2022届[全国百强校首发]广东省汕头市潮阳实验校中考冲刺卷数学试题含解析

合集下载

【中考卷】广东省2022届中考数学第一次冲刺模拟考试(一)含答案与解析

【中考卷】广东省2022届中考数学第一次冲刺模拟考试(一)含答案与解析

广东省2022年中考第一次冲刺模拟考试(一)数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各数中,比3-小的数是( ) A .π-B 5C .2D .83-2.京张高铁,京礼高速两条北京冬奥会重要交通保障设施投入使用后,将张家口、崇礼、延庆与北京城区串成一线.京张高铁开通运营一年累计发送旅客6 800 000人,大幅提升了京张两地通行能力,将6 800 000用科学记数法表示为( ) A .56.810⨯B .66.810⨯C .56810⨯D .70.6810⨯3.看了《田忌赛马》故事后,数学兴趣小组用数学模型来分析:齐王与田忌的上中下三个等级的三匹马综合指标数如表,每匹马只赛一场,综合指标的两数相比,大数为胜,三场两胜则赢,已知齐王的三匹马出场顺序为6、4、2,若田忌的三匹马随机出场,则田忌能赢得比赛的概率为( )马匹等级 下等马 中等马 上等马 齐王 2 4 6 田忌135A .13B .16C .19D .1124.下列计算正确的是( ) A .x 7÷x =x 7B .(﹣3x 2)2=﹣9x 4C .x 3•x 3=2x 6D .(x 3)2=x 65.已知a 是方程22210x x -+=的一个根.则221a a+的值为( )A .4B .6C .42D .626.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再拼接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,在如图所示的A ,B ,C ,D 四个位置中,能够选择的位置有( )A .1个B .2个C .3个D .4个7.如图,AB 为⊙O 的一条弦,C 为⊙O 上一点,OC ∥AB .将劣弧AB 沿弦AB 翻折,交翻折后的弧AB 交AC 于点D .若D 为翻折后弧AB 的中点,则∠ABC =( )A .110°B .112.5°C .115°D .117.5°8.阅读理解:如图1,在平面内选一定点O ,引一条有方向的射线Ox ,再选定一个单位长度,那么平面上任一点M 的位置可由MOx ∠的度数θ与OM 的长度m 确定,有序数对(,)m θ称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为4,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为( )A .()60,8︒B .()45,8︒C .()60,42︒D .()45,22︒9.如图,在平面直角坐标系中,二次函数234y x x =+-的图象与x 轴交于A 、C 两点,与y 轴交于点B ,若P 是x 轴上一动点,点Q (0,2)在y 轴上,连接PQ ,则22PQ PC +的最小值是( )A .6B .3222+C .232+D .3210.如图,矩形ABCD 的边CD 上有一点E ,67.5DEA ∠=︒,EF AB ⊥,垂足为F ,将AFE △绕点F 顺时针旋转,点E 恰好落在点B 处,点A 落在EF 上的点G 处.下列结论:①BG AE ⊥;②2EG AF =;③2217ADE BCEGS S -=四边形△;④若M 为BG 中点,则OFM △为等腰直角三角形;⑤B 、G 、O 三点共线.正确的个数是( )A .5B .4C .3D .2第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分)11.设抛物线2(1)y x a x a =+++,其中a 为实数.将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是__________12.我国古代很早就对二元一次方程组进行了研究,古著《九章算术》记载用算筹表示二元一次方程组,发展到现代就是用矩阵式111222c a b x a b y c ⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭来表示二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩,而该方程组的解就是对应两直线(不平行)a 1x +b 1y =c 1与a 2x +b 2y =c 2的交点坐标P (x ,y )据此,则矩阵式315123x y --⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭所对应两直线交点坐标是_________.13.如图,在扇形OAB 中,∠AOB =105°,OA =4,将扇形OAB 沿着过点B 的直线折叠,点O 恰好落在弧AB 的点D 处,折痕BC 交OA 于点C ,则阴影部分的面积为__________.14.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数22y x x c =++有两个相异的不动点1x ,2x ,则222112x x x --=______ 15.已知二次函数2(2)23y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下列说法在确的有:_____.(填序号)①该二次函数的图象一定过定点(1,3)--;②若该函数图象开口向下,则m 的取值范围为:625m <<;③当2m >且02x 时,y 的最小值为3m -;④当2m >,且该函数图象与x 轴两交点的横坐标12x x 、满足124310x x -<<--<<,时,m 的取值范围为:352194m <<. 16.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 边上的中点,连接BE 交AD 于F ,将△AFE 沿若AC 翻折到△AGE ,若四边形AFEG 恰好为菱形,连接BG ,则tan ∠ABG =________.17.如图,在ABC 中,AB AC =,6BC =,tan 23ACB ∠=,点P 在边AC 上运动(可与点A ,C 重合),将线段BP 绕点P 逆时针旋转120°,得到线段DP ,连接BD ,CD ,则CD 长的最小值为______. 三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤)18.(本题满分6分)(1)计算:()10120214sin 60122π-⎛⎫---︒+ ⎪⎝⎭;(2)解不等式组:()523532x xx ⎧--≤⎪⎨-<⎪⎩19.(本题满分6分)距离2022年中招体育考试的时间已经越来越近,某校初三年级为了了解本校学生在平时体育训练的效果,随机抽取了男、女各60名考生的体考成绩,并将数据进行整理分析,给出了下面部分信息:数据分为A ,B ,C ,D 四个等级分别是:A :4850x ≤≤,B :4548x ≤<,C :4045x ≤<,D :040x ≤<60名男生成绩的条形统计图以及60名女生成绩的扇形统计图如图: 男生成绩在B 组的前10名考生的分数为:47.5,47.5,47.5,47,47,47,46,45.5,45,45. 60名男生和60名女生成绩的平均数,中位数,众数如下:性别 平均数 中位数 众数 男生 47.5 a 47 女生47.54747.5根据以上信息,解答下列问题:(1)填空:=a ______,b =______,并补全条形统计图.(2)根据以上数据,你认为在此次考试中,男生成绩好还是女生成绩好?请说明理由(说明一条理由即可). (3)若该年级有800名学生,请估计该年级所有参加体考的考生中,成绩为A 等级的考生人数.20.(本题满分6分)如图,四边形ABCD 为平行四边形,连接AC 、BD 交于点O .(1)请用尺规完成基本作图:过点A 作直线BD 的垂线,垂足为E ;在直线AE 上作点G 使得=BG BA ,连接BG (保留作图痕迹,不写作法)(2)在(1)的条件下,若3DE BE =,求证:BG CO =.21.(本题满分8分)如图,在平面直角坐标系中,点O 为坐标系原点,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,其中4cos 5OBC ∠=,3OC =.已知反比例函数(0)ky x x =>的图象经过BC 边上的中点D ,交AB于点E . (1)求k 的值;(2)猜想OCD ∆的面积与OBE ∆的面积之间的关系,请说明理由.(3)若点(,)P x y 在该反比例函数的图象上运动(不与点D 重合),过点P 作PR y ⊥轴于点R ,作PQ BC ⊥所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围.22.(本题满分8分)某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如表(用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同). 运动鞋款式 甲 乙 进价(元/双) m m ﹣20 售价(元/双)240160(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且甲种运动鞋的数量不超过100双,问该专卖店共有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行每双优惠a (50<a <70)元的优惠促销活动,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?23.(本题满分8分)如图1,CD 是O 的弦,半径OA CD ⊥,垂足为B ,过点C 作O 的切线l .(1)若点E 在O 上,且CE CA =,连接OE .①连接AE ,求证:AE l ∥;②如图2,若B 是OA 的中点,连接OD ,求证:DE 是O 的直径;(2)如图3,过点B 作BF l ⊥,垂足为F ,若O 的半径是4,求BC BF -的最大值.24.(本题满分10分)如图,在正方形ABCD中,点E在直线AD右侧,且AE=1,以DE为边作正方形DEFG,射线DF与边BC交于点M,连接ME,MG.(1)如图1,求证:ME=MG;(2)若正方形ABCD的边长为4,①如图2,当G,C,M三点共线时,设EF与BC交于点N,求MNEM的值;②如图3,取AD中点P,连接PF,求PF长度的最大值.25.(本题满分10分)抛物线y=x2﹣1交x轴于A,B两点(A在B的左边).(1)▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上;①如图(1),若点C的坐标是(0,3),点E的横坐标是32,直接写出点A,D的坐标.②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.数学参考答案1 2 3 4 5 6 7 8 9 10A B B D B D B A D A一个选项是符合题目要求的)1.【答案】A【分析】直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案. 【详解】解:A. π-<-3,故A正确;B. 5,故B错误;C. 2->-3,故C错误;D.83->-3,故D错误. 故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.2.【答案】B【分析】把数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数的形式.【详解】解:6800000=6.8×106,故选:B.【点睛】此题主要考查了科学记数法表示较大的数,关键是掌握把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n=原来的整数位数−1.3.【答案】B【分析】列表得出所有等可能的情况,田忌能赢得比赛的情况有1种,再由概率公式求解即可.【详解】解:由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的三匹马出场顺序为6,4,2时,田忌的马按1,5,3的顺序出场,田忌才能赢得比赛,当田忌的三匹马随机出场时,双方马的对阵如下:齐王的马上中下上中下上中下上中下上中下上中下田忌的马上中下上下中中上下中下上下上中下中上双方马的对阵中,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为6.故选:B.【点睛】此题考查的是用列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】D【分析】利用幂的运算法则逐个选项进行排除即可.【详解】x7÷x=x6,选项A错误;(﹣3x2)2=9x4,选项B错误;x3•x3=x6,选项C错误;(x3)2=x6,选项D正确.故选:D.【点睛】本题考查了幂的运算法则,熟练掌握各运算法则是解题的关键.5.【答案】B【分析】把x a =代入方程22210x x -+=,得22210a a -+=,用完全平方公式将221a a +变形,即可解答.【详解】解:把x a =代入方程22210x x -+=,得22210a a -+=,∴等式两边同时除以a 得:122a a+= 222211()2(22)2826a a a a+=+-=-=-=.故选:B 【点睛】本题考查了一元二次方程的解的概念,分式的化简求值,完全平方公式,解题关键是明确题意,求出1a a+的值. 6.【答案】D【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可. 【详解】解:如图所示:根据立方体的展开图可知,不能选择图中A 的位置接正方形.故选:C .【点睛】此题主要考查应用与设计作图.正方体的平面展开图共有11种,应灵活掌握,不能死记硬背. 7.【答案】B【分析】如图,取 AB 中点M ,连接OM ,连接DB OB OA AM 、、、,由题意知OM AB ⊥,且O D M 、、在一条直线上,AD AM BD ==,OA OB OC ==,知90MOC ∠=︒,根据圆周角定理,等边对等角,三角形内角和定理等可求MAC ∠,BAC ∠,BOC ∠,OAC ∠,OBA ∠,OBC ∠的值,进而求解ABC ∠的值.【详解】解:如图,取 AB 中点M ,连接OM ,连接DB OB OA AM 、、、由题意知OM AB ⊥,且O D M 、、在一条直线上,AD AM BD ==,OA OB OC ==∴90MOC ∠=︒∴1452MAC MOC ∠=∠=︒∵AD AM BD ==,OM AB ⊥∴122.52MAB DAB MAD ∠=∠=∠=︒∴245BOC BAC ∠=∠=︒∵OC AB ∥∴OAC OCA DAB ∠=∠=∠∴45OAB OBA OAC DAB ∠=∠=∠+∠=︒ ∴18067.52BOCOBC OCB ︒-∠∠=∠==︒∴112.5ABC OBA OBC ∠=∠+∠=︒故选B .【点睛】本题考查了垂径定理,圆周角,等边对等角,三角形内角和定理,折叠性质等知识.解题的关键在于对知识的灵活运用. 8.【答案】A【分析】设正六边形的中心为D ,连接AD ,判断出△AOD 是等边三角形,根据等边三角形的性质可得OD =OA ,∠AOD =60°,再求出OC ,然后根据“极坐标”的定义写出即可. 【详解】解:如图,设正六边形的中心为D ,连接AD ,∵∠ADO =360°÷6=60°,OD =AD ,∴△AOD 是等边三角形, ∴OD =OA =4,∠AOD =60°,∴OC =2OD =2×4=8, ∴正六边形的顶点C 的极坐标应记为()60,8︒.故选A .【点睛】本题考查了正多边形和圆,坐标确定位置,主要利用了正六边形的性质,读懂题目信息,理解“极坐标”的定义是解题的关键. 9.【答案】D【分析】连接BC ,过点P 作PD ⊥BC 于D ,过点Q 作QH ⊥BC 于H .根据22PQ PC PQ PD +=+,可得DQ PD +的最小值为QH 的长,即可解决问题. 【详解】如图,连接BC ,过点P 作PD ⊥BC 于D ,过点Q 作QH ⊥BC 于H .由234y x x =+-,令0y =,则2340x x +-=,解得1241x x =-=,,()()4,0,1,0C A ∴-, 令0x =,解得0y =,()0,4B ∴-,4OB OC ∴==,90BOC ∠=︒,45OCB OBC ∴∠=∠=︒,2PC PD ∴,∴2PQ PQ PD QH =+≥,当P 为QH 与x 轴交点时2PQ 最小,最小值为QH 的长, Q (0,2),()0,4B -,4BQ ∴=,设QH x =,则BH x =, ∵222DH BH Q B +=,∴2226x x +=,∴32x =32QH = 则22PQ PC +的最小值是32.故选D . 【点睛】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题. 10.【答案】A【分析】若△ABE 是个等腰三角形则容易判断①⑤两个选项,考虑先从等腰三角形入手;若EG 2,则EG 与AF 所在的正方形对角线相等,过G 作GK ⊥AD 于K ,连接正方形AFGK 的对角线KF ,KF 和KD 在△KFD 中可从等腰三角形证明相等;由EG 2AF 可得出两正方形的边长关系从而求出面积比;由FM =BM ,∠FBM =22.5,可证④; 【详解】解:作GK ⊥AD 于K ,连接KF ,连接MF由旋转可知AF =FG ,EF =BF ,∵EF ⊥AB ,ABCD 是矩形,∴四边形AFGK 和FBCE 都是正方形;∠DEA =67.5°,∴∠AEF =22.5°,∠EAF =67.5°,∠AEB =22.5°+45°=67.5°,∴∠AEB =∠EAB ,BE =AB ;∵∠ABG =∠AEF =22.5°,∠FBE =45°,∴BG 是∠ABE 的角平分线,O 为矩形AFED 的对角线交点,∴OE =OA ,△BAE 为等腰三角形,三线合一,∴BO 也是是∠ABE 的角平分线, ∴B 、G 、O 三点共线,故①⑤说法正确;三角形KFD 中,∠KFD =∠KDF =22.5°,∴KF =KD =EG 2,故②说法正确; 设AF =x ,则S △ADE =)2121212x x x +⨯⨯=, 四边形BCEG 的面积=正方形BCEF 的面积-三角形BGF 的面积, ∴S 四边形BCEG =)2222121x +2532x +,21221532ADE BCEGS S +-=+四边形△确;△BGF 中M 为BG 中点,∠BFG =90°,直角三角形斜边中线为斜边一半,∴MF =MB ,∠MFB =22.5°∴∠OMF =∠MBF +∠MFB =45°,∠MFO =180°-∠AFD -∠MFB =90°,∴OFM △为等腰直角三角形;故④正确;综上所述①②③④⑤正确;故答案选:A 【点睛】本题综合考查等腰三角形的性质和判定,旋转的性质,矩形的性质,角平分线的性质,作出辅助线证明三点共线是个关键步骤.第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.【答案】2【分析】先将抛物线配方为顶点式,然后根据(左加右减,上加下减)将抛物线平移,得出解析式()2211224a a y x a ++⎛⎫=+-++ ⎪⎝⎭,求出顶点的纵坐标()2124a a +-++配方得出()()221121244a a a +-++=--+即可. 【详解】解:抛物线()22211(1)24a a y x a x a x a ++⎛⎫=+++=+-+ ⎪⎝⎭, 将抛物线2(1)y x a x a =+++向上平移2个单位,解析式为()2211224a a y x a ++⎛⎫=+-++ ⎪⎝⎭, ∴顶点纵坐标为:()()221121244a a a +-++=--+, ∵104-<,∴a =1时,最大值为2.故答案为2.【点睛】本题考查抛物线配方顶点式,抛物线平移,顶点的纵坐标,掌握抛物线配方顶点式,抛物线平移,顶点的纵坐标是解题关键. 12.【答案】(﹣1,2)【分析】根据题意即可列出关于x 、y 的二元一次方程组,解出x 、y ,即为所求.【详解】依题意,得3523x y x y -=-⎧⎨+=⎩,解得12x y =-⎧⎨=⎩,∴矩阵式315123x y --⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭所对应两直线交点坐标是(-1,2).故答案为:(-1,2).【点睛】本题考查二元一次方程组的实际应用,两直线的交点与二元一次方程组的解的关系.读懂题意,掌握解二元一次方程组的方法是解答本题的关键. 13.【答案】2π-4【分析】连接OD ,交BC 于E ,根据对折得出BC ⊥OD ,DE =OE =2,∠DBE =∠OBE ,OB =BD =4,求出△DOB 是等边三角形,根据等边三角形的性质得出∠DOB =∠DBO =60°,求出∠COD =∠AOB -∠DOB =45°,求出CE =OE =2,再分别求出扇形AOD 和△COD 的面积即可. 【详解】解:连接OD ,交BC 于E ,∵延BC 对折O 和D 重合,OD =4,∴BC ⊥OD ,DE =OE =2,∠DBE =∠OBE ,OB =BD =4, ∴∠BEO =90°,△DOB 是等边三角形,∴∠DOB =∠DBO =60°,∵∠AOB =105°,∴∠COD =∠AOB -∠DOB =45°,∵∠OEC =90°,∴CE =OE =2,∴阴影部分的面积=S 扇形AOD -S △COD 24541423602π⨯=-⨯⨯=2π-4,故答案为:2π-4.【点睛】本题考查了等边三角形的性质和判定,直角三角形的性质,扇形的面积计算等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键,注意:圆心角为n °,半径为r 的扇形的面积为2360n r S π=.14.【答案】1【分析】由函数的不动点概念得出x 1、x 2是方程22x x c x ++=的两个实数根,根据根与系数的关系可以求出.【详解】解:由题意知二次函数y =x 2+2x +c 有两个相异的不动点, 当,x a y a ==时,a 称为不动点,即x y =时,方程有两个相等的实数根 ∵22x x x c =++∴20x x c ++=222112x x x +-22211211x x x =---+ ()222111x x =-++()()2121111x x x x =++--+由根与系数的关系可知:121x x +=- 将其代入上式中可得2221121x x x +-=故答案为:1.【点睛】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念. 15. 【答案】②③④【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:①y =(m -2)x 2+2mx +m -3=m (x +1)2-2x 2-3,当x =-1时,y =-5,故该函数图象一定过定点(-1,-5),故①错误; ②若该函数图象开口向下,则m -2<0,且△>0,△=b 2-4ac =20m -24>0,解得:m >65,且m <2,故m 的取值范围为:65<m <2,故②正确;③当m >2,函数的对称轴在y 轴左侧,当0≤x ≤2时,y 的最小值在x =0处取得, 故y 的最小值为:(m -2)×0+2m ×0+m -3=m -3,故③正确; ④当m >2,x =-4时,y =9m -35,x =-3时,y =4m -21,x =0时,y =m -3,当x =-1时,y =-5, 当-4<x 1<-3时,则(9m -35)(4m -21)<0,解得:352194m <<; 同理-1<x 2<0时,m >3,故m 的取值范围为:352194m <<,故④正确;故答案为:②③④. 【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 16.2【分析】过点G 作GH ⊥AB ,交BA 延长线于H ,设AE =x ,则AC =2x ,由菱形的性质得出AF =EF ,再证AF =BF =EF 与△BAE ∽△CAB ,求出AB =2x ,BE =3x ,AF =EF =32x ,然后由菱形性质得AG =12BE ,证△BAE ∽△AHG ,求出AH =22x ,HG =2x ,最后由锐角三角函数定义即可得出结果.【详解】解:过点G 作GH ⊥AB ,交BA 延长线于H ,如图所示:设AE =x ,则AC =2x ,∵四边形AFEG 为菱形,∴AF =EF ,∴∠F AE =∠FEA , ∵∠BAE =90°,∴∠F AE +∠F AB =∠FEA +∠FBA =90°, ∴∠F AB =∠FBA ,∴AF =BF ,∴AF =BF =EF ,∵∠FBA +∠AEB =90°,∠F AB +∠ABD =90°,∴∠ABD =∠AEB , 又∵∠BAE =∠BAC =90°,∴△BAE ∽△CAB ,∴AB ACAE AB=, ∴AB 2=AE •AC =2x 2,∴AB 2,∴BE 222223AB AE x x x ++,∴AF =EF 3, ∵四边形AFEG 是菱形,∴AG ∥BE ,AG =AF =BF =EF ,∴∠HAG =∠ABE ,AG =12BE ,又∵∠H =∠BAE =90°,∴△BAE ∽△AHG ,∴12AG HG AH BE AE AB ===, ∴AH =12AB 2,HG =12AE =2x ,∴BH =AH +AB 22x 32, ∴22tan 632xHG ABG BH x∠===2 【点睛】本题考查了折叠的性质、菱形的性质、平行线的性质、相似三角形的判定与性质、锐角三角函数等知识,作辅助线并证明△BAE ∽△AHG 是解题的关键. 17.1513【分析】如图,作120,,BCN BC CN 连接,,BN CD 再证明,,BPD BCN PBCDBN ∽ 可得,BP BDBC BN证明,PBC DBN ∽ 可得,BND BCP则D 在直线ND 上运动,如图,当CD DN 时,CD 最短,过A 作AT BC ⊥于,T 求解313,ABAC作120,313,BAQ ABAQ 则Q 在直线DN 上,过A 作AGBQ 于,G 求解339,BQ 证明,ABC QBN ∽ ,339,QBNQNB QB QN可得QC 是BN 的垂直平分线,延长QC 交BN 于,H 求解18,QH 再利用11,22QC NHQN CD 从而可得答案.【详解】解:如图,作120,,BCN BC CN 连接,,BN CD30,CBN CNB,120,PB PD BPD 30,120,PBD CBN BCN BPD,,BPD BCN PBCDBN ∽,BP BDBC BN,PBC DBN ∽,BNDBCPD ∴在直线ND 上运动,如图,当CD DN 时,CD 最短,过A 作AT BC ⊥于,T 6,,BC AB AC 3,BT CT而tan 3ACB ∠=23,3AT 即63,AT 22363313,AB AC作120,313,BAQ AB AQ 则Q 在直线DN 上,30,ABQ AQB过A 作AGBQ 于,G339,339,2BG QGBQ 同理可得:,ABC QBN ∽ ,,ABCQBN ACBQNB 而,AB AC = 则,ABC ACB ∠=∠,339,QBNQNB QB QNQC ∴是BN 的垂直平分线,延长QC 交BN 于,H90,BHCNHC 而6BC =,同理可得:3,33,CHBHNH223393318,QH11,22QC NH QN CD 18333339,CD 1513.13CD所以CD 1513.13 1513.13【点睛】本题考查的是等腰三角形的判定与性质,旋转的性质,相似三角形的判定与性质,锐角的正切的应用,勾股定理的应用,证明“,BND BCP 得到D 在直线ND 上运动”是解本题的关键.三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤) 18.(本题满分6分) 【答案】(1)1(2)x ≥3【分析】对于(1),先根据11()22-=,0(2021)1π-=,3sin 60︒=123=即可;对于(2),分别求出①和②式的解集,再确定公共部分得出答案. 【详解】(1)原式=321423--⨯+=12323-=1;(2)52(3)532x x x --≤⎧⎪⎨-⎪⎩①<②,解不等式①,得x ≥3; 解不等式②,得x >1. 所以不等式组的解集式x ≥3.【点睛】本题主要考查了实数的计算和解一元一次不等式组,掌握解题步骤是解题的关键. 19.(本题满分6分)【答案】(1)作图见解析,46.5a =,30b = (2)女生体考成绩好,理由见解析 (3)该年级所有参加体考的考生中,成绩为A 等级的考生人数为320人【分析】(1)由602415516---=,可知男生的体考成绩在B 等级的人数,可补全统计图,查找男生B 等级前10的分数可知第6与第7位数分别为47,46,计算二者的平均数可得中位数a ,由10040201030---=%%%%%,可知b 的值;(2)在体考成绩平均数相同的情况下,女生成绩的中位数47大于男生体考成绩的中位数46.5,可判断女生成绩更好;(3)由题意知,计算2424800120+⨯即可. 【解析】(1)解:∵602415516---= ∴男生的体考成绩在B 等级的人数为16 补全条形统计图,如图:男生的体考成绩中位数落在B 等级,是第6与第7位数的平均数 查找男生B 等级前10的分数可知第6与第7位数分别为47,46 ∴平均数为474646.52+= ∴46.5a = ∵10040201030---=%%%%%∴30b =故答案为:46.5,30. (2)解:女生体考成绩好因为在体考成绩平均数相同的情况下,女生成绩的中位数47大于男生体考成绩的中位数46.5∴女生体考成绩好.(3)解:∵604024⨯=%(人) ∴2424800320120+⨯=(人) ∴该年级所有参加体考的考生中,成绩为A 等级的考生人数为320人.【点睛】本题考查了条形统计图,扇形统计图,中位数,样本估计总体等知识.解题的关键在于对知识的灵活运用. 20.(本题满分6分)【答案】(1)见详解; (2)见详解.【分析】(1)以点A 为圆心,AO 为半径画弧,交OB 于H ,作OH 的垂直平分线IJ 交BD 于E ,以点B 为圆心,AB 长为半径画弧交直线AE 于G ,连结BG ;(2)根据平行四边形性质得出OB =OD ,AO =CO ,根据3DE BE =,得出OE =BE ,根据AG 为OB 的垂直平分线,得出AB =AO 即可.(1)解:以点A 为圆心,AO 为半径画弧,交OB 于H ,分别以O 、H 为圆心,大于OH 12为半径画弧,两弧交于两点I 、J ,过I 、J 作直线IJ 交BD 于E ,以点B 为圆心,AB 长为半径画弧交直线AE 于G ,连结BG ;(2)证明:∵四边形ABCD 为平行四边形,∴OB =OD ,AO =CO ,∵3DE BE =,∴OE +OD =3BE ,∴OE +BE +OE =3BE ,∴OE =BE ,∵AG 为OB 的垂直平分线,∴AB =AO ,∵AB =BG ,∴BG =AO =OC .【点睛】本题考查尺规作图,过点A 作线段BD 的垂线,作线段BG =AB ,平行四边形性质,垂直平分线性质,线段中点,掌握查尺规作图,平行四边形性质,垂直平分线性质,线段中点是解题关键.21.(本题满分8分)【答案】(1)6k =;(2)OCD OBE S S ∆∆=,见解析;(3)63S x =-,(02)x <<;36S x =-,(2)x >【分析】(1)根据矩形的性质及三角函数可得cos ∠OBC 的值,设BC =4x ,OB =5x ,由勾股定理及中点的定义可得D (2,3),再利用待定系数法可得答案;(2)利用三角形的面积公式及中点定义可得答案;(3)分当0<x <2时,当x >2时,进行分类讨论可得答案.【解析】(1)解:四边形OABC 是矩形,90OCB ∴∠=︒,4cos 5BC OBC OB ∴∠==, 设4BC x =,5OB x =,由勾股定理得,222OC BC OB +=, 3OC =,2291625x x ∴+=,1x ∴=,4BC ∴=,5OB =,D 是BC 的中点,122CD BC ∴==,(2,3)D ∴,设k y x =,把(2,3)D 代入得,6k =.(2)解:OCD OBE S S ∆∆=,由题意可知,32OCD k S ∆==,D 是BC 的中点,12OCD OBD BDC S S S ∆∆∆∴==, OBC OBA ∆≅∆,6OBA OBC S S ∆∆∴==,E 在反比例函数图象上,32OAE k S ∆∴==,3OBE OBA OAE S S S ∆∆∆∴=-=,OCD OBE S S ∆∆∴=.(3)解:当02x <<时,如图所示:QCRP S CQ PQ =⋅矩形,6(3)63S x x x∴=-=-,当2x >时,如图所示:QCRP S CQ PQ =⋅矩形,∴6(3)36S x x x=-=-, 综上所述,63S x =-,(02)x <<;36S x =-(2)x >【点睛】此题考查的反比例函数,利用面积公式进行解答是解决此题关键.22.(本题满分8分)【答案】(1)m =100;(2)6种方案;(3)50<a <60时,应购进甲种运动鞋100双,购进乙种运动鞋100双;a =60时,所有方案获利都一样;60<a <70时,应购进甲种运动鞋95双,购进乙种运动鞋105双【分析】(1)根据用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同,列出方程求解即可;(2)设购进甲种运动鞋x 双,则乙种运动鞋(200﹣x )双,然后根据要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且甲种运动鞋的数量不超过100双,列出不等式求解即可;(3)设总利润为W ,则W =(240﹣100﹣a )x +80(200﹣x )=(60﹣a )x +16000(95≤x ≤100),然后利用一次函数的性质求解即可.【详解】解:(1)依题意得,3000240020m m =-, 整理得,3000(m ﹣20)=2400m ,解得m =100,经检验,m =100是原分式方程的解,∴m =100;(2)设购进甲种运动鞋x 双,则乙种运动鞋(200﹣x )双,根据题意得,()()()2401001601002020021700100x x x ⎧-+-+-≥⎨≤⎩, 整理得140160008021700100x x x +-≥⎧⎨≤⎩解得95≤x ≤100,∵x 是正整数,∴x 的值可以为95,96,97,98,99,100,∴一共有6种方案;(3)设总利润为W ,则W =(240﹣100﹣a )x +80(200﹣x )=(60﹣a )x +16000(95≤x ≤100),①当50<a <60时,60﹣a >0,W 随x 的增大而增大,所以,当x =100时,W 有最大值,W 最大=22000﹣100a ,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a =60时,60﹣a =0,W =16000,(2)中所有方案获利都一样;W 最大=16000; ③当60<a <70时,60﹣a <0,W 随x 的增大而减小,所以,当x =95时,W 有最大值,W 最大=21700﹣95a ;即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【点睛】本题主要考查了分式方程的应用,一元一次不等式的应用,一次函数的应用,解题的关键在于准确理解题意,列出式子求解.23.(本题满分8分)【答案】(1)见解析;②见解析 (2)1【分析】(1)①如图4,连接OC , 由 l 是O 的切线,OC 是半径,得到 OC l ⊥,由CE CA =,得 COE COA ∠=∠证得 OE OA =,进一步得到OC AE ⊥,即可得到结论;② 如 图 5,连接OC ,AD ,由 B 是OA 的中点, OA CD ⊥得到OD AD =,AD AC =,又由 OD OA =得OAD △是等边三角形,证得60DOA ∠=︒,所以 AD AC EC ==,所以60DOA AOC EOC ∠=∠=∠=︒,得到180DOE ∠=︒,即得到结论;(2)如图6,连接OC ,由 l 是O 的切线,得 到 OC l ⊥, 又由 BF l ⊥可以证明OC BF ∥,证得OCB CBF ∠=∠,又由 90OBC CFB ∠=∠=︒得OCB CBF △△∽,得到OC CB CB BF=,设BC x =,求得BF ,得()22112144BC BF x x x -=-=--+,从而求得—BC BF 的最大值. 【解析】(1)① 证明:如图4,连接OC∵ l 是O 的切线,OC 是半径,∴ OC l ⊥∵ CE CA =∴ COE COA ∠=∠ ∵ OE OA =∴ OC AE ⊥ ∴ AE l ∥;② 证明:如图5,连接OC ,AD ∵ B 是OA 的中点, OA CD ⊥∴ OD AD =,AD AC = 又∵ OD OA =∴ OD AD OA ==∴ OAD △是等边三角形∴ 60DOA ∠=︒∵ AD AC EC ==∴60DOA AOC EOC ∠=∠=∠=︒∴ 180DOE ∠=︒∴ DE 是O 的直径;(2)解:如图6,连接OC∵ l 是O 的切线,OC 是半径,∴OC l ⊥ ∵BF l ⊥∴OC BF ∥∴OCB CBF ∠=∠∵ 90OBC CFB ∠=∠=︒∴ OCB CBF △△∽∴ OC CB CB BF= 设BC x =,则2214CB BF x OC ==∴ ()22112144BC BF x x x -=-=--+ 当2BC x ==时,—BC BF 有最大值1∴BC BF -的最大值为1.【点睛】本题以圆的知识为载体,考查了平行线的性质和判定、等边三角形、相似三角形、二次函数的最值等知识,综合性较强,灵活应用所学知识是解决此题的关键.24.(本题满分10分)【答案】(1)见解析 (2)①4;②252【分析】(1)根据正方形的性质可得,45DE DG EDM GDM =∠=∠=︒,公共边DM ,即可证明DEM DGM ≌,即可得ME MG =;(2)①先证明点E 在AB 上,进而求得DAE EBN ∽求得BN ,根据NF DG ∥可得NMF GMD ∽,又ME MG =,进而即可求得EM MN的值;②连接,BD BF ,证明ADE BDF ∽,求出相似比,进而可得点F 在以B 为圆心2【解析】(1)四边形DEFG 是正方形45,EDF GDF GD GE ∴∠=∠=︒=∴45EDM GDM ∠=∠=︒DM DM =∴DEM DGM ≌∴ME MG =(2)①如图2,当G ,C ,M 三点共线时,四边形,ABCD EDFG 是正方形90ADC EDG ∴∠=∠=︒,,AD CD ED GD ==,90DEF ∠=︒ ADE CGD ∴∠=∠ADE CDG ∴△≌△DAE DCG ∴∠=∠G ,C ,M 三点共线时,90DCG DCB ∴∠=∠=︒90DAE ∴∠=︒E ∴在线段AB 上90DEF ∠=︒ 又90EDA DAE DAE NEB ∠+∠=∠+∠=︒∴EDA NEB ∠=∠又A B ∠=∠ADE BEN ∴∽=AE AD DE NB EB EN ∴= 正方形ABCD 的边长为4,1AE = 413BE AB AE ∴=-=-=,22224117DE AD AE ++134NB ⨯=34= 317341714DE NB EN AE ⋅∴===3174144GN BC CG BN =+-=+-=3117171744NF EF EN ∴=-==四边形DEFG 是正方形EF DG ∴∥,17DG DE ==DMG FMN ∴∽NF NM DG MG ∴=即NF MN DG GN MN =-∴117417174MN MN =-解得1720MN = 1717174205MG GN MN ∴=-=-= 由(1)可知EM GM = 1745417120EM GM MN MN ∴==== ②连接,BD BF ,如图,四边形,ABCD EDFG 是正方形∴45ADB EDF ∠=∠=︒,2DB =,2DF DEADE BDF ∴∠=∠,2DF DB DE AD==ADE BDF ∽2AE AD EB DB ∴== 1AE = 2BF ∴=即点F 在以B 2。

2022年广东省汕头市潮阳区中考数学模拟试卷(含答案解析)

2022年广东省汕头市潮阳区中考数学模拟试卷(含答案解析)

2022年广东省汕头市潮阳区中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1︒的值等于()A .32B C .3D 2.在ABC 中,D 、E 分别是AB 、AC 的中点,则ADE 与ABC 的面积之比为()A .16B .14C .13D .123.如图,是由6个相同的正方体组成的立体图形,它的俯视图是()A .B .C .D .4.已知抛物线24y x bx =++经过()1,n 和()3n ,两点,则b 的值为()A .2-B .4-C .2D .45.如图,在ABC 中,50BAC ∠=︒,25C ∠=︒,将ABC 绕点A 逆时针旋转α角度(0180α<<︒)得到ADE V .若DE AB ∥,则α的值为()A .65°B .75°C .85°D .95°6.已知,a b 是关于x 的方程2320090x x +-=的两根,则24a a b --的值是()A .2018B .2019C .2020D .20217.广东省2021年高考采用“312++”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.若小红在“1”中选择了历史,则她在“2”中选地理、生物的概率是()A .16B .13C .14D .128.已知b <0,关于x 的一元二次方程()2x 1b -=的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .有两个实数根9.已知:如图,⊙O 是△ABC 的外接圆,⊙O 的直径为10,过点C 作⊙O 的切线交AB 延长线于点P .BC =6,则B 到CP 的距离为()A .125B .3C .185D .24510.如图所示是抛物线()20y ax bx c a =++≠的部分图象,其顶点坐标为()1n ,,且与x轴的一个交点在点()30,和()40,之间,则下列结论:①0a b c -+>;②30a c +>;③()24b a c n =-;④一元二次方程22ax bx c n ++=-没有实数根.其中正确的结论个数是()A .1个B .2个C .3个D .4个二、填空题11.方程23x x =的解为___________________.12.一个正多边形的每个内角都是150︒,则它是正_____边形.13+(b+4)2=0,那么点(a ,b )关于原点对称点的坐标是_____.14.如图,二次函数()()1y x x a =--(a 为常数)的图象的对称轴为直线2x =.则a 的值为_____.15.如图,小明在某天15:00时测量某树的影长时,日照的光线与地面的夹角∠ACB =60°,他在17:00时测量树的影长时,日照的光线与地面的夹角∠ADB =30°,若两次测得的影长之差CD 长为,则树的高度为_________m16.如图,在△ABC 中,AB AC =,以AB 为直径的O 分别与BC ,AC 交于点D ,E ,过点D 作DF AC ⊥,垂足为点F ,若O 的半径为15CDF ∠=︒,则阴影部分的面积为______.17.如图,菱形OABC 的一边OA 在x 轴的正半轴上,O 是坐标原点,tan ∠AOC =43,反比例函数y =kx的图象经过点C ,与AB 交于点D ,若△COD 的面积为10,则k 的值等于__.三、解答题18.计算:112cos304234-⎛⎫-+︒-- ⎪⎝⎭19.先化简,再求值:222412()4422a a a a a a--÷-+--,其中a 满足2330a a +-=.20.如图,ABC 中,90.C ∠=︒(1)求作线段AB 的垂直平分线,MN 交AB 于点,D 交BC 于点E (用尺规作图法,保留作图痕迹,不写作法)(2)如果24,BC AC ==求DE 的长.21.如图,AC 与BD 交于点O ,,OA OD ABO DCO =∠=∠,E 为BC 延长线上一点,过点E 作//EF CD ,交BD 的延长线于点F .(1)求证AOB DOC △≌△;(2)若2,3,1AB BC CE ===,求EF 的长.22.如图,一楼房AB 后有一假山,CD 的坡度为1:2i =,山坡坡面上E 点处有一休息亭,测得假山脚与楼房水平距离24BC =米,与亭子距离CE =测得E 的俯角为45︒.(1)求点E 到水平地面的距离;(2)求楼房AB 的高.23.如图,在平面直角坐标系xOy 中,一次函数()10y kx b k =+≠的图象与反比例函数()20my m x=≠的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为()6,n ,OA =E 为x 轴负半轴上一点,且2tan 3AOE ∠=.(1)求一次函数的解析式;(2)延长AO 交双曲线于点D ,连接CD ,求ACD 的周长.24.如图,在⊙O 中,AB 是直径,弦CD ⊥AB ,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE =FP .(1)求证:FE 是⊙O 的切线;(2)若⊙O 的半径为8,sin F =35,求BG 的长.25.如图,抛物线2y ax bx c =++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点()0,3C ,其顶点D 的坐标为()1,4-.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PA PC -的值最大,若存在,请求出点P 的坐标;若不存在,请说明理由.(3)作直线BC ,M 为BC 上一点,连接AM ,当BOC BMA △△时,求点M 的坐标.参考答案:1.C【分析】直接利用特殊角的三角函数值代入求出答案.︒.故选:C .【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题的关键.2.B【分析】由题意得DE 为ABC 的中位线,那么DE BC ∥,DE :1BC =:2,证明ADE ABC ∽,根据相似三角形的性质即可求解.【详解】解:由题意得DE 为ABC 的中位线,那么DE BC ∥,DE :1BC =:2,ADE ABC ∴ ∽,ADE ∴ 与ABC 的面积之比为1:4,即14.故选:B.【点睛】本题考查了相似三角形的性质与判定,中位线的性质,掌握相似三角形的性质与判定是解题的关键.3.C【分析】找到从上面看,能看到的图形即可,即俯视图.【详解】该立体图形的俯视图为:故:C .【点睛】本题考查了三视图的知识,正确确定三视图是本题的关键.4.B【分析】先根据点()1,n 和()3n ,求出对称轴,再根据对称轴为2bx a=-即可求解.【详解】解:∵抛物线经过()1,n 和()3n ,,∴抛物线的对称轴为直线1322x +==,又∵对称轴为22b b x a =-=-,∴22b-=,解得4b =-,故选B .【点睛】本题考查二次函数的对称性,根据点()1,n 和()3n ,求出对称轴是解题的关键.5.B【分析】由三角形内角和定理可得105ABC ∠=︒,根据旋转的性质得出105ADE ABC ∠=∠=︒,利用平行线的性质即可得出75DAB ∠=︒,即为旋转角.【详解】解:∵在ABC 中,50BAC ∠=︒,25C ∠=︒,∴1801805025105ABC BAC C ∠=︒-∠-∠=︒-︒-︒=︒,∵将ABC 绕点A 逆时针旋转α角度(0180α<<︒)得到ADE ,∴105ADE ABC ∠=∠=︒,∵DE AB ∥,∴180ADE DAB ∠+∠=︒,∴75DAB ∠=︒,∴旋转角α的度数是75︒,故选:B .【点睛】本题主要考查平行线的性质及旋转的性质,三角形内角和定理,理解题意,找准各角之间的数量关系是解题关键.6.D【分析】由,a b 是关于x 的方程2320090x x +-=的两根,得到2320090,3a a a b +-=+=-,求出220093a a =-,代入计算即可.【详解】解:∵,a b 是关于x 的方程2320090x x +-=的两根,∴2320090,3a a a b +-=+=-,∴220093a a =-,∴24a a b --=200934a a b ---=20094()a b -+=2009+12=2021,故选:D .【点睛】此题考查了一元二次方程的解,一元二次方程根与系数的关系,已知式子的值求代数式的值,正确掌握一元二次方程根与系数的关系是解题的关键.7.A【分析】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:用树状图表示所有可能出现的结果如下:共有12种等可能的结果数,其中选中“地理、生物”的有2种,她在“2”中选地理、生物的概率是21126=,故选:A .【点睛】本题考查了的是用列表法或树状图法求概率,解题的关键是掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.C【详解】∵()2x 1b -=中b <0,∴根据偶次幂的非负数性质,方程没有实数根.故选C .9.C【分析】作直径,CC '连接,BC ¢过B 作BH PC ⊥于,H 求解3sin ,5BC C CC ¢Ð==¢再证明,C BCP ¢Ð=Ð从而可得答案.【详解】解:作直径,CC '连接,BC ¢过B 作BH PC ⊥于,H 10,90,CC CBC ⅱ\=Ð=°而6,BC =3sin ,5BC C CC ¢\Ð==¢PC 为O 的切线,90,CBC ¢Ð=°90,C C CB C CB BCP ⅱ\Ð+Ð=°=Ð+Ð,C BCP ¢\Ð=Ð3sin ,5BH PCB BC \Ð==3186.55BH \=´=即B 到CP 的距离为18.5故选C【点睛】本题考查的是直径所对的圆周角是直角,切线的性质,锐角三角函数的应用,作出适当的辅助线构建直角三角形是解本题的关键.10.C【分析】根据抛物线顶点坐标,得出抛物线对称轴为直线1x =,再根据抛物线的对称性,得出图象与x 轴另一交点在()10-,,()20-,之间,进而得出=1x -时,0y >,即0a b c -+>,即可判断结论①;再根据抛物线对称轴为直线12bx a=-=,得出2b a =-,然后将其代入抛物线解析式,得出22y ax ax c =-+,再根据=1x -时,0y >,得出30y a c =+>,即可判断结论②;再根据顶点坐标,得出2ax bx c n ++=有两个相等实数根,再根据一元二次方程的判别式,得出()24b a c n =-,即可判断结论③;再根据顶点坐标,得出2y ax bx c =++的最大函数值为y n =,再根据抛物线的图象,得出22ax bx c n ++=-有实数根,即可判断结论④,综合即可得出答案.【详解】解:∵抛物线顶点坐标为()1n ,,∴抛物线对称轴为直线1x =,∵图象与x 轴的一个交点在()30,,()40,之间,∴图象与x 轴另一交点在()10-,,()20-,之间,∴=1x -时,0y >,即0a b c -+>,故①正确,符合题意;∵抛物线对称轴为直线12b x a=-=,∴2b a =-,∴22y ax ax c =-+,∴=1x -时,30y a c =+>,故②正确,符合题意;∵抛物线顶点坐标为()1n ,,∴2ax bx c n ++=有两个相等实数根,∴()240b a c n -∆=-=,∴()24b a c n =-,故③正确,符合题意;∵2y ax bx c =++的最大函数值为y n =,∴22ax bx c n ++=-有实数根,故④错误,不合题意,综上所述,正确的结论有3个.故选:C .【点睛】本题考查了二次函数图象与系数的关系,根据图象求方程的根的情况,掌握二次函数图象与性质是解本题的关键.11.120,3x x ==【分析】由方程23x x =,移项得230x x -=,对方程左边因式分解得()30x x -=,可得0x =或30x -=,分别解出即可.【详解】解:移项得:230x x -=,即()30x x -=,∴0x =或30x -=,∴10x =或23x =.【点睛】本题主要考查了解一元二次方程,用合理的方法解一元二次方程是解此题的关键.12.十二【分析】首先根据内角度数计算出外角度数,再用外角和360︒除以外角度数即可.【详解】解:∵一个正多边形的每个内角为150︒,∴它的外角为30︒,36030=12︒÷︒,故答案为:十二.【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.13.(﹣3,4)【分析】先根据二次根式,平方的非负性求出,a b 的值,然后根据关于原点对称的两点的坐标特征求解即可.(b +4)2=0∴3040a b -=⎧⎨+=⎩,解得34a b =⎧⎨=-⎩∴点坐标为(3,4)-其关于原点对称的点的坐标为:(3,4)-故答案为:(3,4)-.【点睛】本题考查了二次根式,平方的非负性,及关于原点对称的点坐标的特征,熟知以上内容是解题的关键.14.3【分析】根据解析式,得到该抛物线与x 轴的交点坐标是()1,0和(),0a ,利用抛物线的对称性,进行求解即可.【详解】解:由二次函数()()1y x x a =--(a 为常数),该抛物线与x 轴的交点坐标是()1,0和(),0a ,∵()1,0和(),0a 关于对称轴对称,对称轴为直线2x =,∴122a +=.解得:3a =,故答案为:3.【点睛】本题考查抛物线与x 轴的交点问题.熟练掌握抛物线的对称性,是解题的关键.15.9【分析】设,AB x =再利用锐角三角函数分别求解,,BC BD 再列方程解方程可得答案.【详解】解:设AB =x ,在Rt △ABC 中,由∠ACB =60°,tan 603AB BC x x ∴===︒在Rt △ABD 中,由∠ADB =30°,tan 30AB BD ∴==︒则CD =BD -BC=∴=9,x ∴=则可得树的高度AB =9m故答案为:9.【点睛】本题考查的是锐角三角函数的应用,掌握在直角三角形中利用锐角三角函数求解三角形的边长是解题的关键.16.16π-【分析】连接OE ,则阴影部分面积为扇形AOE 的面积减去三角形AOE 的面积,分别求出扇形AOE 的面积和三角形AOE 的面积,再相减即可.【详解】解:如图,连接OE ,过O 作OG ⊥AE 于点G∵DF AC ⊥,∴90DFC ∠=︒,∵15CDF ∠=︒,在DFC △中,∴18075C DFC FDC ∠=︒-∠-∠=︒,又∵AB AC =,∴75ABC C ∠=∠=︒,在ABC 中,18030BAC ABC C ∠=︒-∠-∠=︒,∵O 中,OA OE =,30BAC ∠=︒∴30BAC OEA ∠=∠=︒,在OAE △中,180120AOE BAC OEA ∠=︒-∠-∠=︒,∵O 的半径为∴(21=163AOE S ππ=⨯扇形在Rt AOG 中,∵90AGO ∠=︒,30OAG ∠=︒,OA =∴12OG OA ==,6AG ==,∵在OAE △中,OA OE =,OG ⊥AE ,∴212AE AG ==,∴111222AOE S AE OG =⨯⨯=⨯⨯=△=16A AOE OE S S S π-=-△阴影扇形故答案为:16π-【点睛】本题考查了与扇形相关的阴影部分面积计算,观察到阴影部分面积为扇形AOE 的面积减去三角形AOE 的面积,并正确运用相关公式进行计算是解题的关键.17.12【分析】先根据题意得出S 菱形ABCO =2S △CDO ,再进一步根据tan ∠AOC =43,求出点C 的坐标,然后代入反比例函数解析式即可.【详解】解:作DE ∥AO ,CF ⊥AO ,设CF =4x ,∵四边形OABC 为菱形,∴AB ∥CO ,AO ∥BC ,∵DE ∥AO ,∴S △ADO =S △DEO ,同理S △BCD =S △CDE ,∵S 菱形ABCO =S △ADO +S △DEO +S △BCD +S △CDE ,∴S 菱形ABCO =2(S △DEO +S △CDE )=2S △CDO =20,∵tan ∠AOC =43,∴OF =3x ,∴OC =5x ,∴OA =OC =5x ,∵S 菱形ABCO =AO ∙CF =20x 2,解得:x =1或-1(舍),∴OF =3,CF =4,∴点C 坐标为(3,4),∵反比例函数y =k x的图象经过点C ,∴代入点C 得:k =12,故答案为:12.【点睛】本题主要考查了菱形的性质与反比例函数的综合运用,熟练掌握相关概念是解题关键.18.8-+【分析】原式第一项利用负整数指数幂法则计算,第二项利用特殊角三角函数值计算,第三项利用绝对值的代数意义进行化简即可得到结果.【详解】解:原式(42444283=-+-=-++-+【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答佌题的关键.19.232a a +,32【分析】先根据分式的运算法则,进行化简,然后利用整体思想代入求值.【详解】原式2(2)(2)1(2)[](2)22a a a a a a +--=+⋅--21(2)()222a a a a a +-=+⋅--3(2)22a a a a +-=⋅-232a a +=,由2330a a +-=得233a a +=,∴原式32=.【点睛】本题考查分式的化简求值.熟练掌握分式的运算法则,将结果化为最简分式是解题的关键.在代值计算时,要注意代入的值不能使分式的分母为零.同时本题采用了整体思想.20.(1)画图见解析;(2)DE 【分析】(1)根据线段垂直平分线的作图方法作图即可.(2)利用勾股定理及线段的垂直平分线的定义得12BD AB ==再证明,BDE BCA 可得,BD DE BC AC =,2DE =解出即可.【详解】(1)如图,直线MN 即为所求.(2)90,24,C BC AC ∠=︒==AB ∴=∵DE 垂直平分,AB 190,2BD AB BDE ∴==∠=︒,C BDE ∴∠=∠,ABC EBD ∠=∠ ,BDE BCA ∴ ,BD DE BC AC∴=,2DE =,2DE ∴=DE ∴的长为2【点睛】本题主要考查了线段的垂直平分线的作图方法,相似三角形的判定与性质,熟练掌握线段的垂直平分线的作图方法及相似三角形的判定与性质是解此题的关键.21.(1)证明见解析;(2)83EF =【分析】(1)直接利用“AAS ”判定两三角形全等即可;(2)先分别求出BE 和DC 的长,再利用相似三角形的判定与性质进行计算即可.【详解】解:(1)∵,OA OD ABO DCO =∠=∠,又∵AOB DOC ∠=∠,∴()AOB DOC AAS △△≌;(2)∵()AOB DOC AAS △△≌,2,3,1AB BC CE ===∴2AB DC ==,314BE BC CE =+=+=,∵//EF CD ,∴BEF BCD ∽,∴EF BE CD BC =,∴423EF =,∴83EF =,∴EF 的长为83.【点睛】本题考查了全等三角形的判定与性质、平行线分线段成比例的推论、相似三角形的判定与性质等,解决本题的关键是牢记相关概念与公式,能结合图形建立线段之间的关联等,本题较基础,考查了学生的几何语言表达和对基础知识的掌握与应用等.22.(1)8米(2)48米【分析】(1)过点E 作EF BC ⊥的延长线于F ,根据CD 的坡度为1:2i =得2CF EF =,再由勾股定理可得8EF =米,16CF =米;(2)过E 作EH AB ⊥于点H ,根据等腰直角三角形的性质求出AH 的长,进而可得AB 的长.【详解】(1)解:过点E 作EF BC ⊥的延长线于F ,在Rt CEF △中,∵CD 的坡度为1:2i =,CE =∴12EF i CF ==.∴2CF EF =,∵222EF CF CE +=,∴()(2222EF EF +=,∴8EF =(米),16CF =(米),答:点E 到水平地面的距离为8米;(2)过E 作EH AB ⊥于点H ,则8BH EF ==米,由题意得:241640HE BF BC CF ==+=+=(米),在Rt AHE △中,45HAE ∠=︒,∴AHE 是等腰直角三角形,∴40AH HE ==(米),∴40848AB AH HB =+=+=(米).答:楼房AB 的高为48米.【点睛】本题考查了解直角三角形的应用——仰角俯角问题,坡度坡角问题,正确作出辅助线构造直角三角形是解题的关键.23.(1)113y x =-+;(2)2++【分析】(1)过A 作x 轴的垂线交x 轴于点M ,利用OA =2tan 3AOE ∠=,求出2AM =,3OM =,得出点()3,2A -,利用反比例函数的解析式求出点B ,再利用待定系数法进行求解;(2)利用反比例函数的图象关于原点对称的特点得出()3,2D -,及2AD OA ==利用一次函数的额解析式,求出点C 的坐标,根据ACD C AC CD AD =++△,分别算出边长即可求解.【详解】(1)解:过A 作x 轴的垂线交x 轴于点M ,在Rt AMN △中,OA =2tan 3AOE ∠=,∴设2AM a =,3OM a =,()()2223a a +=,解得1a =,∴2AM =,3OM =,∴()3,2A -.反比例函数2m y x=经过点()3,2A -,∴23m =-,6m =-,反比例函数解析式为26y x =-.又 反比例函数经过点()6,B n ,∴616n =-=-,即()6,1B -. 一次函数()10y kx b k =+≠经过()3,2A -,()6,1B -,∴3261k b k b -+=+=-⎧⎨⎩,解得131k b ⎧=-⎪⎨⎪=⎩,∴一次函数解析式为113y x =-+.(2)解: 反比例函数的图象为中心对称图形,∴()3,2D -,2AD OA == 一次函数113y x =-+与x 轴交于C 点,∴()3,0C .又 ()3,2A -,∴AC =,2CD =,∴2ACD C AC CD AD =++=+△.【点睛】本题考查了反比例函数及一次函数的综合运用,解题的关键是掌握利用待定系数法求出函数的解析式,再结合图象的特点进行求解.24.(1)见解析(2)2【分析】(1)由等腰三角形的性质可得∠A =∠AEO ,∠FPE =∠FEP ,由余角的性质可求∠FEP +∠AEO =90°,可得结论;(2)由余角的性质可求∠F =∠EOG ,由锐角三角函数可设EG =3x ,OG =5x ,在Rt △OEG 中,利用勾股定理可求x =2,即可求解.【详解】(1)解:如图,连接OE ,∵OA =OE ,∴∠A =∠AEO ,∵CD ⊥AB ,∴∠AHP =90°,∵FE =FP ,∴∠FPE =∠FEP ,∵∠A +∠APH =∠A +∠FPE =90°,∴∠FEP +∠AEO =90°=∠FEO ,∴OE ⊥EF ,∴FE 是⊙O 的切线;(2)解:∵∠FHG =∠OEG =90°,∴∠G +∠EOG =90°=∠G +∠F ,∴∠F =∠EOG ,∴sin F =sin ∠EOG =35EG OG =,设EG =3x ,OG =5x ,∴OE 4x ==,∵OE =8,∴x =2,∴OG =10,∵OB =8∴BG =OG -OB =10﹣8=2.【点睛】本题考查了切线的性质和判定,圆的有关性质,锐角三角函数,勾股定理等知识,由余角的性质求出∠F =∠EOG 是解题的关键.25.(1)223y x x =--+(2)存在,点P 的坐标为()1,6-(3)36,55M ⎛⎫ ⎪⎝⎭【分析】(1)根据题意设抛物线的解析式为()214y a x =++,代入点()0,3C ,求解即可;(2)由对称性可知PA PB =,则PA PC PB PC BC -=-≤,可知当P ,B ,C 三点在一条直线上时,PA PC -的值最大为BC 的长,求出直线BC 的解析式,再求出与抛物线的对称轴的交点坐标即可;(3)设AM 交OC 于点N ,易证OBC ONA △△,利用其性质列出比例式OB ON OC OA =,求得1ON =,可得()0,1N ,求出直线AN 的解析式为113y x =+,再求出直线BC 的交点坐标即可.【详解】(1)∵抛物线2y ax bx c =++的顶点为()1,4-,∴抛物线的解析式为()214y a x =++.∵抛物线2y ax bx c =++与y 轴交于点()0,3C ,∴2143a ⨯+=,∴1a =-.∴抛物线的解析式为:()221423y x x x =-++=--+.(2)在抛物线的对称轴上存在一点P ,使得PA PC -的值最大,理由:令0y =,则2x 2x 30--+=,解得:1x =或3-.∵点A 在点B 的左侧,∴()30A -,,()10B ,.∴3OA =,1OB =.∵()0,3C ,∴3OC =.∵点P 在抛物线的对称轴上,∴PA PB =.∴PA PC PB PC -=-.∵PB PC BC -≤,∴当P ,B ,C 三点在一条直线上时,PA PC -的值最大为BC 的长.设直线BC 的解析式为y kx n =+,由题意得:03k n n +=⎧⎨=⎩,解得:33k n =-⎧⎨=⎩.∴直线BC 的解析式为33y x =-+.∵抛物线的对称轴为直线=1x -,∴当=1x -时,()3136y =-⨯-+=,∴()1,6P -.∴在抛物线的对称轴上存在一点P ,使得PA PC -的值最大,此时点P 的坐标为()1,6-.(3)设AM 交OC 于点N ,如图,∵BOC BMA △△,∴OCB MAB ∠=∠.∵90BOC NOA ∠=∠=︒,∴OBC ONA △△,∴OB ON OC OA=.∴133ON =,∴1ON =.∴()0,1N .设直线AN的解析式为y mx d=+,∴301m dd-+=⎧⎨=⎩.解得:131md⎧=⎪⎨⎪=⎩.∴直线AN的解析式为113y x=+.∴11333y xy x⎧=+⎪⎨⎪=-+⎩,解得:3565xy⎧=⎪⎪⎨⎪=⎪⎩.∴36,55M⎛⎫⎪⎝⎭.【点睛】本题是一道二次函数的综合题,主要考查了二次函数图象的性质,待定系数法确定函数的解析式,一次函数图象的性质,抛物线上点的坐标的特征,一次函数图象上点的坐标的特征,相似三角形的判定与性质,利用点的坐标表示出相应线段的长度是解题的关键.。

潮阳区实验中学2021-2022学年中考数学考前最后一卷含解析

潮阳区实验中学2021-2022学年中考数学考前最后一卷含解析

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列说法中,正确的是()A.长度相等的弧是等弧B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.经过半径并且垂直于这条半径的直线是圆的切线D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径2.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣83.下列命题是真命题的是( )A.过一点有且只有一条直线与已知直线平行B.对角线相等且互相垂直的四边形是正方形C.平分弦的直径垂直于弦,并且平分弦所对的弧D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形4.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个564( )A.-8 B.-4 C.-2 D.不存在6.如图,矩形ABCD内接于⊙O,点P是AD上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为()A .5 B .25C .32D .35107.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y+-B .22y xC .3223y xD .222()y x y - 8.将抛物线y=12x 2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( ) A .y=12(x ﹣8)2+5 B .y=12(x ﹣4)2+5 C .y=12(x ﹣8)2+3 D .y=12(x ﹣4)2+39.下列计算正确的是( ) A .(﹣2a )2=2a 2 B .a 6÷a 3=a 2 C .﹣2(a ﹣1)=2﹣2aD .a •a 2=a 210.若α,β是一元二次方程3x 2+2x -9=0的两根,则+βααβ的值是( ).A .427B .-427C .-5827D .582711.广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( ) A .3.65×103B .3.65×104C .3.65×105D .3.65×10612.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( ) A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算:12×(﹣2)=___________. 14.如图,在矩形ABCD 中,AB=2,AD=6,E .F 分别是线段AD ,BC 上的点,连接EF ,使四边形ABFE 为正方形,若点G 是AD 上的动点,连接FG ,将矩形沿FG 折叠使得点C 落在正方形ABFE 的对角线所在的直线上,对应点为P ,则线段AP 的长为______.15.如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC 的直角顶点C 在l 1上,另两个顶点A、B分别在l3、l2上,则tanα的值是______.16.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.17.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.18.一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)331122⨯=1.类似地,可以求得sin15°的值是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,海中有一个小岛A,该岛四周11 海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C处.问:2≈1.413≈1.73)20.(6分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O 交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)判断AE与⊙O的位置关系,并说明理由;(2)若BC=6,AC=4CE时,求⊙O的半径.21.(6分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.22.(8分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元) 1 2 2.5 3 5y A(万元) 0.4 0.8 1 1.2 2信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(8分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣81m+)2269m mm m-++.24.(10分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sin G=0.6,CF=4,求GA的长.25.(10分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=22,求⊙O的半径.26.(12分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.13 1.732≈).27.(12分)如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.(1)证明:△BOE≌△DOF;(2)当EF⊥AC时,求证四边形AECF是菱形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】根据切线的判定,圆的知识,可得答案.【详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;故选:D.【点睛】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键. 2、C 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】0.00000071的小数点向或移动7位得到7.1, 所以0.00000071用科学记数法表示为7.1×10﹣7, 故选C. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3、D 【解析】根据真假命题的定义及有关性质逐项判断即可. 【详解】A 、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B 、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C 、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D 、∵a 2+b 2+c 2=ac +bc +ab ,∴2a 2+2b 2+2c 2-2ac -2bc -2ab =0,∴(a -b )2+(a -c )2+(b -c )2=0,∴a =b =c ,故本选项正确. 故选D. 【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键. 4、D 【解析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0, 对称轴为x=2ba<1,∵a<0,∴2a+b<0,而抛物线与x 轴有两个交点,∴2b −4ac>0, 当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac ,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0. 由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8, 上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.5、C 【解析】分析:首先求出的值,然后根据立方根的计算法则得出答案.详解:∵8=-,()328-=-, ∴的立方根为-2,故选C .点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键. 6、A 【解析】连接BD ,根据圆周角定理可得cos ∠BDC=cos ∠BPC ,又BD 为直径,则∠BCD=90°,设DC 为x ,则BC 为2x ,根据勾股定理可得,再根据cos ∠BDC=DCBD,即可得出结论.【详解】 连接BD ,∵四边形ABCD 为矩形, ∴BD 过圆心O ,∵∠BDC=∠BPC (圆周角定理) ∴cos ∠BDC=cos ∠BPC ∵BD 为直径, ∴∠BCD=90°, ∵DC BC =12, ∴设DC 为x ,则BC 为2x ,∴BD=22DC BC +=()222x x +=5x , ∴cos ∠BDC=DC BD=5x =5,∵cos ∠BDC=cos ∠BPC , ∴cos ∠BPC=5. 故答案选A.【点睛】本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用. 7、D 【解析】根据分式的基本性质,x ,y 的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案. 【详解】根据分式的基本性质,可知若x ,y 的值均扩大为原来的3倍, A 、23233x xx y x y ++≠--,错误;B 、22629y yx x ≠,错误; C 、3322542273y y x x ≠,错误; D 、()()22221829y y x y x y --=,正确;故选D . 【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.8、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案.【详解】y=12x2﹣6x+21=12(x2﹣12x)+21=12[(x﹣6)2﹣16]+21=12(x﹣6)2+1,故y=12(x﹣6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=12(x﹣4)2+1.故选D.【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.9、C【解析】解:选项A,原式=24a;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=3a故选C10、C【解析】分析:根据根与系数的关系可得出α+β=-23、αβ=-3,将其代入+βααβ=()22αβαβαβ+-中即可求出结论.详解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-23,αβ=-3,∴+βααβ=22βααβ+=()22αβαβαβ+-=()22()23583327--⨯-=--. 故选C .点睛:本题考查了根与系数的关系,牢记两根之和等于-b a 、两根之积等于ca是解题的关键. 11、C 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将365000这个数用科学记数法表示为3.65×1. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 12、A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106, 故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、-1 【解析】根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论. 【详解】()1212⨯-=-, 故答案为 1.- 【点睛】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键. 14、1或1﹣22 【解析】当点P 在AF 上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF 的长,从而可得到PA 的长;当点P 在BE 上时,由正方形的性质可知BP 为AF 的垂直平分线,则AP=PF ,由翻折的性质可求得PF=FC=1,故此可得到AP 的值. 【详解】 解:如图1所示:由翻折的性质可知PF=CF=1, ∵ABFE 为正方形,边长为2, ∴AF=22. ∴PA=1﹣22. 如图2所示:由翻折的性质可知PF=FC=1. ∵ABFE 为正方形, ∴BE 为AF 的垂直平分线. ∴AP=PF=1.故答案为:1或1﹣2. 【点睛】本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键. 15、13【解析】如图,分别过点A ,B 作AE ⊥1l ,BF ⊥1l ,BD ⊥3l ,垂足分别为E ,F ,D.∵△ABC 为等腰直角三角形,∴AC=BC ,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE ⊥1l ,BF ⊥1l ∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°, ∴∠CAE=∠BCF ,∠ACE=∠CBF.∵∠CAE=∠BCF ,AC=BC ,∠ACE=∠CBF ,∴△ACE ≌△CBF ,∴CE=BF ,AE=CF.设平行线间距离为d=l ,则CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3, ∴tanα=tan ∠BAD=BD AD =13. 点睛:分别过点A ,B 作AE ⊥1l ,BF ⊥1l ,BD ⊥3l ,垂足分别为E ,F ,D ,可根据ASA 证明△ACE ≌△CBF ,设平行线间距离为d=1,进而求出AD 、BD 的值;本题考查了全等三角形的判定和锐角三角函数,解题的关键是合理添加辅助线构造全等三角形;16、(32,2). 【解析】解:如图,当点B 与点D 重合时,△BEF 面积最大,设BE=DE=x ,则AE=4-x , 在RT △ABE 中,∵EA 2+AB 2=BE 2, ∴(4-x )2+22=x 2, ∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E 坐标(32,2). 故答案为:(32,2). 【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键. 17、25【解析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率. 【详解】 解:列表如下:所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种, 则P (恰好是两个连续整数)=82.205= 故答案为25. 【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.18. 【解析】试题分析:sin15°=sin (60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°=12222-⨯=4.故答案为4.考点:特殊角的三角函数值;新定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、不会有触礁的危险,理由见解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据BHtan BAHAH∠=可得关于x的方程,解之可得.详解:过点A作AH⊥BC,垂足为点H.由题意,得∠BAH=60°,∠CAH=45°,BC=1.设AH=x,则CH=x.在Rt△ABH中,∵1060310BH xtan BAH tan x xAH x∠+=∴︒==+,,,解得:53513.65x=+≈.∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.20、(1)AE与⊙O相切.理由见解析.(2)2.1【解析】(1)连接OM,则OM=OB,利用平行的判定和性质得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性质和切线的判定即可得证;(2)设⊙O的半径为r,则AO=12﹣r,利用等腰三角形的性质和解直角三角形的有关知识得到AB=12,易证△AOM∽△ABE,根据相似三角形的性质即可求解.【详解】解:(1)AE与⊙O相切.理由如下:连接OM,则OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分线,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE与⊙O相切;(2)在△ABC中,AB=AC,AE是角平分线,∴BE=12BC,∠ABC=∠C,∵BC=6,cosC=14,∴BE=3,cos∠ABC=14,在△ABE中,∠AEB=90°,∴AB=BEcos ABC=314=12,设⊙O的半径为r,则AO=12﹣r,∵OM∥BC,∴△AOM∽△ABE,∴OM AOBE AB =, ∴r 3=12r 12-, 解得:r=2.1, ∴⊙O 的半径为2.1.21、 (1) 方案1; B (5,0); 1(5)(5)5y x x =-+-;(2) 3.2m. 【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式. (2)把x =3代入抛物线的解析式,即可得到结论.试题解析:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-;(2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-. 由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--;(2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-, ∴抛物线的解析式为:21y x 5=-; (2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m .22、 (1)y B =-0.2x 2+1.6x (2)一次函数,y A =0.4x (3)该企业投资A 产品12万元,投资B 产品3万元,可获得最大利润7.8万元 【解析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B =ax 2+bx 求解即可; (2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A 产品所获利润+投资B 产品所获利润”列出函数关系式求得最大值 【详解】解:(1)y B =-0.2x 2+1.6x, (2)一次函数,y A =0.4x,(3)设投资B 产品x 万元,投资A 产品(15-x )万元,投资两种产品共获利W 万元, 则W=(-0.2x 2+1.6x )+0.4(15-x )=-0.2x 2+1.2x+6=-0.2(x -3)2+7.8, ∴当x=3时,W 最大值=7.8,答:该企业投资A 产品12万元,投资B 产品3万元,可获得最大利润7.8万元. 23、(1)24a ;(2)233m mm +- 【解析】试题分析:(1)先去括号,再合并同类项即可; (2)先计算括号里的,再将除法转换在乘法计算. 试题解析:(1)(a ﹣b )2﹣a (a ﹣2b )+(2a+b )(2a ﹣b ) =a 2﹣2ab+b 2﹣a 2+2ab+4a 2﹣b 2 =4a 2;(2)228691)1m m m m m m-+--÷++(. =2(1)(1)8(1)1(3)m m m m m m -+-+⨯+-=229(1)1(3)m m m m m -+⨯+- =2(3)(3)(1)1(3)m m m m m m +-+⨯+-=233m m m +-.24、(1)见解析;(2)见解析;(3)AG =1. 【解析】(1)利用垂径定理、平行的性质,得出OC ⊥CG ,得证CG 是⊙O 的切线.(2)利用直径所对圆周角为90和垂直的条件得出∠2=∠B ,再根据等弧所对的圆周角相等得出∠1=∠B ,进而证得∠1=∠2,得证AF =CF .(3)根据直角三角形的性质,求出AD 的长度,再利用平行的性质计算出结果. 【详解】(1)证明:连结OC ,如图, ∵C 是劣弧AE 的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴AC CE=,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sin G=0.6,∴sin∠FAD=DFAF=0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴DF AD CD DG=,∴2.4 3.2, 6.4DG=∴DG=8.2,∴AG=DG﹣AD=1.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.25、(1)见解析;(2)332.【解析】分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC 2,得到DF2,根据勾股定理得到AD22AF DF+6,求得AE6,设⊙O的半径为R,则OE=R 3OA=R,根据勾股定理列方程即可得到结论.详解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分.∵AC=8,tan∠BAC=22,∴AF=4,tan∠DAC=DFAF=22,∴DF2,∴AD22AF DF+6,∴AE6.在Rt△PAE中,tan∠1=PEAE=22,∴PE3设⊙O的半径为R,则OE=R﹣3,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣3)2+(6)2,∴R=33,即⊙O的半径为33.点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.26、11.9米【解析】先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论【详解】∵BD=CE=6m,∠AEC=60°,∴33,∴AB=AC+DE=10.4+1.5=11.9m.答:旗杆AB的高度是11.9米.27、(1)(2)证明见解析【解析】(1)根据矩形的性质,通过“角角边”证明三角形全等即可;(2)根据题意和(1)可得AC与EF互相垂直平分,所以四边形AECF是菱形.【详解】(1)证明:∵四边形ABCD是矩形,∴OB=OD,AE∥CF,∴∠E=∠F(两直线平行,内错角相等),在△BOE与△DOF中,E F BOE DOF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS ).(2)证明:∵四边形ABCD 是矩形, ∴OA=OC ,又∵由(1)△BOE ≌△DOF 得,OE=OF , ∴四边形AECF 是平行四边形, 又∵EF ⊥AC ,∴四边形AECF 是菱形.。

2022届广东省潮阳区华侨中学中考押题数学预测卷含解析

2022届广东省潮阳区华侨中学中考押题数学预测卷含解析

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.如图,在△ABC 中,分别以点A 和点C 为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长为( )A .16cmB .19cmC .22cmD .25cm 2.二次函数2y ax bx c =++的图象如图所示,则反比例函数a y x=与一次函数y bx c =+在同一坐标系中的大致图象是( )A .B .C .D .3.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x =的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A.34-B.1-C.32-D.2-4.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A.25:24 B.16:15 C.5:4 D.4:35.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣36.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.60587.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132×12D.x(x-1)=132×28.已知21xy=⎧⎨=⎩是二元一次方程组71mx nynx my+=⎧⎨-=⎩的解,则m+3n的值是()A.4 B.6 C.7 D.89.如图,在正八边形ABCDEFGH中,连接AC,AE,则AEAC的值是()A .1B .2C .2D .310.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )A .这组数据的平均数是6,中位数是6B .这组数据的平均数是6,中位数是7C .这组数据的平均数是5,中位数是6D .这组数据的平均数是5,中位数是7二、填空题(本大题共6个小题,每小题3分,共18分)11.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l 和直线l 外一点P.用直尺和圆规作直线PQ ,使PQ ⊥l 于点Q .”小艾的作法如下:(1)在直线l 上任取点A ,以A 为圆心,AP 长为半径画弧.(2)在直线l 上任取点B ,以B 为圆心,BP 长为半径画弧.(3)两弧分别交于点P 和点M(4)连接PM ,与直线l 交于点Q ,直线PQ 即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是_____.12.若一个棱柱有7个面,则它是______棱柱.13.如图,⊙O 中,弦AB 、CD 相交于点P ,若∠A =30°,∠APD =70°,则∠B 等于_____.14.若关于x 的一元二次方程240x x m ﹣=有两个不相等的实数根,则m 的取值范围为__________.15.如果抛物线y =(k ﹣2)x 2+k 的开口向上,那么k 的取值范围是_____.16.64的算术平方根是_____.三、解答题(共8题,共72分) 17.(8分)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且点C 是BD 的中点,过点 C 作AD 的垂线 EF 交直线 AD 于点 E .(1)求证:EF 是⊙O 的切线;(2)连接BC ,若AB=5,BC=3,求线段AE 的长.18.(8分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?19.(8分)如图,△ABC 是等腰直角三角形,且AC=BC ,P 是△ABC 外接圆⊙O 上的一动点(点P 与点C 位于直线AB 的异侧)连接AP 、BP ,延长AP 到D ,使PD=PB ,连接BD .(1)求证:PC ∥BD ;(2)若⊙O 的半径为2,∠ABP=60°,求CP 的长;(3)随着点P 的运动,PA PB PC+的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.20.(8分)如图,已知AB 是O 的直径,点C 、D 在O 上,60D ∠=且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长;()2若OE 的延长线交O 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S .21.(8分)如图,AB 为⊙O 的直径,点E 在⊙O 上,C 为BE 的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC .(1)试判断直线CD 与⊙O 的位置关系,并说明理由;(2)若AD=2,AC=6,求AB 的长.22.(10分)如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线.交BC 于点E .求证:BE=EC 填空:①若∠B=30°,AC=23,则DE=______;②当∠B=______度时,以O ,D ,E ,C 为顶点的四边形是正方形.23.(12分)如图,在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数y =6x 的图象相交于点A (m ,3)、B (–6,n ),与x 轴交于点C .(1)求一次函数y =kx +b 的关系式;(2)结合图象,直接写出满足kx +b >6x 的x 的取值范围; (3)若点P 在x 轴上,且S △ACP =32BOC S △,求点P 的坐标.24.在矩形ABCD 中,点E 在BC 上,AE AD =,DF ⊥AE ,垂足为F .求证.DF AB =若30FDC ∠=︒,且4AB =,求AD .参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN是AC的垂直平分线,∴DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2、D【解析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限. 故选D【点睛】考核知识点:反比例函数图象.3、A【解析】由题意(),3A m m -,因为O 与反比例函数k y x=都是关于直线y x =-对称,推出A 与B 关于直线y x =-对称,推出()3,B m m -,可得31m m =-,求出m 即可解决问题;【详解】函数3y x =-与k y x=的图象在第二象限交于点()1,A m y , ∴点(),3A m m - O 与反比例函数k y x=都是关于直线y x =-对称, A ∴与B 关于直线y x =-对称, ()3,B m m ∴-,31m m ∴=-,12m ∴=- ∴点13,22A ⎛⎫- ⎪⎝⎭ 133224k ∴=-⨯=- 故选:A .【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A ,B 关于直线y x =-对称.4、A【解析】先根据图形翻折的性质可得到四边形EFGH 是矩形,再根据全等三角形的判定定理得出Rt △AHE ≌Rt △CFG ,再由勾股定理及直角三角形的面积公式即可解答.【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.5、D【解析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6、D【解析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律7、B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.8、D【解析】分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.详解:根据题意,将21xy=⎧⎨=⎩代入71mx nynx my+=⎧⎨-=⎩,得:2721m nm n+=⎧⎨-+=⎩①②,①+②,得:m+3n=8,故选D.点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.9、B连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.【详解】解:连接AG、GE、EC,则四边形ACEG为正方形,故AEAC2.故选:B.【点睛】本题考查了正多边形的性质,正确作出辅助线是关键.10、C【解析】根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.【详解】对于数据:6,3,4,7,6,0,1,这组数据按照从小到大排列是:0,3,4,6,6,7,1,这组数据的平均数是:034667957++++++=,中位数是6,故选C.【点睛】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列,正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.二、填空题(本大题共6个小题,每小题3分,共18分)11、到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一【解析】从作图方法以及作图结果入手考虑其作图依据..【详解】解:依题意,AP =AM ,BP =BM ,根据垂直平分线的定义可知PM ⊥直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.【点睛】本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.12、5【解析】分析:根据n 棱柱的特点,由n 个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.13、40°【解析】由∠A =30°,∠APD =70°,利用三角形外角的性质,即可求得∠C 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B 的度数.【详解】解:∵∠A =30°,∠APD =70°,∴∠C =∠APD ﹣∠A =40°,∵∠B 与∠C 是AD 对的圆周角,∴∠B =∠C =40°.故答案为40°.【点睛】此题考查了圆周角定理与三角形外角的性质.此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.14、4m <.【解析】根据判别式的意义得到2440m =(﹣)﹣>,然后解不等式即可.【详解】 解:关于x 的一元二次方程240x x m ﹣=有两个不相等的实数根,2440m ∴=(﹣)﹣>,解得:4m <,故答案为:4m <.【点睛】此题考查了一元二次方程200ax bx c a ++≠=()的根的判别式24b ac =﹣:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.15、k >2【解析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k ﹣2>1.【详解】因为抛物线y =(k ﹣2)x 2+k 的开口向上,所以k ﹣2>1,即k >2,故答案为k >2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.16、【解析】=8,()2=8,的算术平方根是.故答案为:三、解答题(共8题,共72分)17、(1)证明见解析(2)165【解析】(1)连接OC ,根据等腰三角形的性质、平行线的判定得到OC ∥AE ,得到OC ⊥EF ,根据切线的判定定理证明; (2)根据勾股定理求出AC ,证明△AEC ∽△ACB ,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:连接OC ,∵OA=OC,∴∠OCA=∠BAC,∵点C是BD的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠BCA=90°,∴22AB BC-=4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴AE AC AC AB=,∴AE=2165 ACAB=.【点睛】本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键.18、(1)一副乒乓球拍28 元,一副羽毛球拍60元(2)共320 元.【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,2116 32204x yx y+=⎧⎨+=⎩,解得:2860 xy=⎧⎨=⎩答:购买一副乒乓球拍28元,一副羽毛球拍60元. (2)5×28+3×60=320元答:购买5副乒乓球拍和3副羽毛球拍共320元.19、(1)证明见解析;(2)6+2;(3)PA PBPC+的值不变,2PA PBPC+=.【解析】(1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;(2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;(3)证明△CBP∽△ABD,根据相似三角形的性质解答.【详解】(1)证明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB为⊙O的直径,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足为H,∵⊙O的半径为2,∠ABP=60°,∴2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt △BCH 中,CH=BC•cos ∠,BH=BC•sin ∠,在Rt △BHP 中,,∴;(3)PA PB PC+的值不变, ∵∠BCP=∠BAP ,∠CPB=∠D ,∴△CBP ∽△ABD ,∴AD AB PC BC=,∴PA PD PC +,即PA PB PC +=. 【点睛】本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.20、(1)OE =32;(2)阴影部分的面积为32π 【解析】(1)由题意不难证明OE 为△ABC 的中位线,要求OE 的长度即要求BC 的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE ≌△AFE ,进而将要求的阴影部分面积转化为扇形FOC 的面积,利用扇形面积公式求解即可.【详解】解:(1) ∵AB 是⊙O 的直径,∴∠ACB =90°,∵OE ⊥AC ,∴OE // BC ,又∵点O 是AB 中点,∴OE 是△ABC 的中位线,∵∠D =60°,∴∠B =60°,又∵AB =6,∴BC =AB ·cos 60°=3,∴OE =12 BC =32; (2)连接OC ,∵∠D =60°,∴∠AOC =120°,∵OF ⊥AC ,∴AE =CE ,AF =CF ,∴∠AOF =∠COF =60°,∴△AOF 为等边三角形,∴AF =AO =CO ,∵在Rt △COE 与Rt △AFE 中,AF CO AE CE =⎧⎨=⎩, ∴△COE ≌△AFE ,∴阴影部分的面积=扇形FOC 的面积, ∵S 扇形FOC =2603360π⨯=32π. ∴阴影部分的面积为32π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.21、(1)证明见解析(2)3【解析】(1)连接OC ,由C 为BE ∧的中点,得到12∠=∠,等量代换得到2ACO ∠=∠,根据平行线的性质得到OC CD ⊥,即可得到结论;(2)连接CE ,由勾股定理得到222CD AC AD -=,根据切割线定理得到2CD AD DE =⋅,根据勾股定理得到223CE CD DE =+=90ACB ∠=︒,即可得到结论.【详解】()1相切,连接OC ,∵C 为BE 的中点,∴12∠=∠,∵OA OC =,∴1ACO ∠=∠,∴2ACO ∠=∠,∴//AD OC ,∵CD AD ⊥,∴OC CD ⊥,∴直线CD 与O 相切;()2方法1:连接CE ,∵2AD =,6AC =, ∵90ADC ∠=, ∴222CD AC AD =-= ∵CD 是O 的切线,∴2CD AD DE =⋅,∴1DE =, ∴223CE CD DE =+=∵C 为BE 的中点, ∴3BC CE ==∵AB 为O 的直径,∴90ACB ∠=, ∴223AB AC BC =+=.方法2:∵DCA B∠=∠,易得ADC ACB∽,∴AD AC AC AB=,∴3AB=.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.22、(1)见解析;(2)①3;②1.【解析】(1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【详解】(1)证明:连接DO.∵∠ACB=90°,AC为直径,∴EC为⊙O的切线;又∵ED也为⊙O的切线,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,∴∴,∵AC为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=12BC=3,故答案为3;②当∠B=1°时,四边形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案为1.【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23、(1)122y x=+;(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(1)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=32S△BOC,即可得出|x+4|=1,解之即可得出结论.【详解】(1)∵点A(m,3),B(-6,n)在双曲线y=6x上,∴m=1,n=-1,∴A(1,3),B(-6,-1).将(1,3),B(-6,-1)带入y=kx+b,得:3216k bk b+⎧⎨--+⎩==,解得,122kb==⎧⎪⎨⎪⎩.∴直线的解析式为y=12x+1.(1)由函数图像可知,当kx+b>6x时,-6<x<0或1<x;(3)当y=12x+1=0时,x=-4,∴点C(-4,0).设点P的坐标为(x,0),如图,∵S△ACP=32S△BOC,A(1,3),B(-6,-1),∴12×3|x-(-4)|=32×12×|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴点P的坐标为(-6,0)或(-1,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=32S△BOC,得出|x+4|=1.24、(1)证明见解析;(2)1【解析】分析:(1)利用“AAS”证△ADF≌△EAB即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.详解:(1)证明:在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=1.点睛:本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.。

2022届广东省汕头市潮阳区达标名校中考数学仿真试卷(含答案解析)

2022届广东省汕头市潮阳区达标名校中考数学仿真试卷(含答案解析)

2022届广东省汕头市潮阳区达标名校中考数学仿真试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。

一、选择题(共10小题,每小题3分,共30分)1.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .252.已知⊙O 的半径为5,若OP=6,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法判断3.已知一次函数y =﹣12x +2的图象,绕x 轴上一点P (m ,1)旋转181°,所得的图象经过(1.﹣1),则m 的值为( )A .﹣2B .﹣1C .1D .24.把直线l :y=kx+b 绕着原点旋转180°,再向左平移1个单位长度后,经过点A (-2,0)和点B (0,4),则直线l 的表达式是( )A .y=2x+2B .y=2x-2C .y=-2x+2D .y=-2x-25.将某不等式组的解集13x ≤<-表示在数轴上,下列表示正确的是( )A .B .C .D .6.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是( )A .极差是20B .中位数是91C .众数是1D .平均数是917.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->8.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( )A .a e a =B .e b b =C .1a e a =D .11a b a b= 9.如图,直线y =kx +b 与x 轴交于点(﹣4,0),则y >0时,x 的取值范围是( )A .x >﹣4B .x >0C .x <﹣4D .x <010.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( ) A .16 B .17 C .18 D .19二、填空题(本大题共6个小题,每小题3分,共18分)11.若x=2-1, 则x 2+2x+1=__________.12.如图,点A 在反比例函数y=k x(x >0)的图像上,过点A 作AD ⊥y 轴于点D ,延长AD 至点C ,使CD=2AD ,过点A 作AB ⊥x 轴于点B ,连结BC 交y 轴于点E ,若△ABC 的面积为6,则k 的值为________.13.如图,在平面直角坐标系中,矩形活动框架ABCD 的长AB 为2,宽AD 为2,其中边AB 在x 轴上,且原点O 为AB 的中点,固定点A 、B ,把这个矩形活动框架沿箭头方向推,使D 落在y 轴的正半轴上点D′处,点C 的对应点C′的坐标为______.14.如图为两正方形ABCD 、CEFG 和矩形DFHI 的位置图,其中D ,A 两点分别在CG 、BI 上,若AB=3,CE=5,则矩形DFHI 的面积是_____.15.如图,反比例函数y =k x (x <0)的图象经过点A (﹣2,2),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B '在此反比例函数的图象上,则t 的值是( )A .1+5B .4+2C .42-D .-1+516.如图,Rt ABC ∆中,ACB=90∠︒,AC=CB=42,BAD=ADE=60∠∠︒,AD=5,CE 平分ACB ∠,DE 与CE 相交于点E ,则DE 的长等于_____.三、解答题(共8题,共72分)17.(8分)如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC=8,⊙O 的半径OA=6,求CE 的长.18.(8分)如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).求k 、m 的值;已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x=>的图象于点N.①当n=1时,判断线段PM 与PN 的数量关系,并说明理由;②若PN≥PM ,结合函数的图象,直接写出n 的取值范围.19.(8分)先化简,再求值:2214422x x x x x x x -÷-++++,其中x=2﹣1. 20.(8分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C 点到地面AD 的距离(结果保留根号).21.(8分)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.用含m 或n 的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.22.(10分)已知()()a b A b a b a a b =---. (1)化简A ;(2)如果a,b 是方程24120x x --=的两个根,求A 的值.23.(12分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加109m%小时,求m 的值. 24.八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 .老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.2022学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、C【答案解析】通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,5应用两次勾股定理分别求BE 和a .【题目详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1.. ∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B5∴5Rt△DBE中,()2222=521 BD DE--=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【答案点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.2、B【答案解析】比较OP与半径的大小即可判断.【题目详解】r5=,d OP6==,d r∴>,∴点P在O外,故选B .【答案点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<.3、C【答案解析】根据题意得出旋转后的函数解析式为y=-12x-1,然后根据解析式求得与x 轴的交点坐标,结合点的坐标即可得出结论. 【题目详解】 ∵一次函数y =﹣12x +2的图象,绕x 轴上一点P (m ,1)旋转181°,所得的图象经过(1.﹣1), ∴设旋转后的函数解析式为y =﹣12x ﹣1, 在一次函数y =﹣12x +2中,令y =1,则有﹣12x +2=1,解得:x =4, 即一次函数y =﹣12x +2与x 轴交点为(4,1). 一次函数y =﹣12x ﹣1中,令y =1,则有﹣12x ﹣1=1,解得:x =﹣2, 即一次函数y =﹣12x ﹣1与x 轴交点为(﹣2,1). ∴m =242-+=1, 故选:C .【答案点睛】本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大. 4、B【答案解析】先利用待定系数法求出直线AB 的解析式,再求出将直线AB 向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l .【题目详解】解:设直线AB 的解析式为y =mx +n .∵A (−2,0),B (0,1),∴,解得 ,∴直线AB的解析式为y=2x+1.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选:B.【答案点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.5、B【答案解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;< ,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6、D【答案解析】测试卷分析:因为极差为:1﹣78=20,所以A选项正确;从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;因为1出现了两次,最多,所以众数是1,所以C选项正确;因为9178988598905x++++==,所以D选项错误.故选D.考点:①众数②中位数③平均数④极差.7、C【答案解析】根据各点在数轴上位置即可得出结论.【题目详解】由图可知,b<a<0,A. ∵b<a<0,∴a+b<0,故本选项错误;B. ∵b<a<0,∴ab>0,故本选项错误;C. ∵b<a<0,∴a>b,故本选项正确;D. ∵b<a<0,∴b−a<0,故本选项错误.故选C.8、B【答案解析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【题目详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【答案点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.9、A【答案解析】测试卷分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.10、A【答案解析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【答案点睛】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【答案解析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【题目详解】∵x=2-1,∴x2+2x+1=(x+1)2=(2-1+1)2=2,故答案为:2.【答案点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.12、1【答案解析】连结BD,利用三角形面积公式得到S△ADB=13S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.【题目详解】连结BD,如图,∵DC=2AD,∴S△ADB=12S△BDC=13S△BAC=13×6=2,∵AD⊥y轴于点D,AB⊥x轴,∴四边形OBAD为矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案为:1.【答案点睛】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数y=k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13、(2,1)【答案解析】由已知条件得到,AO=12AB=1,根据勾股定理得到=1,于是得到结论. 【题目详解】解:∵,AO=12AB=1,∴,∵C′D′=2,C′D′∥AB ,∴C′(2,1),故答案为:(2,1)【答案点睛】本题考查了矩形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.14、872【答案解析】由题意先求出DG 和FG 的长,再根据勾股定理可求得DF 的长,然后再证明△DGF ∽△DAI ,依据相似三角形的性质可得到DI 的长,最后依据矩形的面积公式求解即可.【题目详解】∵四边形ABCD 、CEFG 均为正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt △DGF 中, =∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA .又∵∠DAI=∠DGF ,∴△DGF ∽△DAI ,∴23DF DG DI AD ==23=,解得:∴矩形DFHI的面积是=DF•DI=32987 2922⨯=,故答案为:872.【答案点睛】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.15、A【答案解析】根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-4x,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-4t,t),于是利用PB=PB′得t-2=|-4t|=4t,然后解方程可得到满足条件的t的值.【题目详解】如图,∵点A坐标为(-2,2),∴k=-2×2=-4,∴反比例函数解析式为y=-4x,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(-4t,t),∵PB=PB′,∴t-2=|-4t|=4t,整理得t2-2t-4=0,解得t1=1,(不符合题意,舍去),∴t的值为1+.故选A.【答案点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.16、3【答案解析】如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【题目详解】如图,延长CE、DE,分别交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等边三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴=8,AG=12AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案为:3【答案点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.三、解答题(共8题,共72分)17、(1)证明见解析;(2)4.1.【答案解析】测试卷分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;测试卷解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.(2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.考点:切线的性质.18、(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.【答案解析】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=kx,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=3x,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.1921.【答案解析】测试卷分析:测试卷解析:原式=2221 (2)2x x xx x x+-⨯-++=122 x xx x--++=12 x+当x=21-时,原式=121 212=--+.考点:分式的化简求值.20、C点到地面AD的距离为:(22+2)m.【答案解析】直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案.【题目详解】过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,在Rt△ABE中,∵∠A=30°,AB=4m,∴BE=2m,由题意可得:BF∥AD,则∠FBA=∠A=30°,在Rt△CBF中,∵∠ABC=75°,∴∠CBF=45°,∵BC=4m,∴CF=sin45°•BC=2m,∴C点到地面AD的距离为:()222m.【答案点睛】考查解直角三角形,熟练掌握锐角三角函数是解题的关键.21、(1)矩形的周长为4m ;(2)矩形的面积为1.【答案解析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【题目详解】(1)矩形的长为:m ﹣n ,矩形的宽为:m+n ,矩形的周长为:2[(m-n)+(m+n)]=4m ;(2)矩形的面积为S=(m+n )(m ﹣n )=m 2-n 2,当m=7,n=4时,S=72-42=1.【答案点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.22、(1)a b ab +;(2)-13. 【答案解析】(1)先通分,再根据同分母的分式相加减求出即可;(2)根据根与系数的关系即可得出结论.【题目详解】(1)A =a b a b -()﹣b a a b -()=22a b ab a b --()=a b ab+; (2)∵a ,b 是方程24120x x --=的两个根,∴a +b =4,ab =-12,∴41123a b A ab +===--. 【答案点睛】本题考查了分式的加减和根与系数的关系,能正确根据分式的运算法则进行化简是解答此题的关键.23、(1)1600千米;(2)1【答案解析】测试卷分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出方程(80+120)(1-m%)(8+109m%)=1600,进而解方程求出即可. 测试卷解析:(1)设原时速为xkm/h ,通车后里程为ykm ,则有: ()()8120816320x y x y ⎧+⎪⎨++⎪⎩== , 解得:801600x y ⎧⎨⎩== . 答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1﹣m%)(8+109m%)=1600, 解得:m 1=1,m 2=0(不合题意舍去),答:m 的值为1.24、(1)36 , 40, 1;(2)12. 【答案解析】(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.(2)画出树状图,根据概率公式求解即可.【题目详解】(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;该班共有学生(2+1+7+4+1+1)÷10%=40人; 训练后篮球定时定点投篮平均每个人的进球数是324557647820⨯+⨯+⨯+⨯++=1, 故答案为:36,40,1.(2)三名男生分别用A 1,A 2,A 3表示,一名女生用B 表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M )的结果有6种,∴P (M )=612=12.。

2022届广东省汕头市潮阳实验校中考适应性考试数学试题含解析

2022届广东省汕头市潮阳实验校中考适应性考试数学试题含解析

2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI熏合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合2.对于数据:6,3,4,7,6,0,1.下列判断中正确的是()A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是73.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C.22D54.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣2;③213kx≤ax2+bx的解集是0≤x≤1.其中正确的是()A .①②B .②③C .①④D .③④5.如图所示的图形为四位同学画的数轴,其中正确的是( ) A .B .C .D .6.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )A .(3,-2 )B .(-2,-3 )C .(2,3 )D .(3,2)7.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AGGF的值是( )A .43B .54C .65D .768.如图所示的几何体的左视图是( )A .B .C .D .9.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay =与一次函数y bx c =+在同一坐标系中的大致图象是( )A .B .C .D .10.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2aBC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长二、填空题(共7小题,每小题3分,满分21分)11.如图,正比例函数y=kx (k >0)与反比例函数y=的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连结BC ,则△ABC 的面积等于_____.12.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.13.如图,Rt ABC ∆中,ACB=90∠︒,AC=CB=42,BAD=ADE=60∠∠︒,AD=5,CE 平分ACB ∠,DE 与CE 相交于点E ,则DE 的长等于_____.14.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD 高度是4m ,从侧面C 点测得警示牌顶端点A 和底端B 点的仰角(∠ACD 和∠BCD )分别是60°,45°.那么路况警示牌AB 的高度为_____.15.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b 、的等式为________.16.如图,二次函数y=ax 2+bx +c (a ≠0)的图象与x 轴相交于点A 、B ,若其对称轴为直线x =2,则OB –OA 的值为_______.17.已知点A (x 1, y 1)、B(x 2, y 2)在直线y=kx+b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小三、解答题(共7小题,满分69分)18.(10分)(1)计算:3tan30°+|2﹣3|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化简,再求值:(x﹣22xy yx-)÷222x yx xy-+,其中x=2,y=2﹣1.19.(5分)已知a2+2a=9,求22212321121a a aa a a a+++-÷+--+的值.20.(8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.21.(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.22.(10分)已知如图①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一条直线上,点M,N,F分别为AB,ED,AD的中点,∠B=∠EDC=45°,(1)求证MF=NF(2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)23.(12分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.24.(14分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<60 8 0.1660≤x<70 12 a70≤x<80 ■0.580≤x<90 3 0.0690≤x≤100 b c合计■ 1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正确,不符合题意;∴BD=CD,∴BD=CD,故A正确,不符合题意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意.故选D.点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.2、C【解析】根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.【详解】对于数据:6,3,4,7,6,0,1,这组数据按照从小到大排列是:0,3,4,6,6,7,1,这组数据的平均数是:034667957++++++=,中位数是6,故选C. 【点睛】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列,正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.3、C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG+=22,点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.4、B【解析】根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx的解集可以转化为函数图象的高低关系.【详解】解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误将A(1,2)代入y=ax2+bx,则2=9a+1b∴b=233a -,∴a﹣b=a﹣(233a-)=4a﹣23>-23,故②正确;由正弦定义==,则③正确;不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象则满足条件x范围为x≥1或x≤0,则④错误.故答案为:B.【点睛】二次函数的图像,sinα公式,不等式的解集.5、D【解析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.6、A【解析】因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A7、C【解析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可. 【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32 a,∴FM=52 a,∵AE∥FM,∴36552AG AE aGF FM a===,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.8、A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A .9、D【解析】根据抛物线和直线的关系分析.【详解】 由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.10、B【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB 的长,进而求得AD 的长,即可发现结论. 【解答】用求根公式求得:22221244;22b a a b a a x x -+-+-== ∵90,2a C BC ACb ∠=︒==,, ∴224a AB b =+, ∴22224.422a a b a a AD b +-=+-= AD 的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】根据反比例函数的性质可判断点A 与点B 关于原点对称,则S △BOC =S △AOC ,再利用反比例函数k 的几何意义得到S △AOC =3,则易得S △ABC =1.【详解】∵双曲线y=与正比例函数y=kx 的图象交于A ,B 两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.故答案为1.12、360°.【解析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13、3【解析】如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等边三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴22AC CB=8,AG=12AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案为:3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.141243-【解析】由特殊角的正切值即可得出线段CD的长度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD长度,再利用线段间的关系即可得出结论.【详解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°=ADCD3∴43∵在Rt△BCD中,∠BAD=45∘,43∴BD43∴AB=AD-BD=4-433=1233-路况警示牌AB的高度为1233-m.1243-.【点睛】解直角三角形的应用-仰角俯角问题.15、(a+b )2﹣(a ﹣b )2=4ab【解析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S 阴影=4S 长方形=4ab ①,S 阴影=S 大正方形﹣S 空白小正方形=(a+b )2﹣(b ﹣a )2②,由①②得:(a+b )2﹣(a ﹣b )2=4ab .故答案为(a+b )2﹣(a ﹣b )2=4ab .【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.16、4【解析】试题分析:设OB 的长度为x ,则根据二次函数的对称性可得:点B 的坐标为(x+2,0),点A 的坐标为(2-x ,0),则OB-OA=x+2-(x-2)=4.点睛:本题主要考查的就是二次函数的性质.如果二次函数与x 轴的两个交点坐标为(1x ,0)和(2x ,0),则函数的对称轴为直线:x=122x x .在解决二次函数的题目时,我们一定要注意区分点的坐标和线段的长度之间的区别,如果点在x 的正半轴,则点的横坐标就是线段的长度,如果点在x 的负半轴,则点的横坐标的相反数就是线段的长度.17、y 1>y 1【解析】分析:直接利用一次函数的性质分析得出答案.详解:∵直线经过第一、二、四象限,∴y 随x 的增大而减小,∵x 1<x 1,∴y 1与y 1的大小关系为:y 1>y 1.故答案为:>.点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.三、解答题(共7小题,满分69分)18、 (1)3;(2) x ﹣y ,1.【解析】(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】(1)3tan30°(13)-1-(3-π)0-(-1)2018,,=3;(2)(x ﹣22xy y x-)÷222x y x xy -+, =()()()222•x x y x xy y x x y x y +-++-, =()()()()2•x y x x y xx y x y -++-=x-y ,当,-1时,原式+1=1.【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.19、22(1)a +,15. 【解析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:22212321121a a a a a a a +++-÷+--+=()()()()()211211112a a a a a a a -+-⨯++-++ =()21111a a a --++ =()221a +, ∵a 2+2a =9,∴(a +1)2=1.∴原式=21105=.20、(1)详见解析;(2).【解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中,∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=,∴的长==.21、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h 的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、 处理以及统计图表.22、(1)见解析;(2)MF=3 NF.【解析】 (1)连接AE,BD ,先证明△ACE 和△BCD 全等,然后得到AE=BD ,然后再通过三角形中位线证明即可.(2)根据图(2)(3)进行合理猜想即可.【详解】解:(1)连接AE,BD在△ACE 和△BCD 中AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCD∴AE=BD又∵点M,N,F 分别为AB ,ED ,AD 的中点∴MF=12BD,NF=12AE ∴MF=NF3NF.方法同上.【点睛】本题考查了三角形全等的判定和性质以及三角形中位线的知识,做出辅助线和合理猜想是解答本题的关键.23、(1)证明见解析;(2).【解析】试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.试题解析:(1)连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.3分又∵CO=CO, OD=OB∴△COD≌△COB(SAS)4分∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∴.考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.24、(1)a=0.24,b=2,c=0.04;(2)600人;(3)25人.【解析】(1)利用50≤x<60的频数和频率,根据公式:频率=频数÷总数先计算出样本总人数,再分别计算出a,b,c的值;(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.【详解】解:(1)样本人数为:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人数为:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:1000×0.6=600(人)∴这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B 从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,∴抽取的2名同学来自同一组的概率P=820=25【点睛】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.。

2022学年[全国百强校首发]广东省汕头市潮阳实验校中考一模数学试题(含答案解析)

2022学年[全国百强校首发]广东省汕头市潮阳实验校中考一模数学试题(含答案解析)

2022学年[全国百强校首发]广东省汕头市潮阳实验校中考一模数学测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )A.B.C.D.2.下列各数中,最小的数是()A.0 B.2C.1D.π-3.在12,0,-1,12-这四个数中,最小的数是()A.12B.0 C.12-D.-14.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为()A.B.C.D.6.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A.B.C.D.7.函数1y+2x=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣28.下列运算正确的是()A.a﹣3a=2a B.(ab2)0=ab2C.8=22±D.3×27=99.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C.1010123x x=+D.1010202x x=+10.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为()A 21B27C57D711.关于▱ABCD的叙述,不正确的是()A.若AB⊥BC,则▱ABCD是矩形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是菱形12.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手 1 2 3 4 5 6 7 8 9 10 时间(min) 129 136 140 145 146 148 154 158 165 175由此所得的以下推断不正确...的是()A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于_______.14.若3,a,4,5的众数是4,则这组数据的平均数是_____.15.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点的坐标是.16.如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM为定值。

2021-2022学年广东省汕头市潮阳区达标名校中考数学押题卷含解析

2021-2022学年广东省汕头市潮阳区达标名校中考数学押题卷含解析

2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是()A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元2.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105B.0.105×10﹣4C.1.05×10﹣5D.105×10﹣73.下列实数中,无理数是()A.3.14 B.1.01001 C D.22 74.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四5.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,53)C.(0,2)D.(0,103)6.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为()A.3 B.4 C.6 D.87.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q8.81的算术平方根是()A.9 B.±9 C.±3 D.39.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.410.﹣6的倒数是()A.﹣B.C.﹣6 D.6二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:sin30°﹣(﹣3)0=_____.12.如图,直线m ∥n ,△ABC 为等腰直角三角形,∠BAC=90°,则∠1= 度.13.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1-k 2=________.14.化简1111x x -+-的结果是_______________. 15.方程组538389x y x y -=⎧⎨+=⎩的解一定是方程_____与_____的公共解.16.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b 且,a ,b 是0,1,2,3四个数中的其中某一个,若|a ﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____. 三、解答题(共8题,共72分)17.(8分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)18.(8分)武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A -非常喜欢”、“ B -比较喜欢”、“ C -不太喜欢”、“ D -很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题: (1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是 ,图②中A 所在扇形对应的圆心角是 ; (3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.(8分)某船的载重为260吨,容积为1000m 1.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m 1,乙种货物每吨体积为2m 1,若要充分利用这艘船的载重与容积,求甲、乙两种货物应各装的吨数(设装运货物时无任何空隙). 20.(8分)小明遇到这样一个问题:已知:1b ca-=. 求证:240b ac -≥. 经过思考,小明的证明过程如下: ∵1b ca-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目: 已知:42a cb+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程. 21.(8分)如图①,有两个形状完全相同的直角三角形ABC 和EFG 叠放在一起(点A 与点E 重合),已知AC=8cm ,BC=6cm ,∠C=90°,EG=4cm ,∠EGF=90°,O 是△EFG 斜边上的中点.如图②,若整个△EFG 从图①的位置出发,以1cm/s 的速度沿射线AB 方向平移,在△EFG 平移的同时,点P 从△EFG 的顶点G 出发,以1cm/s 的速度在直角边GF 上向点F 运动,当点P 到达点F 时,点P 停止运动,△EFG 也随之停止平移.设运动时间为x (s ),FG 的延长线交AC 于H ,四边形OAHP 的面积为y (cm 2)(不考虑点P 与G 、F 重合的情况).(1)当x 为何值时,OP ∥AC ;(2)求y 与x 之间的函数关系式,并确定自变量x 的取值范围;(3)是否存在某一时刻,使四边形OAHP 面积与△ABC 面积的比为13:24?若存在,求出x 的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)22.(10分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表: 节目代号 A B C D E 节目类型 新闻 体育 动画 娱乐 戏曲 喜爱人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生的总数为 人,统计表中m 的值为 .扇形统计图中n 的值为 ; (2)被调查学生中,最喜爱电视节目的“众数” ;(3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数.23.(12分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).24.如图,在Rt△ABC中,∠C=90°,O、D分别为AB、AC上的点,经过A、D两点的⊙O分别交于AB、AC于点E、F,且BC与⊙O相切于点D.(1)求证:;(2)当AC=2,CD=1时,求⊙O的面积.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.【详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故选:A.【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.2、C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.考点:科学记数法.3、C【解析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【详解】A、3.14是有理数;B、1.01001是有理数;CD、227是分数,为有理数;故选C.【点睛】本题主要考查无理数的定义,属于简单题.4、D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:∵y=ax﹣x﹣a+1(a为常数),∴y=(a-1)x-(a-1)当a-1>0时,即a>1,此时函数的图像过一三四象限;当a-1<0时,即a<1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y 随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.5、B【解析】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小.∵四边形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中点,∴D(﹣2,0).设直线DA′的解析式为y=kx+b,∴5402k bk b=+⎧⎨=-+⎩,∴5653kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线DA′的解析式为5563y x=+.当x=0时,y =53,∴E(0,53).故选B.6、D【解析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.【详解】连接OA.∵⊙O的半径为5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=12 AB;在直角三角形ODC中,根据勾股定理,得,∴AB=1.故选D.【点睛】本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.7、D【解析】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最大的数对应的点是点Q.故选D.8、D【解析】根据算术平方根的定义求解.【详解】,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.1.故选:D.【点睛】考核知识点:算术平方根.理解定义是关键.9、D【解析】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=12 AD.∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC•CD=14AC•AD.∴S△ABC=12AC•BC=12AC•A32D=34AC•AD.∴S△DAC:S△ABC13AC AD?AC AD1344::⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D.10、A【解析】解:﹣6的倒数是﹣.故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11、-1 2【解析】sin30°=12,a0=1(a≠0)【详解】解:原式=12-1=-1 2故答案为:-1 2 .【点睛】本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键.【解析】试题分析:∵△ABC 为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m ∥n ,∴∠1=1°;故答案为1. 考点:等腰直角三角形;平行线的性质.13、2【解析】 试题分析:∵反比例函数11k y x=(x >1)及22k y x =(x >1)的图象均在第一象限内, ∴1k >1,2k >1. ∵AP ⊥x 轴,∴S △OAP =112k ,S △OBP =212k , ∴S △OAB =S △OAP ﹣S △OBP =121()2k k -=2, 解得:12k k -=2.故答案为2.14、221x -- 【解析】先将分式进行通分,即可进行运算.【详解】1111x x -+-=211x x ---211x x +-=221x -- 【点睛】此题主要考查分式的加减,解题的关键是先将它们通分.15、5x ﹣3y=8 3x+8y=9【解析】方程组538389x y x y -=⎧⎨+=⎩的解一定是方程5x ﹣3y =8与3x +8y =9的公共解. 故答案为5x ﹣3y =8;3x +8y =9.16、58【解析】利用P (A )=m n,进行计算概率.从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为105 168.故答案是:5 8 .【点睛】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.三、解答题(共8题,共72分)17、2.7米【解析】解:作BF⊥DE于点F,BG⊥AE于点G在Rt△ADE中∵tan∠ADE=,∴DE="AE" ·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD的高度为2.7米.18、(1)答案见解析;(2)B,54°;(3)240人.(1)根据D程度的人数和所占抽查总人数的百分率即可求出抽查总人数,然后利用总人数减去A、B、D程度的人数即可求出C程度的人数,然后分别计算出各程度人数占抽查总人数的百分率,从而补全统计图即可;(2)根据众数的定义即可得出结论,然后利用360°乘A程度的人数所占抽查总人数的百分率即可得出结论;(3)利用960乘C程度的人数所占抽查总人数的百分率即可.【详解】解:(1)被调查的学生总人数为65%120÷=人,C程度的人数为120(18666)30-++=人,则A的百分比为18100%15%120⨯=、B的百分比为66100%55%120⨯=、C的百分比为30100%25%120⨯=,补全图形如下:(2)所抽取学生对数学学习喜欢程度的众数是B、图②中A所在扇形对应的圆心角是36015%54︒⨯=︒.故答案为:B;54︒;(3)该年级学生中对数学学习“不太喜欢”的有96025%240⨯=人答:该年级学生中对数学学习“不太喜欢”的有240人.【点睛】此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键.19、这艘船装甲货物80吨,装乙货物180吨.【解析】根据题意先列二元一次方程,再解方程即可.【详解】解:设这艘船装甲货物x吨,装乙货物y吨,根据题意,得260 821000 x yx y+=⎧⎨+=⎩.解得80180x y =⎧⎨=⎩. 答:这艘船装甲货物80吨,装乙货物180吨.【点睛】此题重点考查学生对二元一次方程的应用能力,熟练掌握二元一次方程的解法是解题的关键.20、证明见解析【解析】 解:∵42a c b+=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根.∴240b ac -≥,∴24b ac ≥.21、(1)1.5s ;(2)S=625x 2+175x+3(0<x <3);(3)当x=52(s )时,四边形OAHP 面积与△ABC 面积的比为13:1.【解析】(1)由于O 是EF 中点,因此当P 为FG 中点时,OP ∥EG ∥AC ,据此可求出x 的值.(2)由于四边形AHPO 形状不规则,可根据三角形AFH 和三角形OPF 的面积差来得出四边形AHPO 的面积.三角形AHF 中,AH 的长可用AF 的长和∠FAH 的余弦值求出,同理可求出FH 的表达式(也可用相似三角形来得出AH 、FH 的长).三角形OFP 中,可过O 作OD ⊥FP 于D ,PF 的长易知,而OD 的长,可根据OF 的长和∠FOD 的余弦值得出.由此可求得y 、x 的函数关系式.(3)先求出三角形ABC 和四边形OAHP 的面积,然后将其代入(2)的函数式中即可得出x 的值.【详解】解:(1)∵Rt △EFG ∽Rt △ABC ∴EG FG AC BC =,即486FG =, ∴FG=468⨯=3cm ∵当P 为FG 的中点时,OP ∥EG ,EG ∥AC∴OP ∥AC∴x=121FG =12×3=1.5(s ) ∴当x 为1.5s 时,OP ∥AC .(2)在Rt △EFG 中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴EG EF FG AH AF FH==,∴AH=45(x+5),FH=35(x+5)过点O作OD⊥FP,垂足为D ∵点O为EF中点∴OD=12EG=2cm∵FP=3﹣x∴S四边形OAHP=S△AFH﹣S△OFP=12•AH•FH﹣12•OD•FP=12•45(x+5)•35(x+5)﹣12×2×(3﹣x)=625x2+175x+3(0<x<3).(3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:1则S四边形OAHP=1324×S△ABC∴625x2+175x+3=1324×12×6×8∴6x2+85x﹣250=0解得x1=52,x2=﹣503(舍去)∵0<x<3∴当x=52(s)时,四边形OAHP面积与△ABC面积的比为13:1.【点睛】本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决.22、(1)150;45,36,(2)娱乐(3)1【解析】(1)由“体育”的人数及其所占百分比可得总人数,用总人数减去其它节目的人数即可得求得动画的人数m,用娱乐的人数除以总人数即可得n的值;(2)根据众数的定义求解可得;(3)用总人数乘以样本中喜爱新闻节目的人数所占比例.【详解】解:(1)被调查的学生总数为30÷20%=150(人),m=150−(12+30+54+9)=45,n%=54150×100%=36%,即n=36,故答案为150,45,36;(2)由题意知,最喜爱电视节目为“娱乐”的人数最多,∴被调查学生中,最喜爱电视节目的“众数”为娱乐,故答案为娱乐;(3)估计该校最喜爱新闻节目的学生人数为2000×12150=1.【点睛】本题考查了统计表、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23、5.6千米【解析】设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=yx,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【详解】设PD的长为x千米,DA的长为y千米,在Rt△PAD中,tan∠DPA=DA DP,即tan18°=yx,∴y=0.33x,在Rt△PDB中,tan∠DPB=64 5.6g)56x⨯-(,即tan53°=5.6yx+,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.24、(1)证明见解析;(2).【解析】(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积.【详解】证明:连接OD,∵BC为圆O的切线,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,则;(2)解:连接ED,在Rt△ACD中,AC=2,CD=1,根据勾股定理得:AD=,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即AD2=AC•AE,∴AE=,即圆的半径为,则圆的面积为.【点睛】此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022届[全国百强校首发]广东省汕头市潮阳实验校中考冲刺卷数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 2.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>3.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( )A .±3B .3C .5D .94.如图,在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,PE ,PF 分别交AB ,AC 于点E ,F ,给出下列四个结论:①△APE ≌△CPF ;②AE=CF ;③△EAF 是等腰直角三角形;④S △ABC =2S 四边形AEPF ,上述结论正确的有( )A .1个B .2个C .3个D .4个5.若等式x 2+ax +19=(x ﹣5)2﹣b 成立,则 a +b 的值为( )A .16B .﹣16C .4D .﹣46.某射手在同一条件下进行射击,结果如下表所示:射击次数(n ) 10 20 50 100 200 500 ……击中靶心次数(m ) 8 19 44 92 178 451 ……击中靶心频率()0.80 0.95 0.88 0.92 0.89 0.90 ……由此表推断这个射手射击1次,击中靶心的概率是( )A .0.6B .0.7C .0.8D .0.97.已知一元二次方程ax 2+ax ﹣4=0有一个根是﹣2,则a 值是( )A .﹣2B .23 C .2 D .48.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定9.﹣3的相反数是( )A .13- B .13 C .3- D .310.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .26±B .6±C .2或3D .2或311.如图,AB 是O 的直径,CD 是O 的弦,连接AD ,AC ,BD ,则DAB ∠与C ∠的数量关系为()A .DABC ∠=∠ B .2DAB C ∠=∠C .90DAB C ∠+∠=︒D .180DAB C ∠+∠=︒12.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( )A .6.5×105B .6.5×106C .6.5×107D .65×105二、填空题:(本大题共6个小题,每小题4分,共24分.)13.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是_____________.14.分解因式:2x+xy=_______.15.二次函数y=(x﹣2m)2+1,当m<x<m+1时,y随x的增大而减小,则m的取值范围是_____.16.方程x+1=25x+的解是_____.17.在平面直角坐标系xOy中,点A、B为反比例函数4yx=(x>0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将4yx=(x>0)的图象绕原点O顺时针旋转90°,A点的对应点为A′,B点的对应点为B′.此时点B′的坐标是_____.18.如图,P(m,m)是反比例函数9yx=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一道选择题有,,,A B C D四个选项.(1)若正确答案是A,从中任意选出一项,求选中的恰好是正确答案A的概率;(2)若正确答案是,A B,从中任意选择两项,求选中的恰好是正确答案,A B的概率.20.(6分)如果a2+2a-1=0,求代数式24()2aaa a-⋅-的值.21.(6分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.(Ⅰ)如图①,求OD的长及ABBG的值;(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).22.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b = ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?23.(8分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.(1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.①求证:△ABP ∽△BCP ;②若 PA=3,PC=4,则 PB= .(2)已知锐角△ABC ,分别以 AB 、AC 为边向外作正△ABE 和正△ACD ,CE 和 BD 相交于 P 点.如图(2) ①求∠CPD 的度数;②求证:P 点为△ABC 的费马点.24.(10分)平面直角坐标系xOy 中(如图),已知抛物线2y x bx c ++=经过点10(,)A 和30B (,),与y 轴相交于点C ,顶点为P .(1)求这条抛物线的表达式和顶点P 的坐标;(2)点E 在抛物线的对称轴上,且EA EC =,求点E 的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN ,点Q 在直线MN 右侧的抛物线上,MEQ NEB ∠∠=,求点Q 的坐标.25.(10分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下. 成绩/分 120﹣111 110﹣101 100﹣91 90以下成绩等级 A B C D请根据以上信息解答下列问题:(1)这次统计共抽取了 名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B 等级以上(含B 等级)的学生有多少人? (3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A 等级学生数可提高40%,B 等级学生数可提高10%,请估计经过训练后九年级数学成绩在B 等级以上(含B 等级)的学生可达多少人?26.(12分)如图所示,PB 是⊙O 的切线,B 为切点,圆心O 在PC 上,∠P=30°,D 为弧BC 的中点.(1)求证:PB=BC ;(2)试判断四边形BOCD 的形状,并说明理由.27.(12分)如图,在Rt △ABC 中,90ACB ∠=︒,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE.求证:CE=AD ;当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明理由;若D 为AB 中点,则当A ∠=______时,四边形BECD 是正方形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B【解析】设全组共有x 名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.2、C【解析】首先求出二次函数24y x x m =--的图象的对称轴x=2b a-=2,且由a=1>0,可知其开口向上,然后由A (2,1y )中x=2,知1y 最小,再由B (-3,2y ),C (-1,3y )都在对称轴的左侧,而在对称轴的左侧,y 随x 得增大而减小,所以23y y >.总结可得231y y y >>.故选C .点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数20y ax bx c a =++≠()的图象性质. 3、B【解析】由已知可得:2,(11m n mn +==+-=-【详解】由已知可得:2,(11m n mn +==+-=-,原式3===故选:B【点睛】考核知识点:二次根式运算.配方是关键.4、C【解析】利用“角边角”证明△APE 和△CPF 全等,根据全等三角形的可得AE=CF ,再根据等腰直角三角形的定义得到△EFP 是等腰直角三角形,根据全等三角形的面积相等可得△APE 的面积等于△CPF 的面积相等,然后求出四边形AEPF 的面积等于△ABC 的面积的一半.【详解】∵AB=AC ,∠BAC=90°,点P 是BC 的中点,∴AP ⊥BC ,AP=PC ,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF 是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF ,在△APE 和△CPF 中, 45APE CPF AP PCEAP C ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△APE ≌△CPF (ASA ),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE ,∴△EFP 是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC.故④正确,故选C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.5、D【解析】分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,则a+b=-10+6=-4,故选D.点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6、D【解析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.7、C【解析】分析:将x=-2代入方程即可求出a的值.详解:将x=-2代入可得:4a-2a-4=0,解得:a=2,故选C.点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.8、C【解析】根据数轴上点的位置判断出a ﹣4与a ﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:5<a <10,∴a ﹣4>0,a ﹣11<0,则原式=|a ﹣4|﹣|a ﹣11|=a ﹣4+a ﹣11=2a ﹣15,故选:C .【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.9、D【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.10、A【解析】根据方程有两个相等的实数根结合根的判别式即可得出关于k 的方程,解之即可得出结论.【详解】∵方程2230x kx -+=有两个相等的实根,∴△=k 2-4×2×3=k 2-24=0,解得:k=±故选A .【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.11、C【解析】首先根据圆周角定理可知∠B=∠C ,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.【详解】解:∵AB 是O 的直径, ∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C ,∴∠DAB+∠C=90°.故选C.【点睛】本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.12、B【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将6500000用科学记数法表示为:6.5×106. 故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、80250(15)2900x x +-=【解析】分析:根据题意把李明步行和骑车各自所走路程表达出来,再结合步行和骑车所走总里程为2900米,列出方程即可. 详解:设他推车步行的时间为x 分钟,根据题意可得:80x+250(15-x)=2900.故答案为80x+250(15-x)=2900.点睛:弄清本题中的等量关系:李明推车步行的路程+李明骑车行驶的路程=2900是解题的关键.14、()x x+y .【解析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】+=+.直接提取公因式x即可:2x xy x(x y)15、m>1【解析】由条件可知二次函数对称轴为x=2m,且开口向上,由二次函数的性质可知在对称轴的左侧时y随x的增大而减小,可求得m+1<2m,即m>1.故答案为m>1.点睛:本题主要考查二次函数的性质,掌握当抛物线开口向下时,在对称轴右侧y随x的增大而减小是解题的关键.16、x=1【解析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.【详解】两边平方得:(x+1)1=1x+5,即x1=4,开方得:x=1或x=-1,经检验x=-1是增根,无理方程的解为x=1.故答案为x=117、(1,-4)【解析】利用旋转的性质即可解决问题.【详解】如图,由题意A(1,4),B(4,1),A根据旋转的性质可知′(4,-1),B′(1,-4);所以,B′(1,-4);故答案为(1,-4).【点睛】本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题.18、9332+.【解析】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3. ∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得3.∴OB3∴S△POB=12OB•PH933+.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)14;(2)16【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.【详解】解:(1)选中的恰好是正确答案A的概率为14;(2)画树状图:共有12种等可能的结果数,其中选中的恰好是正确答案A ,B 的结果数为2,所以选中的恰好是正确答案A ,B 的概率=21126=. 【点睛】 本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.20、1【解析】 221a a +=2224422a a a a a a a a -⎛⎫-⋅= ⎪--⎝⎭=()()()()2222222a a a a a a a a a +-=+=+-=1. 故答案为1.21、(Ⅰ)12(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A 、B 、F′在一条直线上时,AF′的长最大,最大值为22+2,此时α=315°,F′(12+2,12﹣2) 【解析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB ,可知sin ∠AG′B =12AB BG =,推出∠AG′B =30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A 、B 、F′在一条直线上时,AF′的长最大.【详解】(Ⅰ)如图1中,∵A (0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.22、(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-0.15-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)①证明见解析;②;(2)①60°;②证明见解析;【解析】试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;(2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴,∴PB2=PA•PC=12,∴PB=2;(2)解:①∵△ABE与△ACD都为等边三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②证明:∵△ADF ∽△CFP ,∴AF•PF=DF•CF ,∵∠AFP=∠CFD ,∴△AFP ∽△CDF .∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC ﹣∠APC=120°,∴P 点为△ABC 的费马点.考点:相似形综合题24、(1)243y x x +=﹣,顶点P 的坐标为21(,﹣);(2)E 点坐标为22(,);(3)Q 点的坐标为58(,). 【解析】(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P 的坐标;(2)设2E t (,),根据两点间的距离公式,利用EA EC =得到22222123t t ++(﹣)=(﹣),然后解方程求出t 即可得到E 点坐标;(3)直线2x =交x 轴于F ,作2MH x ⊥直线=于H ,如图,利用12tan NEB ∠=得到12tan MEQ ∠=,设243Q m m m +(,﹣),则2412HE m m QH m +=﹣,=﹣,再在Rt QHE 中利用正切的定义得到H 1tan HE 2Q HEQ ∠==,即24122m m m +﹣=(﹣),然后解方程求出m 即可得到Q 点坐标.【详解】解:(1)抛物线解析式为13y x x =(﹣)(﹣), 即243y x x +=﹣, 221y x =(﹣)﹣,∴顶点P 的坐标为21(,﹣);(2)抛物线的对称轴为直线2x =,设2E t (,),EA EC =,22222123t t ∴++(﹣)=(﹣),解得2t =,∴E 点坐标为22(,); (3)直线2x =交x 轴于F ,作MN ⊥直线x=2于H ,如图,MEQ NEB ∠∠=, 而BF 1tan EF 2NEB ∠==, 1tan 2MEQ ∴∠=, 设243Q m m m +(,﹣),则22432412HE m m m m QH m ++=﹣﹣=﹣,=﹣, 在Rt QHE 中,H 1tan HE 2Q HEQ ∠==, 24122m m m ∴+﹣=(﹣),整理得2650m m +﹣=,解得11m =(舍去),25m =, ∴Q 点的坐标为58(,).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.25、(1)1人;补图见解析;(2)10人;(3)610名.【解析】(1)用总人数乘以A 所占的百分比,即可得到总人数;再用总人数乘以A 等级人数所占比例可得其人数,继而根据各等级人数之和等于总人数可得D 等级人数,据此可补全条形图;(2)用总人数乘以(A 的百分比+B 的百分比),即可解答;(3)先计算出提高后A ,B 所占的百分比,再乘以总人数,即可解答.【详解】解:(1)本次调查抽取的总人数为15÷108360=1(人), 则A 等级人数为1×72360=10(人),D 等级人数为1﹣(10+15+5)=20(人), 补全直方图如下:故答案为1.(2)估计该校九年级此次数学成绩在B 等级以上(含B 等级)的学生有1000×101550=10(人); (3)∵A 级学生数可提高40%,B 级学生数可提高10%,∴B 级学生所占的百分比为:30%×(1+10%)=33%,A 级学生所占的百分比为:20%×(1+40%)=28%, ∴1000×(33%+28%)=610(人),∴估计经过训练后九年级数学成绩在B 以上(含B 级)的学生可达610名.【点睛】考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26、(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到∠OBP =90°,进而得到∠BOP =60°,由OC =BO ,得到∠OBC =∠OCB =30°,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可.试题解析:证明:(1)∵PB 是⊙O 的切线,∴∠OBP =90°,∠POB =90°-30°=60°.∵OB =OC ,∴∠OBC =∠OCB .∵∠POB =∠OBC +∠OCB ,∴∠OCB =30°=∠P ,∴PB =BC ;(2)连接OD 交BC 于点M .∵D 是弧BC 的中点,∴OD 垂直平分BC .在直角△OMC 中,∵∠OCM =30°,∴OC =2OM =OD ,∴OM =DM ,∴四边形BOCD 是菱形.27、(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.【解析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【详解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四边形ADEC为平行四边形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D为AB中点,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四边形,∵∠ACB=90°,D是AB中点,∴BD=CD,(斜边中线等于斜边一半)∴四边形BECD是菱形;(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四边形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,故答案为45°.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.。

相关文档
最新文档