气溶胶遥感定量反演研究与应用(陈良富[等]编著)思维导图
实验课1-定量遥感--植被覆盖度反演PPT优秀课件

实验一 植被覆盖度的遥感反演
三、实习仪器与数据
(1)Landsat 8数据:LC81290392013110LGN01 仁寿县的县界*.shp文件
(2)根据自己的兴趣选择研究区,遥感影像以及矢量数据可以从网上获取。 数据来源:从网站下载免费数据,如:
◦ /data/ ◦ ◦ / 数据源请从(1)和(2)中任意选择一个。
7
实验一 植被覆盖度的遥感反演
◦ 3、计算植被覆盖度 方法一:(两种方法都要做)
根据公式(1),我们可以将整个地区分为三个部 分:
• 当NDVI小于NDVI0 , fv取值为0; • NDVI大于NDVIv , fv取值为1; • 介于两者之间的像元使用公式(1)计算。 利用ENVI主菜单->Basic Tools->Band Math,在公式 输入栏中输入进行计算. 请回顾ENVI中公式的写法
1
实验一 植被覆盖度的遥感反演
在线性像元分解模型中,最简单的模型假设像元只有植被 和非植被两部分构成。所得的光谱信息也只有这两个组分因子 线性合成。他们各自的面积在像元中所占的比率即为各因子的 权重,其中植被覆盖部分所占像元的百分比即为该像元的植 被覆盖度。
NDVI = fv*NDVIv + (1- fv)* NDVI0
(公式1)
NDVI为像元NDVI值,fv为像元的植被覆盖度,NDVIv和NDVI0分别 为植被覆盖部分和非植被覆盖部分的NDVI值。NDVIv和NDVI0这两个 参数值的确定是关键,将直接影响到植被覆盖度估算结果。
在实际工作中因缺少大面积地表实测数据作参考,以及不可避 免存在噪声,所以通常对NDVI 统计直方图给定置信区间,求该区间 内的最小和最大值来作为NDVI0和NDVIv值,或者取5%和95%频率的 NDVI 值作为NDVI0和NDVIv值。本实验中采取后一种取值方法。
气溶胶反演

气溶胶反演方法利用环境小卫星多光谱数据反演:方法一:1. 利用SPSS计算出大气光学厚度与大气参数(ρ(大气的路径辐射项等效反射率)、S(大气下界的半球反射率)、T(μs )T(μv)(大气上行下行透过率))的对应关系,据此建立查找表,然后利用多波段数据进行地气解耦,得到大气光学厚度。
2. 构建查询表利用6S模型构建气溶胶光学厚度查询表,输入参数为:太阳天顶角,气溶胶模式,550nm波长处气溶胶光学厚度的等级,查找表计算的波段(第一和第三波段),海拔高度。
3. 数据预处理(1)重采样,为了加快运算速度和提高信噪比;(2)辐射定标,将图像的DN值转化为表观反射率。
4. 结果反演根据获得的表观反射率计算出NDVI(用于识别暗目标),利用获得的太阳高度角对查找表进行插值,得到要计算波段的不同大气光学厚度下的大气参数:ρ0、S、T(μs)T(μv)。
5. 图像平滑与成图输出在获得大气光学厚度后,对结果图像进行平滑处理,达到内插部分非暗目标点的监测值并抑制异常点的目的,采用9×9像元的距离加权平均的滤波方法进行;将结果导入ArcMap中,进行叠加矢量图,分等定级以及添加图名图例等操作,制成专题图。
方法二:1.对要反演气溶胶光学厚度的卫星图像惊醒地理和辐射率校正2.然后用MODTRAN模型模拟生成τ(气溶胶光学厚度)和ρ(地表反射率)的查找表3.接着判断卫星观测到的地表像元反射率Lobs与MODTRAN模拟的大气总辐射Ltotal是否相等。
4.如果不等,就改变ρ,再用MODTRAN重新计算Ltotal,再判断是否相等。
5.如果相等,则根据ρ和τ的关系曲线,由反演出的地表反射率ρmap,计算到气溶胶光学厚度分布τmap。
利用环境小卫星高光谱数据反演:方法:1.选择用于反演的波段2.假设利用某种气溶胶模式条件下,计算红波段和近红外波段表观反射率,不考虑临近效应影响。
大气散射在可见—近红外波段影响是比较大的,在可见波段影响最大,其次是近红外波段,在中波红外接近于零,因此,在利用近红外波段反演气溶胶光学特性之前,可以在清洁大气的假设下利用6S或者MODTRAN辐射传输模型进行大气校正。
城市地区大气气溶胶遥感反演研究

分类号密级UDC 编号中国科学院研究生院博士学位论文城市地区大气气溶胶遥感反演研究孙林指导教师柳钦火研究员中国科学院遥感应用研究所申请学位级别博士学科专业名称地图学与地理信息系统论文提交日期 2006年5月论文答辩日期 2006年6月3日培养单位中国科学院遥感应用研究所学位授予单位中国科学院研究生院答辩委员会主席城市地区大气气溶胶遥感反演研究摘要本文主要研究城市地区的气溶胶反演问题,反演的气溶胶参数有:气溶胶光学厚度和气溶胶的粒子谱。
文中主要研究了两种卫星数据的城市地区气溶胶反演方法:一种是国外在轨运行的中分辨率成像光谱仪(MODIS)数据,具有36个通道,空间分辨率分别为250米、500米和1000米;一种是国内的即将发射的环境与减灾卫星(HJ-1)高光谱成像仪数据,具有约135个通道,空间分辨率为100米。
根据不同卫星数据的空间分辨率及光谱分辨率等参数特征,文中共使用三种气溶胶光学厚度反演方法反演城市地区的气溶胶光学厚度,分别是:结构函数法、浓密植被算法及高反差地表法,使用高反差地表法反演的环境与减灾卫星的多波段气溶胶光学厚度反演了气溶胶的粒子谱。
浓密植被算法能够很好的反演陆地上浓密植被像元的气溶胶光学厚度,对于城市地区而言,当卫星数据的空间分辨率较高时,城市中分布较多的森林公园、草坪等区域,可以作为浓密植被算法反演时要求的浓密植被像元;当卫星数据的空间分辨率较低时,难以找到满足浓密植被要求的像元,致使浓密植被算法很难在城市这样的地区使用,基于大气透过率的结构函数法(又称对比算法)可以适用于高反射率地区气溶胶光学厚度反演,有望解决城市地区气溶胶光学厚度的反演问题;对于高光谱数据,高反差地表法能够方便的反演出在其波段设置范围内的气溶胶光学厚度的谱分布,帮助我们更清楚的了解气溶胶的尺度谱分布等性质根据MODIS数据的空间分辩率特点,文中使用结构函数法反演MODIS数据城市地区的气溶胶光学厚度。
由于城市地区地表的空间结构非常复杂,地表二向反射特性非常明显,给结构函数法精确反演城市地区的气溶胶光学厚度带来了严峻挑战,为降低城市地区地表的二向反射特性对结构函数法反演气溶胶光学厚度的影响,文中发展了城市地区的BRDF模型,并将BRDF模型用于北京地区的气溶胶光学厚度反演。
高反射率地区气溶胶光学厚度遥感反演_现状及展望_孙林

度增加; 另一方面是向下反射地表反射辐射, 使辐射亮度降低。通常情况下, 在地表反射率较
低时, 传感器接收的辐射值随气溶胶的增多而迅速增大。浓密植被法就是利用在浓密植被地
区红蓝波段的地表反射率和气溶胶光学厚度的这种关系, 反演气溶胶光学厚度的。随着地表
1 引言
大气气溶胶是指悬浮于大气中的具有一定稳定性的固体和液体微粒组成的分散体系, 它的粒径范围可以从 10-3μm 到 102μm。气溶胶在地球大气辐射收支平衡和全球气候变化中 扮演着重要的角色, 它通过两种机制对气候变化产生影响, 一方面, 气溶胶通过散射和吸收 太阳辐射以及地面辐射直接影响着地- 气系统的辐射收支平衡[1]; 另一方面, 大量的气溶胶 粒子作为云凝结核, 可以使单位体积的云粒子数量增加、云滴半径减小, 增加云的短波反射 率, 同时增加云的生命时间, 这种变化不但影响地气系统的短波辐射, 而且对长波辐射也会 产生影响[2, 3]。因此, 精确测量气溶胶, 对于研究气候变化具有重要意义。
3期
孙 林 等: 高反射率地区气溶胶光学厚度遥感反演: 现状及展望
71
服地基探测的不足, 为人们实时了解大区域范围内的气溶胶变化提供了可能。 近年来, 卫星遥感反演气溶胶光学厚度已经取得了很多的研究成果, 发展了多种气溶胶
光学厚度反演算法 , [5 ̄11] 流行的反演算法中, 针对海洋上空气溶胶光学厚度的反演方法目前 比较成熟, 已经获得了较高的精度, 取得了较好的应用效果, 如利用 NOAA/AVHRR 数据反 演海洋上的气溶胶光学厚度已经业务化[6]。在红蓝波段地表反射率较低的浓密植被地区, 气 溶 胶 的 光 学 厚 度 反 演 也 已 经 达 到 了 较 高 的 精 度[5 ̄9]。 而 对 于 干 旱 、半 干 旱 以 及 城 市 等 高 反 射 率地区, 气溶胶的光学厚度反演仍面临严峻的挑战, 主要是因为在以上地区, 地表的非均一 性使地表反射率的精确确定非常困难, 另外, 当地表反射率升高时, 气溶胶指示作用降低[5]。 研究人员为解决高反射率地区的气溶胶光学厚度反演问题, 提出了一系列的反演算法。本文 总结了对高反射率地区气溶胶光学厚度的反演成果, 分析了各方法在应用中的优势和不足。 文章最后分析了高反射率地区气溶胶光学厚度反演的发展前景。
大气参数反演之气溶胶反

06
参考文献
参考文献
气溶胶反演算法
基于卫星遥感数据和地面观测数据,通过一定的算法模型,反演出大气中气溶胶的分布 和浓度信息。
气溶胶对气候的影响
气溶胶能够吸收和散射太阳辐射,对气候变化产生重要影响。通过反演得到的气溶胶信 息有助于更好地了解气溶胶在全球气候变化中的作用。
气溶胶与空气质量的关系
气溶胶浓度的高低直接影响空气质量,反演得到的气溶胶信息可以为空气质量预报和治 理提供重要依据。
高分辨率气溶胶反演技术发展
偏振敏感技术
利用偏振敏感技术可以获取 气溶胶的更多信息,提高反 演精度,是未来气溶胶反演
技术的重要发展方向。
多角度观测技术
利用多角度观测技术可以获 取气溶胶在不同角度下的散 射特性,进而提高反演精度
。
深度学习技术
深度学习技术在图像处理和 模式识别等领域具有广泛的 应用前景,未来可以利用深 度学习技术提高气溶胶反演 的自动化和智能化水平。
气溶胶反演的数学模型
辐射传输模型
描述光在气溶胶介质中的传播过程,包括散射、吸收、再辐射等 作用。
大气辐射传输方程
基于能量守恒原理建立的方程,用于描述大气中辐射能量的传输 过程。
气溶胶反演模型
基于辐射传输模型和观测数据建立的数学模型,用于反演气溶胶 的物理和化学特性。
03
气溶胶反演的算法与实 现
优化算法
大气污染源解析
要点一
总结词
气溶胶反演在解析大气污染源方面具有独特优势,通过对 气溶胶的化学组成和来源进行分析,可以识别出不同污染 物的排放源,为污染治理提供科学依据。
要点二
详细描述
气溶胶反演技术通过分析气溶胶中不同化学成分的浓度和 分布,结合排放源清单和气象信息,能够准确识别出不同 污染物的排放源。这种技术有助于政府和环保部门制定针 对性的污染治理措施,减少污染物排放,改善空气质量。
气溶胶光学厚度的高光谱遥感反演及其环境效应

气溶胶光学厚度的高光谱遥感反演及其环境效应【摘要】:气溶胶是研究全球气候变化和大气污染的重要参数,也是进行定量遥感必须获得的参数。
本文针对人口密集、工业化程度高的城市区域范围,探索高光谱数据遥感反演气溶胶光学厚度的方法,应用中科院上海技术物理研究所自行研制的模块化成像光谱仪(OMIS),结合MODIS卫星资料和地面太阳光度计监测,试图形成“星载—机载—地面”三个高度立体遥测,实现城市气溶胶光学厚度的反演,并进一步研究其环境效应。
具体工作及结果如下:1)比较分析各种气溶胶光学厚度遥感反演方法的适用性和局限性,并介绍了太阳光度计地基遥测原理。
2)分别介绍了MODIS、OMIS和地基高光谱数据的特点及数据预处理过程、分析典型地物的光谱特征。
3)采用高反差地表法,对2002年10月7日的机载OMIS高光谱数据,进行了气溶胶光学厚度反演的尝试性试验,给出了初步的反演结果,在502-590nm波段处的气溶胶光学厚度值在0.175-0.314之间。
反演结果符合当天的空气质量状况,与能见度进行比较,以证明反演结果的正确性,说明利用高光谱、高空间分辨率的机载遥感数据可以反演城市气溶胶光学厚度。
4)进行大气辐射传输模型的模拟与分析,利用MODIS红、蓝通道数据分析地表反射率、气溶胶类型、气溶胶组份、水汽、臭氧等因素对气溶胶反演的影响;建立了表观反射率—地表反射率—气溶胶光学厚度之间的查算表,结合城市地表特点,探索基于MODIS数据的双目标对比法进行气溶胶光学厚度的反演。
5)利用地面站点能见度和卫星遥感的气溶胶光学厚度资料,建立了一个二者之间季节平均的简单关系,得到上海地区各季的气溶胶标高在春季、夏季、秋季和冬季分别为:1251m,1957m,791.7m和776.4m;并利用标高数据和气溶胶光学厚度的季节分布,反演上海地区区域能见度的季节平均分布,证实上海城区在冬春季平均能见度较差,市区中心能见度在10km以下;低能见度中心分布明显,且主要分布在杨浦、桃浦、吴淞等工业区范围。
大气气溶胶遥感反演研究进展

3/总结与展望
1. 近年来,随着高光谱分辨率的传感器的出现,使陆地气溶胶的遥感成为 可能。由于陆地地表不均一性,对太阳短波辐射的反射值依目标不同有 很大差异。目前为止还没有较好的普适的陆地气溶胶遥感算法。
0.275km×0.275km 1.1km×1.1km
AATSR 与 MISR 相关参数
2.3.1/基于AATSR的多角度算法—ATSR-DV算法
2.3.1/基于AATSR的多角度算法—ATSR-DV算法
2.3.2/基于MISR的多角度遥感
对于深海区,MISR 采用的气溶胶反演算法类似传统的暗像元法,对 于气溶胶光学厚度大的区域,算法会加入446和558nm 通道的光谱信息以 去除任何不确定的来自海洋表面短波反射辐射的影响。
大气气溶胶遥感反演研究进展
摘要
随着我国经济的快速发展,工业化和城镇化进程加速,环境承载压力不断 加大,大气污染问题日趋严重。在我国大多数地区,大气气溶胶已成为影响环 境空气质量的首要污染物。大气气溶胶不仅对全球气候变化产生影响, 而且影响 到大气环境质量和人类身体健康。目前,大气气溶胶遥感反演研究已经成为国 际研究热点之一。
2.3/多角度遥感SR 0.55,0.66,0.87,1.6,
3.7,11,12
0°,55°
MISR
0.446,0.558,0.672,0.886
0°,±26.1°,±45.6°, ±60°,±70.5°
扫描宽度
500km
360km
分辨率
1km×1km(底向) 1.5km×2km(前向)
遥感应用模型7-大气遥感

一、传统大气环境质量监测
——20世纪50年代开始大规模开展 20世纪50年代,以美国为首的发达国家,对空气中主要污染物
纳入常规监测,主要为SO2,CO, TSP,NOX,O3,总HC等6个
项目;空气监测对象由气体一种形态扩展到气体、蒸气、颗粒物3 种不同形态。 1953年后,随着大流量空气采样器的使用,开展空气监测的地 区和城市大幅增加,不少城市还划定空气质量控制区并建立一批空
征进行分析,总结大气环境质量的空间格局的特征及其形成机制。
四、大气程辐射研究
传统意义上,研究大气程辐射的主要目的是进行大气校正,即 去除传感器接收到的影响和干扰地面信息的大气影响,主要分为精 确校正和粗略校正两种方法。 精确校正需要找到每个波段像元亮度值与地物反射率的关系。 为此需要得到卫星飞行时的大气参数,以求出大气的参数:大气透 过率和大气程辐射遥感值。
由于在遥感信息中,大气污染信息叠加于多变的地面信息之上,
——20世纪80年代人们开始尝试间接的方法。 如范心坍等人根据城市热岛情况对城市大气污染进行估计。 Fujii Hisao等人根据树叶SO含量与植被指数的关系估计大气
污染,但这均是一些定性描述或者是间接结果。
——20世纪90年代以后,开始对大气环境进行遥感定量描述。
气监测站点,初步组成空气监测网;分析手段也发生重大变化,由
40年代的以化学法为主,过渡到以分光光度法为主的新时代。
——目前大气环境质量监测仍然延续定点采样的方法,包括在城市
建立固定的大气环境监测站。
——随着分析手段的日益增多,在大气常规监测中,监测的内容不 断扩大,监测的精度和范围也有所提高。 ——除了定点采样外,较为先进和准确的方法是步建立和完善的全
议上瑞典人首先提出,他们的代表做了一个《超越国境的污染大气