Matlab课后习题

合集下载

Matlab课后习题解答

Matlab课后习题解答
0.70
0.80
0.95
电阻y
15
18
19
21
22.6
23.8
26
>> x=[0.1,0.3,0.4,0.55,0.7,0.8,0.95];
y=[15,18,19,21,22.6,23.8,26];
p1=polyfit(x,y,1);
p3=polyfit(x,y,3);
p5=polyfit(x,y,5);
if x>=90
disp('优秀');
elseif x>=80
disp('良好');
elseif x>=60
disp('及格');
else
disp('不及格');
end
>> x=85
x =
85
良好
Q3:编写函数,计算
>> sum=0;
>> for i=1:50
a=1;
for j=1:i
a=a*j;
end
ans =
0
(4)
>> syms n
>> limit(sqrt(n+2)-2*sqrt(n+1)+sqrt(n),n,inf)
ans =
0
Q2:用MATLAB软件求下列函数极限:
(1)
>> syms x
>> limit((((1+x)^(1/3)-1)/x),x,0)
ans =
1/3
(4)
>> syms x
(2)
>> syms x

matlab课后习题及答案

matlab课后习题及答案

第一章 5题已知a=4.96,b=8.11,计算)ln(b a eba +-的值。

解:clear clc a=4.96; b=8.11;exp(a-b)/log(a+b) ans =0.0167 6题已知三角形的三边a=9.6,b=13.7, c=19.4,求三角形的面积。

提示:利用海伦公式area =))()((c s b s a s s ---计算,其中S=(A+B+C)/2. 解:clear clc a=9.6; b=13.7; c=19.4; s=(a+b+c)/2area=sqrt(s*(s-a)*(s-b)*(s-c)) s =21.3500 第二章 8题已知S=1+2+2^2+2^3+……+2^63,求S 的值 解:clear clc S=0;for i=0:1:63 S=S+2^i; end S S =1.8447e+019 9题分别用for 和while 循环结构编写程序,计算∑=-1001n 1n 2)(的值。

解:clear clc s=0;for n=1:100 s=s+(2*n-1); end s s =10000 clear clc n=1; s=0;while n<=100 s=s+(2*n-1); n=n+1; end s s =10000 第三章 2题在同一坐标下绘制函数x ,,2x-,2x xsin(x)在()∏∈,0x 的曲线。

解:clear clcx=0:0.2:pi; y1=x; y2=x.^2; y3=-(x.^2); y4=x.*sin(x);plot(x,y1,'-' ,x,y2,'-' ,x,y3,'-' ,x,y4,'-')0.511.522.53-10-8-6-4-202468109题用不同的线型和颜色在同一坐标内绘制曲线y1=2ex5.0 、y2=sin(2∏x )的图形。

matlab课后习题答案(附图)

matlab课后习题答案(附图)

matlab课后习题答案(附图)习题2.1画出下列常见曲线的图形y (1)⽴⽅抛物线3x命令:syms x y;ezplot('x.^(1/3)')(2)⾼斯曲线y=e^(-X^2);命令:clearsyms x y;ezplot('exp(-x*x)')(3)笛卡尔曲线命令:>> clear>> syms x y;>> a=1;>> ezplot(x^3+y^3-3*a*x*y)(4)蔓叶线命令:>> clear>> syms x y;>> a=1ezplot(y^2-(x^3)/(a-x))(5)摆线:()()tsin-=,=-by1命令:>> clear>> t=0:0.1:2*pi;>> x=t-sin(t);>>y=2*(1-cos(t)); >> plot(x,y)7螺旋线命令:>> clear >> t=0:0.1:2*pi; >> x=cos(t); >> y=sin(t); >> z=t;>>plot3(x,y,z)(8)阿基⽶德螺线命令:clear>> theta=0:0.1:2*pi;>> rho1=(theta);>> subplot(1,2,1),polar(theta,rho1)(9) 对数螺线命令:cleartheta=0:0.1:2*pi;rho1=exp(theta);subplot(1,2,1),polar(theta,rho1)(12)⼼形线命令:>> clear >> theta=0:0.1:2*pi; >> rho1=1+cos(theta); >> subplot(1,2,1),polar(theta,rho1)练习2.21. 求出下列极限值(1)nnn n3→命令:>>syms n>>limit((n^3+3^n)^(1/n)) ans = 3(2))121(lim n n n n ++-+∞→命令:>>syms n>>limit((n+2)^(1/2)-2*(n+1)^(1/2)+n^(1/2),n,inf) ans = 0(3)x x x 2cot lim 0→命令:syms x ;>> limit(x*cot(2*x),x,0) ans = 1/2 (4))(coslimcm xx ∞→命令:syms x m ; limit((cos(m/x))^x,x,inf) ans = 1(5))111(lim 1--→exx x命令:syms x>> limit(1/x-1/(exp(x)-1),x,1) ans =(exp(1)-2)/(exp(1)-1) (6))(2lim x x xx -+∞>> limit((x^2+x)^(1/2)-x,x,inf)ans = 1/2练习2.41. 求下列不定积分,并⽤diff 验证:(1)+x dxcos 1>>Clear >> syms x y >> y=1/(1+cos(x)); >> f=int(y,x) f =tan(1/2*x) >> y=tan(1/2*x); >> yx=diff(y ,x); >> y1=simple(yx) y1 =1/2+1/2*tan(1/2*x)^2 (2)+exdx1clear syms x yy=1/(1+exp(x));f=int(y,x) f =-log(1+exp(x))+log(exp(x)) syms x yy=-log(1+exp(x))+log(exp(x)); yx=diff(y,x); y1=simple(yx) y1 = 1/(1+exp(x)) (3)dx x x ?sin 2syms x yy=x*sin(x)^2; >> f=int(y,x) f =x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2 clearsyms x y y=x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2; yx=diff(y,x); >> y1=simple(yx) y1 = x*sin(x)^2 (4)xdx ?sec3syms x y y=sec(x)^3;f=int(y,x) f =1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x)) clear syms x yy=1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x)); yx=diff(y,x); y1=simple(yx) y1 =1/cos(x)^32. 求下列积分的数值解 1)dx x-10clearsyms xy=int(x^(-x),x,0,1) y =int(x^(-x),x = 0 .. 1) vpa(y,10) ans =1.291285997 2)xdx e x cos3202?πclearsyms xy=int(exp(2*x)*cos(x)^3,x, clear syms xy=int((1/(2*pi)^(1/2))*exp(-x^2/2),x,0,1) y =7186705221432913/36028797018963968*erf(1/2*2^(1/2))*2^(1/2)*pi^(1/0,2*pi) y =22/65*exp(pi)^4-22/65vpa(ans,10)(3)dx xe21221-π>> clear >> syms x>> y=int(1/(2*pi)^(1/2)*exp(-x^2/2),0,1); >> vpa(y,14) ans =.341344746068552(4)>> clear >> syms x>> y=int(x*log(x^4)*asin(1/x^2),1,3); Warning: Explicit integral could not be found. > In sym.int at 58 >> vpa(y,14) ans = 2.45977212823752(5) >> clear >> syms x1判断下列级数的收敛性,若收敛,求出其收敛值。

matlab课后习题答案(1-9章)

matlab课后习题答案(1-9章)

1 数字1.5e2,1.5e3 中的哪个与1500相同吗?1.5e32 请指出如下5个变量名中,哪些是合法的?abcd-2xyz_33chan a 变量ABCDefgh 2、5是合法的。

3 在MATLAB 环境中,比1大的最小数是多少? 1+eps4 设 a = -8 , 运行以下三条指令,问运行结果相同吗?为什么?w1=a^(2/3) w2=(a^2)^(1/3) w3=(a^(1/3))^2w1 = -2.0000 + 3.4641i ;w2 = 4.0000 ;w3 =-2.0000 + 3.4641i 5 指令clear, clf, clc 各有什么用处?clear 清除工作空间中所有的变量。

clf 清除当前图形。

clc 清除命令窗口中所有显示。

第二章1 说出以下四条指令产生的结果各属于哪种数据类型,是“双精度”对象,还是“符号”符号对象?3/7+0.1双; sym(3/7+0.1)符; sym('3/7+0.1') 符;; vpa(sym(3/7+0.1)) 符;2 在不加专门指定的情况下,以下符号表达式中的哪一个变量被认为是自由符号变量. sym('sin(w*t)'),sym('a*exp(-X)'),sym('z*exp(j*th)') symvar(sym('sin(w*t)'),1) w a z3 (1)试写出求三阶方程05.443=-x 正实根的程序。

注意:只要正实根,不要出现其他根。

(2)试求二阶方程022=+-a ax x 在0>a 时的根。

(1)reset(symengine)syms x positive solve(x^3-44.5) ans =(2^(2/3)*89^(1/3))/2(2)求五阶方程022=+-a ax x 的实根 syms a positive %注意:关于x 的假设没有去除 solve(x^2-a*x+a^2)Warning: Explicit solution could not be found. > In solve at 83 ans =[ empty sym ]syms x clear syms a positivesolve(x^2-a*x+a^2) ans =a/2 + (3^(1/2)*a*i)/2 a/2 - (3^(1/2)*a*i)/24 观察一个数(在此用@记述)在以下四条不同指令作用下的异同。

MATLAB课后习题

MATLAB课后习题

5、利用rand函数产生(0,1)间的均匀分布的10*10随机矩阵A,然后统计A中大于等于的元素的个数。

解:A=rand(10);B=A >= ;C=sum(B);count=sum(C)运行结果(每次运行结果是不同的,仅作参考):count=326、利用randn函数产生均值为0,方差为1的10*10随机矩阵A,然后统计A中大于且小于的元素的个数。

%解:A=randn(10);B=(A<&(A>;C=sum(sum(B))运行结果(每次运行结果是不同的,仅作参考):C=481、解:if and(a<1,b<=语句1;elseif and(a<1,b>`语句2;elseif and(a>=1,b<=语句3;else语句4;2、有一矩阵A,找出矩阵中值等于1的元素,并将它们重新排列成列向量B。

解:A=2*rand(4);k=find(A<=1);¥A(k)=[];%删除下标为k的元素B=A'运行结果(每次运行结果是不同的,仅作参考)B =)3、在一测量矩阵A(100*3)中,存在有奇异值(假设大于100的置认为是奇异值),编程实现删去奇异值所在的行。

解:A=120*randn(10,3);[i,j]=find(A>100);A(i,:)=[] %删去存在奇异值的行【4、在给定的100*100矩阵中,删去整行为0的行,删去整列为0的列。

解:A=diag([1 2 3 4],1)B=any(A)[i,j]=find(B==0)A(:,i)=[] %删除全为0的列B=any(A')[i,j]=find(B==0)A(j,:)=[] %删除全为0的行—运行结果:初始值:A =0 1 0 0 00 0 2 0 00 0 0 3 00 0 0 0 40 0 0 0 0操作后:A =1 0 0 0;0 2 0 00 0 3 00 0 0 41、将窗口分割成四格,分别绘制正弦、余弦、正切和余切函数曲线,并加上适当的标注。

完整word版,Matlab课后习题

完整word版,Matlab课后习题

习题 11. 执行下列指令,观察其运算结果, 理解其意义: (1) [1 2;3 4]+10-2i(2) [1 2; 3 4].*[0.1 0.2; 0.3 0.4] (3) [1 2; 3 4].\[20 10;9 2] (4) [1 2; 3 4].^2 (5) exp([1 2; 3 4]) (6)log([1 10 100]) (7)prod([1 2;3 4])(8)[a,b]=min([10 20;30 40]) (9)abs([1 2;3 4]-pi)(10) [1 2;3 4]>=[4,3;2 1](11)find([10 20;30 40]>=[40,30;20 10])(12) [a,b]=find([10 20;30 40]>=[40,30;20 10]) (提示:a 为行号,b 为列号) (13) all([1 2;3 4]>1) (14) any([1 2;3 4]>1) (15) linspace(3,4,5) (16) A=[1 2;3 4];A(:,2)2. 执行下列指令,观察其运算结果、变量类型和字节数,理解其意义: (1) clear; a=1,b=num2str(a),c=a>0, a= =b, a= =c, b= =c (2) clear; fun='abs(x)',x=-2,eval(fun),double(fun)3. 本金K 以每年n 次,每次p %的增值率(n 与p 的乘积为每年增值额的百分比)增加,当增加到rK 时所花费的时间为)01.01ln(ln p n rT +=(单位:年)用MA TLAB 表达式写出该公式并用下列数据计算:r =2, p =0.5, n =12.4.已知函数f (x )=x 4-2x 在(-2, 2)内有两个根。

取步长h =0.05, 通过计算函数值求得函数的最小值点和两个根的近似解。

matlab课后习题及答案详解

matlab课后习题及答案详解

matlab课后习题及答案详解第1章练习题1.安装matlab时,在选择组件窗口中哪些部分必须勾选,没有勾选的部分以后如何补安装?在安装matlab时,安装内容由选择组件窗口中个复选框是否被勾选来决定,可以根据自己的需要选择安装内容,但基本平台(即matlab选项)必须安装。

第一次安装没有选择的内容在补安装时只需按照安装的过程进行,只是在选择组件时只勾选要补装的组件或工具箱即可。

2.matlab操作方式桌面存有几个窗口?如何并使某个窗口瓦解桌面沦为单一制窗口?又如何将瓦解过来的窗口再次置放至桌面上?与其他计算机语言相比较,matlab语言注重的特点就是什么?matlab系统由那些部分共同组成?在matlab操作桌面上有五个窗口,在每个窗口的右上角有两个小按钮,一个是关闭窗口的close按钮,一个是可以使窗口成为独立窗口的undock按钮,点击undock按钮就可以使该窗口脱离桌面成为独立窗口,在独立窗口的view菜单中选择dock……菜单项就可以将独立的窗口重新防止的桌面上。

matlab具备功能强大、使用方便、输出简便、库函数多样、开放性弱等特点。

matlab系统主要由开发环境、matlab数学函数库、matlab语言、图形功能和应用程序接口五个部分组成。

3.如何设置当前目录和搜寻路径,在当前目录上的文件和在搜寻路径上的文件存有什么区别?命令历史窗口除了可以观测前面键入的命令外,除了什么用途?当前目录可以在当前目录浏览器窗口左上方的输入栏中设置,搜索路径可以通过选择操作桌面的file菜单中的setpath菜单项来完成。

在没有特别说明的情况下,只有当前目录和搜索路径上的函数和文件能够被matlab运行和调用,如果在当前目录上有与搜索路径上相同文件名的文件时则优先执行当前目录上的文件,如果没有特别说明,数据文件将存储在当前目录上。

命令历史窗口除了用作查阅以前键入的命令外,还可以轻易执行命令历史窗口中选取的内容、将选取的内容拷贝到剪贴板中、将选取内容轻易拷贝到m文件中。

MATLAB-实用教程-课后习题标准答案

MATLAB-实用教程-课后习题标准答案

MATLAB-实用教程-课后习题标准答案第二章1.计算复数3+4i与5-6i的乘积。

a=3+4ib=5-6ic=a*b2.构建结构体Students,属性包含Name、age和Email,数据包括{’Zhang’,18,[‘’,’’]}、{’Wang’,21,[]}和{’Li’,[],[]},构建后读取所有Name属性值,并且修改’Zhang’的Age 属性值为19。

Students(1).Age=18Students(1).Email='',''Students(2).Name='Wang'Students(2).Age=21Students(2).Email=[]Students(3).Name='Li'Students(3).Age=[]Students(3).Email=[]/doc/805835364.html,Student(1).Age(1)=19Student.Age3.用满矩阵和稀疏矩阵存储方式分别构造下属矩阵:A=[0 1 0 0 0;1 0 0 0 0;0 0 0 0 0;0 0 0 1 0]A=[0 1 0 0 0;1 0 0 0 0;0 0 0 0 0;0 0 0 1 0]S=sparse(A)S=sparse([2,1,4],[1,2,4],[1,1,1],4,5)4.采用向量构造符得到向量[1,5,9....,41].A=1:4:415.按水平和竖直方向分别合并下述两个矩阵:A=[1 0 0;1 1 0;0 01],B=[2 3 4;5 6 7;8 9 10]A=[1 0 0;1 1 0;0 0 1]B=[2 3 4;5 6 7;8 9 10]C=[A B]D=[A;B]6.分别删除第五题两个结果的第2行。

A=[1 0 0;1 1 0;0 0 1]B=[2 3 4;5 6 7;8 9 10]C=[A B]D=[A;B]C(2,:)=[]D(2,:)=[]7.分别将第5题两个结果的第2行最后3列的数值改为[11 12 13]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题 11. 执行下列指令,观察其运算结果, 理解其意义: (1) [1 2;3 4]+10-2i(2) [1 2; 3 4].*[0.1 0.2; 0.3 0.4] (3) [1 2; 3 4].\[20 10;9 2] (4) [1 2; 3 4].^2 (5) exp([1 2; 3 4]) (6)log([1 10 100]) (7)prod([1 2;3 4])(8)[a,b]=min([10 20;30 40]) (9)abs([1 2;3 4]-pi)(10) [1 2;3 4]>=[4,3;2 1](11)find([10 20;30 40]>=[40,30;20 10])(12) [a,b]=find([10 20;30 40]>=[40,30;20 10]) (提示:a 为行号,b 为列号) (13) all([1 2;3 4]>1) (14) any([1 2;3 4]>1) (15) linspace(3,4,5) (16) A=[1 2;3 4];A(:,2)2. 执行下列指令,观察其运算结果、变量类型和字节数,理解其意义: (1) clear; a=1,b=num2str(a),c=a>0, a= =b, a= =c, b= =c (2) clear; fun='abs(x)',x=-2,eval(fun),double(fun)3. 本金K 以每年n 次,每次p %的增值率(n 与p 的乘积为每年增值额的百分比)增加,当增加到rK 时所花费的时间为)01.01ln(ln p n rT +=(单位:年)用MA TLAB 表达式写出该公式并用下列数据计算:r =2, p =0.5, n =12.4.已知函数f (x )=x 4-2x 在(-2, 2)内有两个根。

取步长h =0.05, 通过计算函数值求得函数的最小值点和两个根的近似解。

(提示:求近似根等价于求函数绝对值的最小值点)∆5. (1)用z=magic(10)得到10阶魔方矩阵; (2) 求z 的各列元素之和;(3) 求z 的对角线元素之和(提示:先用diag(z)提取z 的对角线);(4) 将z的第二列除以3;(5) 将z的第3行元素加到第8行。

6. 先不用MA TLAB判断下面语句将显示什么结果?size(B)又得出什么结果?B1={1:9;' David Beckham '};B2={180:-10:100; [100,80,75,;77,60,92;67 28 90;100 89 78]};B=[B1, B2];B{1,2}(8)D=cell2struct(B,{'f1','f2'},2);[a,b]=D.f1然后用MA TLAB验证你的判断。

进一步,察看变量类型和字节数,并用Workspace工具栏显示B和D的具体内容。

习题 21. 设x 为一个长度为n 的数组,编程求下列均值和标准差][11,12121x n x n s x n x ni i ni i --==∑∑==, n >1 2. 求满足∑=+mn n 0)1ln(>100的最小m 值。

3. 用循环语句形成Fibonacci 数列 F 1 = F 2 =1, F k = F k -1 + F k -2 , k =3,4,…。

并验证极限2511+→-k k F F . (提示:计算至两边误差小于精度 10-8) 4. 分别用for 和while 循环结构编写程序,求出∑==610123i iK 。

并考虑一种避免循环语句的程序设计,比较不同算法的运行时间。

6. 作出下列函数图象(i) 曲线y = x 2 sin (x 2 - x - 2), -2 ≤ x ≤ 2 (要求分别使用plot 或fplot 完成) (ii) 椭圆x 2/4 + y 2/9 = 1(iii) 抛物面z = x 2 + y 2 , ⎪x ⎢<3, ⎪y ⎢<3(iv) 曲面 z =x 4+3x 2+y 2-2x -2y -2x 2y +6, |x |<3, -3<y <13 (v) 空间曲线x =sin t , y =cos t , z =cos(2t ), 0<t <2π(vi) 半球面 x=2sin φcos θ, y=2sin φsin θ, z=2cos φ, 0≤θ≤3600, 0≤φ≤900 (vii) 三条曲线合成图y 1=sin x , y 2=sin x sin(10x ), y 3= -sin x , 0<x <π7.作下列分段函数图⎪⎩⎪⎨⎧-<-≤>=1.11.11.1||1.11.1x x x x y8. 查询trapz 的功能和用法:查找trapz.m 文件所在目录,查看trapz.m 的程序结构,查看trapz.m 文件所在目录还有哪些文件?∆9. 用MA TLAB 函数表示下列函数,并作图。

⎪⎩⎪⎨⎧≤+--≤-----=-1 )5.175.375.0exp(5457.01<1- )6exp(7575.01> )5.175.375.0exp(5457.0),(222222x+y x x y x+y x y x+y x x y y x p∆10. 已知连续时间Lyapunov 方程为AX +XA’= -C其中A =⎪⎪⎪⎭⎫⎝⎛087654321, C =⎪⎪⎪⎭⎫ ⎝⎛--------165622562452252. 试通过lookfor 和help 的帮助用MA TLAB 求解。

习题 31. 设a=(1,2,3),b=(2,4,3), 分别计算a./b, a.\b, a/b, a\b, 分析结果的意义。

2. 用矩阵除法解下列线性方程组,并判断解的意义(1)411326153921123---⎛⎝⎫⎭⎪⎪⎪⎛⎝⎫⎭⎪⎪⎪=-⎛⎝⎫⎭⎪⎪⎪xxx(2)433326153121123---⎛⎝⎫⎭⎪⎪⎪⎛⎝⎫⎭⎪⎪⎪=--⎛⎝⎫⎭⎪⎪⎪xxx(3)41321511112-⎛⎝⎫⎭⎪⎪⎪⎛⎝⎫⎭⎪=⎛⎝⎫⎭⎪⎪⎪xx(4)2111121111211231234--⎛⎝⎫⎭⎪⎪⎪⎛⎝⎫⎭⎪⎪⎪⎪=⎛⎝⎫⎭⎪⎪⎪xxxx3. 求第2题第(4)小题的通解。

4. (人口流动趋势)对城乡人口流动作年度调查,发现有一个稳定的朝向城镇流动的趋势,每年农村居民的5%移居城镇而城镇居民的1%迁出,现在总人口的20%位于城镇。

假如城乡总人口保持不变,并且人口流动的这种趋势继续下去,那么(1)一年以后住在城镇人口所占比例是多少?两年以后呢?十年以后呢?(2)很多年以后呢?(3)如果现在总人口70%位于城镇,很多年以后城镇人口所占比例是多少?(4)计算转移矩阵的最大特征值及对应的特征向量,与问题(2)(3)有何关系?5. (经济预测)在某经济年度内,各经济部门的投入产出表如下表3.5(单位:亿元)假设某经济年度工业,农业及第三产业的最后需求均为17亿元,预测该经济年度工业,农业及第三产业的产出(提示:对于一个特定的经济系统而言,直接消耗矩阵和Leontief 矩阵可视作不变)。

6. 求下列矩阵的行列式、逆、特征值和特征向量(1)⎪⎪⎪⎭⎫⎝⎛---351623114 (2)⎪⎪⎪⎭⎫⎝⎛---021120111 (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛1097591086781075675 (4) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛5165165165 阶方阵n , n 分别为5, 50, 和500.7. 判断第6题各小题是否可以相似对角化,如果是,求出对角矩阵和对应的相似变换矩阵。

8. 判断第6题各小题是否为正定矩阵。

9. 求下列向量组的秩和它的一个最大线性无关组,并将其余向量用该最大无关组线性表示。

α1= (4, -3, 1,3), α2= (2, -1, 3, 5), α3= (1, -1, -1, -1), α4= (3, -2, 3, 4), α5= (7, -6, -7, 0)10.(二次型标准化)用正交变换化下列二次型为标准形 f (x 1, x 2, x 3) = x 12 - 4 x 1 x 2 + 4 x 1 x 3 -2 x 22 +8 x 2 x 3 -2 x 32∆11.(电路网)图3.1是连接三个电压已知终端的电路网,求a, b, c 点的电压。

∆12. (Hamilton-Carley 定理)就矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛087654321验证下列性质 (i) 设λ1, λ2, …, λn 为n 阶方阵A 的特征值,则λii n=∑1=aiii n=∑1(A 的迹),λii n=∏1= (-1)n ⎪A ⎢;(ii) 设f (x )为A 的特征多项式, 则f (A ) = 0。

习题 41 求下列多项式的所有根, 并进行验算。

(1) x 2+x +1; (2) 3x 5-4x 3+2x -1; (3) 5x 23-6x 7+8x 6-5x 2;(4) (2x +3)3-4 (提示:先用conv 展开)2 求方程05.01)1ln(22=---+-x x x x x 的正根。

3 用MATLAB 指令求解第一章习题4。

4 (超越方程) 超越方程的解有时是很复杂的,作出f (x ) = x sin (1/x )在[ - 0.1, 0.1]内的图,可见在x = 0附近f (x ) = 0有无穷多个解,并设法求出它们的近似解,使计算结果误差不超过0.01。

5 求解下列非线性方程组在原点附近的根⎪⎩⎪⎨⎧=---=--=++016216020236436922322222z y x x z y x z y x6 求解下列方程组在区域 0<α, β<1内的解⎩⎨⎧-=+=βαββααsin 2.0cos 7.0cos 2.0sin 7.07 (椭园的交点) 两个椭圆可能具有0~4个交点,求下列两个椭园的所有交点坐标(x - 2) 2 + (y - 3 + 2x ) 2 = 52 (x -3)2 + (y /3) 2 = 48 作出下列函数图形,观察所有的局部极大, 局部极小和全局最大, 全局最小值点的粗略位置; 并用MATLAB 函数fminbnd 和fminsearch 求各极值点的确切位置 (1) f(x )=x 2sin(x 2-x -2), [-2,2]; (2) f(x )=3x 5-20x 3+10, [-3, 3];(3) f(x )=⎪ x 3-x 2-x -2⎢ [0, 3].9 考虑函数 f (x,y )= y 3/9+3x 2y +9x 2+y 2+xy +9 (1)作出f (x,y )在-2<x <1, -7<y <1的图,观察极值点的位置; (2) 用MATLAB 函数fminsearch 求极值点和极值。

相关文档
最新文档