-≤≤--Q NR E U C ks 当⑨设可旋转金属板所受力矩为()T θ(它是由若干作用在可旋转金属板上外力i F 产生的,不失普遍性,可认为i F 的方向垂直于转轴,其作用点到旋转轴的距离为i r ,其值i F 的正负与可旋转金属板所受力矩的正负一致),当金属板旋转θ∆(即从θ变为θθ+∆)后,电容器内所储存的能量增加U ∆,则由功能原理有()()()θθθθ∆=∆=∆=∆∑∑i i i i T Fr F l U⑩式中,由⑨⑩式得22200020()() 4()θθθθθπθθπθθ∆==-≤≤-∆-NR E U T ks 当⑪当电容器电容最大时,充电后转动可旋转金属板的力矩为2204θθπ=∆⎛⎫== ⎪∆⎝⎭U NR E T ks ⑫(3)当0cos V V t ω=,则其电容器所储存能量为[]222max min max min 02max min max min 020max min max min max min max min 2012111()()cos2cos 222111()()cos2(1cos2)422()()cos2()cos2()cos2cos28{(8m m m m U CV C C C C t V t C C C C t V t V C C C C t C C t C C t t V ωωωωωωωω=⎡⎤=++-⎢⎥⎣⎦⎡⎤=++-+⎢⎥⎣⎦=++++-+-=max min max min max min max min )()cos2()cos21()[cos2()cos2()]}2m m m C C C C t C C t C C t t ωωωωωω++++-+-++-⑬由于边缘效应引起的附加电容远小于max C ,因而可用⑦式估算max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-,⑭可得电容器所储存能量的周期平均值为2221max min 001(1)()832NR U C C V V ksλ+=+=⑮如果m ωω=,⑭式中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式的前3式得电容器所储存能量的周期平均值为222222max min 0max min 0max min 00111(3)()()(3)8161664NR U C C V C C V C C V V ks λ+=++-=+= ⑯由于边缘效应引起的附加电容与忽略边缘效应的电容是并联的,因而max C 应比用⑦式估计max C 大;这一效应同样使得min 0C >;可假设实际的max min ()C C -近似等于用⑦式估计max C .如果m ωω≠,利用⑦式和题设条件以及周期平均值公式cos2=0 cos2=0, cos2()=0, cos2()=0m m m t t t t ωωωωωω+-,⑰可得电容器所储存能量的周期平均值为2221max min 001(12)()832NR U C C V V ksλ+=+=⑱[如果m ωω=,⑭中第4式右端不是零,而是1.利用⑦式和题设条件以及周期平均值公式⑭的前3式得电容器所储存能量的周期平均值为 222222max min 0max min 0max min 00111(34)()()(3)8161664NR U C C V C C V C C V V ksλ+=++-=+= ⑲]212 U U U >因为,则最大值为,所对应的m ω为m ωω=⑳评分标准:本题22分.第(1)问6分,①②式各1分,③⑤式各2分;第(2)问9分,⑥⑦⑧⑨⑩式各1分(⑩式中没有求和号的,也同样给分;没有力的符号,也给分),⑪⑫式各2分;第(3)问7分,⑬⑭式各2分,⑮⑯⑳式各1分.七、(26分)(1)通有电流i 的钨丝(长直导线)在距其r 处产生的磁感应强度的大小为m iB k r=① 由右手螺旋定则可知,相应的磁感线是在垂直于钨丝的平面上以钨丝为对称轴的圆,磁感应强度的方向沿圆弧在该点的切向,它与电流i 的方向成右手螺旋. 两根相距为d 的载流钨丝(如图(a ))间的安培力是相互吸引力,大小为2m k Li F B Li d∆=∆=② 考虑某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力.由系统的对称性可知,每根钨丝受到的合力方向都指向轴心;我们只要将其他钨丝对它的吸引力在径向的分量叠加即可.如图,设两根载流钨丝到轴心连线间的夹角为ϕ,则它们间的距离为2sin2d r ϕ=③由②③式可知,两根载流钨丝之间的安培力在径向的分量为22sin 2sin(/2)22m m r k Li k Li F r rϕϕ∆∆== ④它与ϕ无关,也就是说虽然处于圆周不同位置的载流钨丝对某根载流钨丝的安培力大小和方向均不同,但在径向方向上的分量大小却是一样的;而垂直于径向方向的力相互抵消.因此,某根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(1)22-∆-∆==m m N k L I N k Li F r rN 内⑤ 其方向指向轴心. (2)由系统的对称性可知,所考虑的圆柱面上各处单位面积所受的安培力的合力大小相等,方向与柱轴垂直,且指向柱轴.所考虑的圆柱面,可视为由很多钨丝排布而成,N 很大,但总电流不变.圆柱面上ϕ∆角对应的柱面面积为s r L ϕ=∆∆⑥ 圆柱面上单位面积所受的安培力的合力为22(1)24m N N k Li N F P s r Lϕππ-∆∆==∆⑦由于1N ,有22(1)-=N N i I 内 ⑧ 由⑦⑧式得224π=m k I P r 内⑨ 代入题给数据得1221.0210N/m P =⨯ ⑩一个大气压约为5210N/m ,所以图(a)710atm P ≈⑪ 即相当于一千万大气压.(3)考虑均匀通电的长直圆柱面内任意一点A 的磁场强度. 根据对称性可知,其磁场如果不为零,方向一定在过A 点且平行于通电圆柱的横截面. 在A 点所在的通电圆柱的横截面(纸面上的圆)内,过A 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧L 1和L 2,如图(b )所示. 由几何关系以及钨丝在圆周上排布的均匀性,通过L 1和L 2段的电流之比/I I 12等于它们到A 点的距离之比/l l 12:111222==I L l I L l ⑫ 式中,因此有1212=m m I I k k l l ⑬ 即通过两段微小圆弧在A 点产生的磁场大小相同,方向相反,相互抵消.整个圆周可以分为许多“对”这样的圆弧段,因此通电的外圈钨丝圆柱面在其内部产生的磁场为零,所以通电外圈钨丝的存在,不改变前述两小题的结果.(4)由题中给出的已知规律,内圈电流在外圈钨丝所在处的磁场为=m IB k R内⑭ 方向在外圈钨丝阵列与其横截面的交点构成的圆周的切线方向,由右手螺旋法则确定.外圈钨丝的任一根载流钨丝所受到的所有其他载流钨丝对它施加的安培力的合力为222(1)(2)+ 22-∆∆+=∆=m m m M k L I I k I k L I I I F L RM M R RM外外内外内外外 ⑮式中第一个等号右边的第一项可直接由⑤式类比而得到,第二项由⑭式和安培力公式得到.因此圆柱面上单位面积所受的安培力的合力为22(2)24ϕπϕπ+∆==∆∆外外内外外m F k I I I M P R L R ⑯ 若要求2222244ππ+>外内外内()m m k I I I k I R r⑰ 只需满足<R r ⑱(5)考虑均匀通电的长直圆柱面外任意一点C 的磁场强度. 根据对称性可知,长直圆柱面上的均匀电流在该点的磁场方向一定在过C 点且平行于通电圆柱的横截面(纸面上的圆),与圆的径向垂直,满足右手螺旋法则. 在C 点所在的通电圆柱的横截面内,过C 点作两条相互间夹角为微小角度θ∆的直线,在圆上截取两段微小圆弧3L 和4L ,如图(c )所示. 由几何关系以及电流在圆周上排布的均匀性,穿过3L 和4L 段的电流之比34/I I 等于它们到C 点的距离之比34/l l :333444I L l I L l == ⑲ 式中,33CL l =,44CL l =,CO l =. 由此得33443434I I I I l l l l +==+ ⑳考虑到磁场分布的对称性,全部电流在C 点的磁感应强度应与CO 垂直. 穿过3L 和4L 段的电流在C 点产生的磁感应强度的垂直于CO 的分量之和为。
2013年第30届全国物理竞赛决赛试

2013年第30届全国物理竞赛决赛试题学校:___________姓名:___________班级:___________考号:___________一、解答题1.一质量为m每次落地反弹时水平速度不变,竖直速度大小按同样的比率减小。
若自第一次反弹开始小球的运动轨迹与其在地面的投影之间所包围的面积总和为2821h ,求小球在各次与地面碰撞过程中所受到的总冲量。
提示:小球每次做斜抛运动(从水平地面射出又落至地面)的轨迹与其在地面的投影之间所包围的面积等于其最大高度和水平射程乘积的三分之二、2.质量均为m 的小球1和2由一质量可忽略、长度为l 的刚性轻杆连接,竖直地靠在墙角,如图所示。
假设墙和地面都是光滑的。
初始时给小球2一个微小的向右的初速度。
问系统在运动过程中,当杆与竖直墙面之间的夹角等于何值时,小球1开始离开墙面?3.太空中有一飞行器靠其自身动力维持在地球赤道的正上方L R α=处,相对于赤道上的一地面物资供应站保持静止。
这里,e R 为地球的半径,α为常数,m αα>,而13231e m E E GM R αω⎡⎤=-⎢⎥⎣⎦,e M 和e ω分别为地球的质量和自转角速度,G 为引力常数。
设想从供应站到飞行器有一用于运送物资的刚性、管壁匀质、质量为p m 的竖直输送管。
输送管下端固定在地面上,并设法保持输送管与地面始终垂直。
推送物资时,把物资放入输送管下端的平底托盘上,沿管壁向上推进,并保持托盘运动速度不致过大。
忽略托盘与管壁之间的摩擦力,考虑地球的自转,但不考虑地球的公转。
设某次所推送物资和托盘的总质量为m 。
(1)在把物资从地面送到飞行器的过程中,地球引力和惯性离心力做的功分别是多少?(2)在把物资从地面送到飞行器的过程中,外推力至少需要做多少正功?(3)当飞机离地面的高度(记为0L )为多少时,在把物资送到飞行器的过程中,地球引力和惯性离心力所做功的和为零?(4)如果适当地控制飞行器的动力,使飞行器在不输送物资时对输送管的作用力恒为零,在不输送物资的情况下,计算当飞行器离地面的高度为e L R α=时,地面供应站对输送管的作用力;并对0L L >,0L L =,0m e R L L α<<三种情形,分别给出供应站对输送管道的作用力的大小和方向。
第30届全国中学生物理竞赛复赛考试试题解答和评分标准

第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上。
一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为v 0(v 0≠0)。
求滑块在整个运动过程中可能达到的最大速率。
重力加速度大小为g 。
参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v . (2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即 max ()0θθ=v .(4) [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v . (4’) ]将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v .(5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22max 0max 2sin sin 20gR gR θθ+-=v .(6)其解为20max sin 14gR θ⎫=⎪⎪⎭v . (7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=v v , (8)考虑到(4)式有max ==v (9)评分标准:本题15分。
全国中学生物理竞赛复赛试题及参考答案

第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4) [(4)式也可用下述方法得到:由 (1)、(2) 式得 22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
由上式可知 max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan0gR θθθθ=-=v v .(4’)]将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v .(5)以max sin θ为未知量,方程(5)的一个根是sin q=0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22max 0max 2sin sin 20gR gR θθ+-=v .(6)其解为20maxsin 14gR θ⎫=⎪⎪⎭v .(7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=+v v , (8)考虑到(4)式有max ==v (9)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C 2l r =v v .(1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v .(2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3)由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)[代替 (3) 式,可利用弹性碰撞特点0D A =-v v v .(3’)同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则22(2)2mr m l l r x m αα++==++.(7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8)轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有 ()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9)由此得2022(2)28r l r F t m l r -∆=+v . (10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r-'∆=-+v , (11)方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+ v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0=v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为k E k L αβγλω= (1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---==== (2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为()[]q q q = (3) 式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4) 在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5) [][][][]k E L αβγλω= (6) 将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8) 所以23k E k L λω= (9) 2. 由题意,杆的动能为,c ,r k k k E E E =+ (10) 其中,22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为 32,r 2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得 2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13)由此解得 16k = (14)于是E k =16lw 2L 3. (15) 3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭ (16) 由(15)、(16)式得w =以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=- (19)()()sin n N L r g L r a λθλ--=- (20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4ct L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==. (22) 由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg L θ--= (23)()()253sin 2L r L r N mg L θ-+=(24)评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1)式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为21(2)(2)2()Qq h R m mg h R k h R R-=---v . (2)从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有max (2)(2)0()Q q h R mg h R kh R R---=-.(3)由此得max ()mg h R RQ kq-=.(4)容器的最高电势为maxmax Q V kR= (5) 由(4) 和 (5)式得max ()mg h R V q-=(6)评分标准:本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)x y z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )参考解答:1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1)在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+- (2)两参考系中电荷、合力和速度的变换关系为,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v . (6) 为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+- (7)利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9) 可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-.(10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v .(11)评分标准:本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1) 1121()l l T T α∆=- (2) 式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆ (3) 2221()l l T T α∆=- (4) 联立以上各式得 2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯-- (5)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b) 参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1) 的均匀介质的光程相同,即2111112nh h bh δ==+ (2)hx忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=- (3)于是()212112y h bh δδδ=+=+. (4)由几何关系有 1tan h y θ=. (5)故()22tan 2b y h y δθ=+. (6)从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处.对于0y =处,由上式得d 0()=h . (7)y 处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=. (8) 由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ== . (9) 由此得y A θθ==. (10) 除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A . (11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m = ,其中m 为任意正整数,则49,,,m m m y y y === . (12),光线在焦点处依然相互加强而形成亮纹. 评分标准:本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 e V ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知 m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,ee E p E p γγ''''. 由能量守恒有E e +E g =¢E e +¢E g .(1)由动量守恒有cos cos ,sin sin .e eep p p p p p γγγαθαθ''+=+''=.(2)式中,α和θ分别是散射后的电子和光子相对于碰撞前电子的夹角. 光子的能量和动量满足E g =p g c ,¢E g =¢p g c .(3)电子的能量和动量满足22224e e e E p c m c -=,22224e e e E p c m c ''-= (4)由(1)、(2)、(3)、(4)式解得e E E E γγ+'=(5)[由(2)式得22222()2()cos ee e p c p c p c p c p c p c p c γγγγθ'''=++-+此即动量p '、ep '和e p p γ+满足三角形法则. 将(3)、(4)式代入上式,并利用(1)式,得22(2)()22cos 2e e e E E E E E E E E E E E γγγγγγγγθθ''+-+=+--此即(5)式. ]当0θ→时有e E E E γγ+'=(6)2. 为使能量从电子转移到光子,要求¢E g >E g . 由(5)式可见,需有E E γγ'-=>此即E γ 或 e p p γ>(7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E γ>>,因而e p p p γγ+>>,由(5)式可知p p γγ'>>,因此有0θ≈. 又242e e e m cE E -.(8)将(8)式代入(6)式得¢E g »2E e E g2E g +m e2c 42E e. (9)代入数据,得 ¢E g »29.7´106eV .(10)评分标准:本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 或(6)式2分; 第2问5分,(7) 式5分;第3问5分,(8) 式2分, (9) 式1分, (10) 式2分.。