动量守恒和能量守恒定律

合集下载

物理学中的动量和能量守恒定律

物理学中的动量和能量守恒定律

物理学中的动量和能量守恒定律物理学中有两个重要的守恒定律,分别是动量守恒定律和能量守恒定律。

它们是描述自然界物体在各种相互作用下的运动和转化过程的基本原理。

本文将对这两个守恒定律进行详细探讨,并展示它们在物理学中的重要作用。

一、动量守恒定律动量守恒定律是指在一个孤立系统中,总动量保持不变。

即在没有外力作用的情况下,物体或物体系统的总动量守恒。

动量的定义是一个物体的质量乘以其速度。

对于一个物体的动量改变,需要有外力的作用。

根据牛顿第二定律F=ma,可以得到物体动量的变化率等于作用力。

动量守恒定律可以应用于多种情况,例如碰撞、爆炸等。

在碰撞过程中,当两个物体以一定速度相向运动时,它们会发生碰撞,根据动量守恒定律,碰撞前后两个物体的总动量保持不变。

这个特点使得动量守恒定律成为解决碰撞问题的有力工具。

二、能量守恒定律能量守恒定律是指在一个孤立系统中,总能量保持不变。

无论是机械能、热能、电能还是化学能等各种形式的能量,在一个封闭的系统中,总能量守恒。

能量的转化是物理学中研究的重要内容。

在能量守恒定律的作用下,能量可以从一种形式转化为另一种形式,但总能量始终保持不变。

以机械能守恒为例,机械能包括动能和势能。

当只考虑重力场时,一个物体的机械能等于它的动能与势能之和。

在没有外力做功和能量损耗的情况下,一个物体的机械能保持不变。

能量守恒定律在很多领域中都有应用。

例如在机械系统中,能量守恒定律常常用于解决机械能转化和利用的问题。

在能量转化的过程中,能量的损耗是无法避免的,而能量守恒定律提供了一种理论工具来分析能量转化的效率和损失。

三、动量和能量守恒定律的关系动量守恒定律和能量守恒定律在物理学中密切相关,但并不完全等同。

动量是一个矢量量,与物体的质量和速度有关;而能量是一个标量量,与物体的质量和速度的平方有关。

在一些情况下,动量和能量守恒定律可以同时适用。

例如在完全弹性碰撞中,动能守恒和动量守恒同时成立。

在碰撞前后,物体的动能保持不变,同时总动量也保持不变。

动量守恒定律与能量守恒定律

动量守恒定律与能量守恒定律

动量守恒定律与能量守恒定律动量守恒定律和能量守恒定律是物理学中两个重要的基本定律。

它们通过描述物体运动或相互作用过程中的一些规律,帮助我们更深入地理解并解释自然界中发生的现象。

动量守恒定律,也被称为牛顿第三定律,指出在一个封闭系统中,如果没有外力作用,系统内的总动量将保持不变。

换句话说,系统内的物体之间相对运动的总动量始终保持恒定。

这个定律可以用数学公式表示为:Σmv = 0,其中Σmv表示系统中物体的总动量。

这意味着当一个物体获得了一定的动量时,其他物体的动量必然发生相应的改变,以保持系统的总动量为零。

动量守恒定律对于解释运动过程中的碰撞、反弹和推力等现象非常重要。

以碰撞为例,当两个物体发生碰撞时,它们之间会相互传递动量,但总动量始终保持不变。

这就是我们常见的“动量守恒”的原理。

相比之下,能量守恒定律强调的是能量在一个封闭系统中的守恒。

能量是物体的基本属性,它可以是动能、势能、热能等形式存在。

能量守恒定律指出在一个封闭系统中,如果没有外部能量输入或输出,系统内的能量总量将保持不变。

换句话说,能量既不能创造也不能消失,只能从一种形式转化为另一种形式。

我们通常用数学公式ΣE = 0表示能量守恒定律,其中ΣE表示系统的总能量。

这意味着在一个封闭系统中,能量转化的过程可以是动能转化为势能,势能转化为热能等,但总能量始终保持不变。

能量守恒定律可以解释很多物理现象,例如机械能守恒、光能转化为电能等。

以机械能守恒为例,当一个物体从高处自由落下时,它的势能逐渐转化为动能,但总的机械能(势能加动能)保持不变。

在实际应用中,动量守恒定律和能量守恒定律常常相互关联。

在碰撞过程中,动量守恒定律用于描述物体运动前后的变化,而能量守恒定律则用于考虑动能转化和损失等能量变化。

动量守恒定律和能量守恒定律是物理学中两个基本的守恒定律。

它们不仅帮助我们理解和解释许多自然界中的现象,还为工程学和技术应用提供了重要的理论基础。

通过深入研究和应用这两个定律,我们可以更好地认识和探索自然界的奥秘。

动量守恒定律与能量守恒定律

动量守恒定律与能量守恒定律
环境保护
在环境保护和污染治理中,利用动量守恒定律和能量守恒定律来 分析和解决环境问题。
05 深入理解动量守恒定律与 能量守恒定律的意义
对物理学发展的影响
奠定物理学基础
动量守恒定律和能量守恒定律是物理学中最基本、最重要 的原理之一,为整个物理学的发展提供了坚实的理论基础。
推动物理学进步
这两个定律的发现和证明推动了物理学的发展,引发了多 次科学革命,不断推动着物理学理论的完善和创新。
物体运动
01
动量守恒定律可以解释和理解物体运动的现象,如碰撞、火箭
发射等。
声学原理
02
声音传播过程中,声波的动量守恒,能量守恒定律则解释了声
音的传播速度和强度变化。
电磁波传播
03
电磁波的传播过程中,能量守恒定律解释了电磁波的能量分布
和传播速度。
工程领域的运用
01
02
03
机械工程
在机械设计中,动量守恒 定律和能量守恒定律被广 泛应用于分析机械系统的 运动和能量传递。
动量守恒定律与能量守恒定律
contents
目录
• 动量守恒定律 • 能量守恒定律 • 动量守恒与能量守恒的关系 • 动量守恒定律与能量守恒定律在现实生
活中的应用 • 深入理解动量守恒定律与能量守恒定律
的意义
01 动量守恒定律
定义与公式
定义
动量守恒定律是物理学中的基本定律之一,它指出在没有外 力作用的情况下,一个封闭系统的总动量保持不变。
动量守恒定律要求系统是封闭的,即 系统中的物质不能离开或进入系统。
系统内力的矢量和为零
系统内力的矢量和为零意味着系统内 部相互作用力的总和为零,不会改变 系统的总动量。
动量守恒定律的应用实例

大学物理动量守恒定律和能量守恒定律

大学物理动量守恒定律和能量守恒定律

04
动量守恒定律和能量守恒定 律的意义与影响
在物理学中的地位
基础定律
动量守恒定律和能量守恒定律是物理学中的两个基础定律,它们 在理论物理学和实验物理学中都占据着重要的地位。
理论基石
这两个定律为物理学理论体系提供了基石,许多物理理论和公式都 是基于这两个定律推导出来的。
验证实验
许多实验通过验证动量守恒定律和能量守恒定律的正确性,来检验 实验的准确性和可靠性。
适用条件
系统不受外力或外力合力为零
动量守恒定律只有在系统不受外力或外力合力为零的情况下才成立。如果系统受到外力作 用,则总动量将发生变化。
系统内力的作用相互抵消
系统内力的作用只会改变系统内各物体的速度,而不会改变系统的总动量。如果系统内力 的作用相互抵消,则总动量保持不变。
理想气体和刚体的动量守恒
未来能源利用的发展需要解决环 境问题和能源短缺问题,动量守 恒定律和能量守恒定律将在新能 源技术、节能技术等领域发挥关
键作用。
感谢您的观看
THANKS
在理想气体和刚体的研究中,由于气体分子之间的相互作用力和刚体之间的碰撞力都可以 忽略不计,因此它们的动量守恒。
实例分析
弹性碰撞
当两个小球发生弹性碰撞时,根据动量守恒定律,它们碰撞后 的速度满足m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'。由于弹性碰撞中能 量没有损失,因此碰撞前后两小球的速度变化量相等。
动量与能量的关系
动量是质量与速度的乘积,表 示物体的运动状态;能量是物 体运动状态的度量,包括动能
和势能。
动量和能量都是矢量,具有 方向性,遵循矢量合成法则。
动量和能量可以相互转化,但 总量保持不变,这是动量守恒 和能量守恒定律的内在联系。

动量守恒和能量守恒公式

动量守恒和能量守恒公式

动量守恒和能量守恒公式动量守恒(momentum conservation)和能量守恒(energy conservation)是物理学中两个非常重要的定律。

首先,我们来了解一下动量守恒。

动量是描述物体运动状态的物理量,它是质量(m)乘以速度(v),即p=mv。

根据牛顿第二定律,物体的动量变化率等于作用在物体上的力产生的冲量,即F=dp/dt,其中F是力,dp/dt是动量的变化率。

根据动量守恒定律,当物体间的外力为零时,物体的总动量保持不变。

当有两个物体发生碰撞时,这个系统的总动量在碰撞前后是守恒的。

换句话说,如果一个物体的动量增加,那么另一个物体的动量必然减小,这就是动量守恒的基本原理。

这个原理被广泛应用在各个领域,例如交通事故、运动中的球类运动和飞行器的设计等。

接下来,我们来讨论能量守恒。

能量是物体进行工作或引起变化的能力,是物理系统的基本属性。

根据能量守恒定律,一个系统的总能量在任意时刻都是保持不变的。

能量可以分为各种形式,包括动能、势能、热能等。

动能是物体运动的能量,由于速度和质量的平方成正比。

势能是物体由于位置而具有的能量,如重力势能和弹性势能。

热能是物体内部粒子运动产生的能量。

在一个封闭系统中,能量守恒定律表明,系统的总能量是一个恒定值,一旦系统能量从一种形式转化为另一种形式,总能量保持不变,只是能量在不同形式之间的转化。

例如,考虑一个物体自由下落的情况。

当物体下落时,势能转化为动能。

当物体触地时,物体的动能转化为热能和声能,但总能量不变。

总结一下,动量守恒和能量守恒是物理学中的两个重要定律。

动量守恒表明在一个封闭系统中,系统的总动量在任意时刻都保持不变。

能量守恒表明系统的总能量在各种能量形式之间转化时保持不变。

这些定律在解释和预测物理现象和事件方面起着关键的作用,并在许多领域的科学研究和技术应用中发挥着重要作用。

物理三大守恒定律公式

物理三大守恒定律公式

物理三大守恒定律公式物理学是一门研究自然界中各种现象的科学,它是自然科学中最基础、最根本的一门学科。

在物理学中,有三个重要的守恒定律,它们分别是能量守恒定律、动量守恒定律和角动量守恒定律。

这三个守恒定律是物理学研究中的基础,也是我们理解自然界中各种现象的重要工具。

下面,我们将详细介绍这三大守恒定律公式。

一、能量守恒定律公式能量守恒定律是物理学中最基本的守恒定律之一,它表明在一个封闭系统中,能量总量保持不变。

这个定律可以用一个简单的公式来表示:E1 + Q = E2其中,E1是系统的初始能量,E2是系统的最终能量,Q是系统吸收或放出的热量。

这个公式的意义在于,系统中的能量总量不会因为内部的能量转化或热量的吸收或放出而改变。

这个定律可以应用于各种物理现象的研究,如机械能守恒、热力学过程、电磁能守恒等。

二、动量守恒定律公式动量守恒定律是物理学中另一个重要的守恒定律,它表明在一个封闭系统中,物体的总动量保持不变。

这个定律可以用一个简单的公式来表示:m1v1 + m2v2 = m1v1' + m2v2'其中,m1和m2分别是两个物体的质量,v1和v2是它们的初始速度,v1'和v2'是它们的最终速度。

这个公式的意义在于,系统中的物体总动量不会因为内部的碰撞或运动而改变。

这个定律可以应用于各种物理现象的研究,如弹性碰撞、非弹性碰撞、质点运动等。

三、角动量守恒定律公式角动量守恒定律是物理学中最后一个重要的守恒定律,它表明在一个封闭系统中,物体的总角动量保持不变。

这个定律可以用一个简单的公式来表示:L1 + L2 = L1' + L2'其中,L1和L2分别是两个物体的角动量,L1'和L2'是它们的最终角动量。

这个公式的意义在于,系统中的物体总角动量不会因为内部的转动或运动而改变。

这个定律可以应用于各种物理现象的研究,如刚体转动、自转、公转等。

总结物理学中的三大守恒定律——能量守恒定律、动量守恒定律和角动量守恒定律,是我们理解自然界中各种现象的重要工具。

大学物理第三章动量守恒定律和能量守恒定律

大学物理第三章动量守恒定律和能量守恒定律

动量守恒定律的表述
总结词
动量守恒定律表述为系统不受外力或所 受外力之和为零时,系统总动量保持不 变。
VS
详细描述
动量守恒定律是自然界中最基本的定律之 一,它表述为在一个封闭系统中,如果没 有外力作用或者外力之和为零,则系统总 动量保持不变。也就是说,系统的初始动 量和最终动量是相等的。
动量守恒定律的适用条件
能量守恒定律可以通过电磁学 的基本公式推导出来。
能量守恒定律可以通过相对论 的质能方程推导出来。
能量守恒定律的应用实例
01
02
03
04
机械能守恒
在无外力作用的系统中,动能 和势能可以相互转化,但总和
保持不变。
热能守恒
在一个孤立系统中,热量只能 从高温物体传递到低温物体,
最终达到热平衡状态。
电磁能守恒
详细描述
根据牛顿第三定律,作用力和反作用力大小相等、方向相反。如果将一个物体施加一个力F,则该力会产生一个 加速度a,进而改变物体的速度v。由于力的作用是相互的,反作用力也会对另一个物体产生相同大小、相反方向 的加速度和速度变化。因此,在系统内力的相互作用下,系统总动量保持不变。
02
能量守恒定律
能量守恒定律的表述
感谢观看
01
能量守恒定律表述为:在一个封闭系统中,能量不能被创造或消灭, 只能从一种形式转化为另一种形式。
02
能量守恒定律是自然界的基本定律之一,适用于宇宙中的一切物理过 程。
03
能量守恒定律是定量的,可以用数学公式表示。
04
能量守恒定律是绝对的,不受任何物理定律的限制。
能量守恒定律的适用条件
能量守恒定律适用于孤立系统,即系统与外界没有能量 交换。

五大守恒定律

五大守恒定律

五大守恒定律引言在自然界中存在着一系列的守恒定律,它们描述了能量、质量和动量在各种物理过程中的守恒规律。

这些守恒定律是物理学领域中的关键概念,无论是在研究基础物理学还是应用物理学中,都具有重要的作用。

本文将对五大守恒定律进行深入探讨,分别是能量守恒定律、质量守恒定律、动量守恒定律、角动量守恒定律和电荷守恒定律。

一、能量守恒定律能量守恒定律是自然界中最基本的定律之一,它描述了能量在物理系统中的转化和转移过程中总是保持不变。

根据能量守恒定律,一个系统的总能量在任何时刻都保持不变,只能从一种形式转化为另一种形式。

这意味着能量既不能被创造也不能被销毁,只能从一处转移到另一处。

1. 能量的形式能量可以存在于多种形式,主要包括: - 动能:物体由于运动而具有的能量。

- 势能:物体由于位置或状态而具有的能量。

- 热能:物体内部分子或原子的热运动所具有的能量。

- 光能:电磁波的能量形式。

- 电能:带电粒子相互作用所具有的能量。

2. 能量转化与转移能量的转化和转移是指能量从一种形式转化为另一种形式或在物体之间进行传递的过程。

在这个过程中,能量的总量保持不变。

例如,当一个物体从高处下落时,其势能逐渐转化为动能;在机械工作中,电能可以转化为机械能;光能可以被太阳能电池转化为电能等等。

3. 能量守恒定律的应用能量守恒定律在现实生活中有广泛的应用。

例如,工程领域的能源管理需要考虑能量的转化和利用效率;在交通运输中,通过改进动力系统以实现更高的能量利用效率来降低能源消耗;在环境保护中,能源的合理利用可以减少对环境的影响等等。

二、质量守恒定律质量守恒定律描述了在任何物理或化学过程中,一个封闭系统中的总质量保持不变。

这意味着在一个封闭系统中,质量既不能被创建也不能被销毁,只能在物质之间进行转移或转化。

1. 可逆反应与不可逆反应质量守恒定律适用于可逆反应和不可逆反应。

可逆反应指的是反应物转化为生成物的过程可以逆转,反应物和生成物之间可以达到平衡;而不可逆反应指的是反应物转化为生成物的过程不能逆转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 动量守恒和能量守恒定律§1-1质点和质点系的动量定理一、质点的动量定理 1、动量质点的质量m 与其速度v的乘积称为质点的动量,记为P。

(3-1)说明:⑴P是矢量,方向与v相同⑵P是瞬时量 ⑶P 是相对量⑷坐标和动量是描述物体状态的参量2、冲量牛顿第二定律原始形式)(v m dtd F =由此有)(v m d dt F= 积分:122121p p P d dt F p p t t -==⎰⎰(3-2)定义:⎰21t t dt F称为在21t t -时间内力F对质点的冲量。

记为(3-3)说明:⑴I是矢量⑵I是过程量 ⑶I是力对时间的积累效应 ⑷I的分量式⎪⎪⎩⎪⎪⎨⎧===⎰⎰⎰212121t t z z t t y y t t x x dtF I dt F I dt F I∵⎪⎪⎩⎪⎪⎨⎧=-=-=-⎰⎰⎰212121)()()(121212t t z z t t y y t t x x dtF t t F dt F t t F dt F t t F (3-4)∴分量式(3—4)可写成⎪⎩⎪⎨⎧-=-=-=)()()(121212t t F I t t F I t t F I z zy y x x (3-5)x F 、y F 、zF 是在21t t -时间内x F 、y F 、z F 平均值。

3、质点的动量定理由上知12p p I -=(3-6)结论:质点所受合力的冲量=质点动量的增量,称此为质点的动量定理。

说明:⑴I 与12p p-同方向⑵分量式⎪⎩⎪⎨⎧-=-=-=z 1z 2zy 1y 2y x 1x 2x pp I p p I p p I (3-7)⑶过程量可用状态量表示,使问题得到简化 ⑷成立条件:惯性系⑸动量原理对碰撞问题很有用二、质点系的动量定理概念:系统:指一组质点内力:系统内质点间作用力外力:系统外物体对系统内质点作用力设系统含n 个质点,第i 个质点的质量和速度分别为i m 、i v,对于第i 个质点受合内力为内i F ,受合外力为外i F,由牛顿第二定律有dtv m d F F i i i i )(=+内外对上式求和,有∑∑∑∑======+n1i i i n1i i i n1i i n1i i )v m (dtd dt)v m (d F F 内外因为内力是一对一对的作用力与反作用力组成,故0=合内力F, 有Pdtd F =合外力 (3-8)结论:系统受的合外力等于系统动量的变化,这就是质点系的动量定理。

式(3-8)可表示如下122121p p P d dt F p p t t-==⎰⎰合外力 (3-9) 即 12p p I -=合外力冲量 (3-10)结论:系统受合外力冲量等于系统动量的增量,这也是质点系动量定理的又一表述。

例3-1:质量为m 的铁锤竖直落下,打在木桩上并停下。

设打击时间t ∆,打击前铁锤速率为v ,则在打击木桩的时间内,铁锤受平均和外力的大小为?解:设竖直向下为正,由动量定理知:mvt F -=∆0tmvF ∆=⇒ 强调:动量定理中说的是合外力冲量=动量增量例3-2:一物体受合力为t F 2=(SI ),做直线运动,试问在第二个5秒内和第一个5秒内物体受冲量之比及动量增量之比各为多少?解:设物体沿+x 方向运动,252551===⎰⎰tdt Fdt I N·S (1I 沿i方向) 7521051052===⎰⎰tdt Fdt I N·S (2I沿i方向) 3/12=⇒I I∵⎩⎨⎧∆=∆=1122)()(p I p I∴3)()(12=∆∆p p例3-3:如图3-1,一弹性球,质量为020.0=m kg ,速率5=v m/s ,与墙壁碰撞后跳回。

设跳回 时速率不变,碰撞前后的速度方向和墙的法 线夹角都为60=α °,⑴求碰撞过程中小球受到的冲量?=I⑵设碰撞时间为05.0=∆t s ,求碰撞过程中 小球 受到的平均冲力?=F解:⑴?=I如图3-1所取坐标,动量定理为12v m v m I-= 〈方法一〉用分量方程解⎩⎨⎧=-=-==--=-=0sin sin cos 2)cos (cos 1212αααααmv mv mv mv I mv mv mv mv mv I y y y x x x图 3-1ii i mv i I I x10.060cos 5020.02cos 2=⨯⨯⨯===⇒αN·S〈方法二〉用矢量图解)(1212v v m v m v m I-=-=)(12v v-如上图3-1所示。

∵ 60==∠αOBA ,∴ 60=∠A 故OAB ∠为等边三角形。

512==-⇒v v v m/s,)(12v v-沿i 方向∴10.05020.012=⨯=-=v v m IN·S,沿i 方向。

⑵t F I ∆=i i t I F 205.0/10.0/==∆=⇒N注意:此题按⎰=21t t dt F I 求I 困难(或求不出来)时,用公式p I∆=求方便。

§3-2动量守恒定律由式(3-8)知,当系统受合外力为零时即系统动量不随时间变化,称此为动量守恒定律。

说明:⑴动量守恒条件:0=合外力F,惯性系。

⑵动量守恒是指系统的总动量守恒,而不是指个别物体的动量守恒。

⑶内力能改变系统动能而不能改变系统动量。

⑷0≠合外力F时,若合外力F在某一方向上的分量为零,则在该方向上系统的动量分量守恒。

⑸动量守恒是指常矢量=p(不随时间变化),∴此时要求0≡合外力F 。

⑹动量守恒是自然界的普遍规律之一。

例3-4:如图3-2,质量为m 的水银球,竖直地落到光滑的水平桌面上,分成质量相等的三等份,沿桌面运动。

其中两等份的速度分别为1v 、2v,大小都为0.30m/s 。

相互垂直地分开,试求第 三等份的速度。

解:〈方法一〉用分量式法解研究对象:小球受力情况:m 只受向下的重力和向上的桌面施加的正压力,即在水平 方向不受力,故水平方向动量守恒。

m 图 3-2在水平面上如图3-2取坐标,有0)90cos(cos 332211=--+v m v m v m x θθ分量:0)90sin(sin 2211=--θθv m v m y 分量:⎩⎨⎧====sm v v m m m /30.021321∴⎩⎨⎧=⇒==⨯==)成即与 135(13545/42.030.02213v s m v v αθ 〈方法二〉用矢量法解∵ 0332211=++v m v m v m及 321m m m ==∴ 0321=++v v v 即 )(213v v v+-=即有图3-3。

可得42.02)(22212133==+=+-==v v v v v v vm/s得 13545=⇒=αθ强调:要理解动量守恒条件例3-5:如图3-4,在光滑的水平面上,有一质量为M 长为l 的小车,车上一端有一质量为m 的人,起初m 、M 均静止,若人从车一端走到另一端时,则人和车相对地面走过的距离为多少?解:研究对象:m 、M 为系统∵此系统在水平方向受合外力为零, ∴在此方向动量守恒。

〈方法一〉 0=+M m v M v m(对地))(M mM m v v v+= 0)(=++M M M m v M v v m即 0)(=++M M m v M m v m如图所取坐标,标量式为0)(=+-M M m v M m mv即 M M m v M m mv )(+=积分(0=t ,m 在A 处,0t t =,m 在B 处)dtv M m dt v m t M t M m ⎰⎰+=0)(即 M S M m ml )(+= 得 M m ml S M +=由图3-4知:lMm M S l S M m +=-=2v v 图 3-3x图 3-4<方法二〉 0=+M m v M v m标量式:0=-M m Mv mv即 M m Mv mv = 积分: dtv Mdt v m t M t m ⎰⎰=0MmMSmS=⇒ ① 可知: l S S M m =+ ②由①、②得:⎪⎩⎪⎨⎧+=+=lM m mS l Mm M S M m例3-6:质量为'm 的人手里拿着一个质量为m 的物体,此人用以与水平方向成α角的速率v 向前跳去。

当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出,问:由于人抛出物体,他跳跃的距离增加了多少?(假设人可视为质点)解:如图3-5,设P 为抛出物体后人达到的最高点,1x 、2x 分别为抛球前后跳跃的距离。

研究对象:人、物体组成的系统, ∵ 该系统在水平方向上合外力=0, ∴ 在水平方向上系统的动量分量守恒。

设在P点,人抛球前、后相对地的速度分别为v1v ,在P 点抛球后球相对地速度为2v,有)u v (m v 'm v m v 'm v )m 'm (1121++=+=+标量式: )u v (m v 'm v )m 'm (11-+=+ 即 mu v m m v m m -+=+10)'(cos )'(α 得: umm m v v ++='cos 01αgm m muv gv u m m m t v v x x x )'(sin sin ')cos (000112+=⋅+=-=-=∆ααα强调:u v v +=12,u v v +≠2。

因为u是与1v 同时产生的,而人速度为v 时,u还没产生x图 3-5§3-3碰撞一、碰撞碰撞非直接碰撞直接碰撞特点:⑴碰撞时物体间相互作用内力很大,其它力相对比较可忽略。

即碰撞系统合外力=0。

故动量守恒。

⑵机械能E ⎪⎩⎪⎨⎧⎭⎬⎫不守恒:非完全弹性碰撞完全非弹性碰撞守恒完全弹性碰撞:E E二、完全弹性碰撞 1、对心情况(一维)如图3-6,以1m 与2m 为系统,碰撞中常矢=p2211202101v m v m v m v m +=+ (3-12)22212202210121212121mv mv v m v m +=+(3-14)υ2υ20υυ1m 2m x图 3-6(0>v ,沿+x 方向;反之,沿-x 方向)解得: ⎪⎪⎩⎪⎪⎨⎧++-=++-=211012012221202102112)(2)(m m v m v m m v m m v m v m m v (3-15)讨论:⑴⎩⎨⎧==⇒=10220121v v v v m m (交换速度)⑵⎩⎨⎧=≈<<=-≈>>=10210112210112202,,0,,0v v v v m m v v v m m v2、非对心情况设21m m =,且020=v ,可知,1m 、2m 系统动量及动能均守恒,即⎪⎩⎪⎨⎧+=+=22221121012211101212121v m v m v m v m v m v m (3-16) ⎩⎨⎧+=+=⇒22212102110v v v v v v (3-17) 可知,1v 、2v、10v 是以10v§3-4动能定理一、功定义:力对质点所做的功为力在质点位移方向的分量与位移大小的乘积。

相关文档
最新文档