MATlab课后习题答案周开利
MATLAB基础及其应用教程-周开利-邓春晖课后答案,第三章

第三章习题答案1.代码:a=[1 -1 -1]; roots(a)结果:ans =-0.61801.61802.代码:x=0:10;y=sin(x);xi=0:0.15:10; %选取了67个插值点,要增加n,只需减小步长即可y0=sin(xi); %算精确值y1=interp1(x,y,xi); %分段线性插值y2=interp1(x,y,xi,'spline'); %三次样条插值plot(xi,y0,'o',xi,y1,xi,y2,'-.')legend('精确值','分段线性插值','三次样条插值')结果:3.理论公式为:p=1.0332*exp(-(x+500)/7756),所以拟合模型可写为:p=a*exp(-k*x+b) 式中,a, k, b为常数,两边同时取自然对数,得:log(p)=-k*x+b+log(a)问题转化为线性模型。
注意:自然对数是log(x), 以10为底的对数是log10(x)代码:clear;x=[0 300 600 1000 1500 2000];p=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491];lnp=log(p); %转化为 p 的自然对数值,模型转化为线性模型pk=polyfit(x,lnp,1); % 线性拟合,得到模型的斜率pk(1)和常数pk(2) 模型为: p=exp(pk(1)*x)*exp(pk(2))xi=0:50:2000;p0=1.0332*exp(-(xi+500)/7756); %理论值p1=exp(pk(1)*xi+pk(2)); %拟合模型值p2=interp1(x,p,xi,'spline'); %三次样条插值plot(x,p,'p',xi,p0,xi,p1,'--',xi,p2,'-.');legend('测量值','理论值','拟合值','三次样条值');format long % 数据显示格式为15位有效数字x2=0:200:2000 % 取10个点,比较差异pp1=1.0332*exp(-(x2+500)/7756) %理论值pp2=exp(pk(1)*x2+pk(2)) % 拟合值pp3=interp1(x,p,x2,'spline') % 样条插值err1=sum(abs(pp2-pp1).^2) % 拟合值的误差绝对值总和err2=sum(abs(pp3-pp1).^2) % 样条值的误差绝对值总和结果:0200400600800100012001400160018002000从图像上,都符合得很好,但很难看出差异。
matlab课后习题答案 (附图)

习题2.1画出下列常见曲线的图形y (1)立方抛物线3x 命令:syms x y;ezplot('x.^(1/3)')(2)高斯曲线y=e^(-X^2);命令:clearsyms x y;ezplot('exp(-x*x)')(3)笛卡尔曲线命令:>> clear>> syms x y;>> a=1;>> ezplot(x^3+y^3-3*a*x*y)(4)蔓叶线命令:>> clear>> syms x y;>> a=1 ezplot(y^2-(x^3)/(a-x))(5)摆线:()()t b y t t a x cos 1,sin -=-=命令:>> clear>> t=0:0.1:2*pi;>> x=t-sin(t);>>y=2*(1-cos(t)); >> plot(x,y)7螺旋线命令:>> clear >> t=0:0.1:2*pi; >> x=cos(t); >> y=sin(t);>> z=t;>>plot3(x,y,z) (8)阿基米德螺线>> theta=0:0.1:2*pi;>> rho1=(theta);>> subplot(1,2,1),polar(theta,rho1)(9) 对数螺线命令:cleartheta=0:0.1:2*pi;rho1=exp(theta);subplot(1,2,1),polar(theta,rho1) (12)心形线>> theta=0:0.1:2*pi;>> rho1=1+cos(theta);>> subplot(1,2,1),polar(theta,rho1)练习2.21. 求出下列极限值(1)nn n n 3lim 3+∞→命令:>>syms n>>limit((n^3+3^n)^(1/n))ans =3(2))121(lim n n n n ++-+∞→命令:>>syms n>>limit((n+2)^(1/2)-2*(n+1)^(1/2)+n^(1/2),n,inf)ans =(3)x x x 2cot lim 0→命令:syms x ;>> limit(x*cot(2*x),x,0)ans =1/2(4))(cos lim c m xx ∞→ 命令:syms x m ;limit((cos(m/x))^x,x,inf)ans =1(5))111(lim 1--→e x x x 命令:syms x>> limit(1/x-1/(exp(x)-1),x,1)ans =(exp(1)-2)/(exp(1)-1)(6))(2lim x x x x -+∞→命令:syms x>> limit((x^2+x)^(1/2)-x,x,inf)ans =1/2练习2.41. 求下列不定积分,并用diff 验证:(1)⎰+xdx cos 1 >>Clear>> syms x y>> y=1/(1+cos(x));>> f=int(y,x)f =tan(1/2*x)>> y=tan(1/2*x);>> yx=diff(y,x);>> y1=simple(yx)y1 =1/2+1/2*tan(1/2*x)^2 (2)⎰+e x dx 1clearsyms x yy=1/(1+exp(x));f=int(y,x)f =-log(1+exp(x))+log(exp(x))syms x yy=-log(1+exp(x))+log(exp(x));yx=diff(y,x);y1=simple(yx)y1 =1/(1+exp(x))(3)dx x x ⎰sin 2syms x yy=x*sin(x)^2;>> f=int(y,x)f =x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2clearsyms x y y=x*(-1/2*cos(x)*sin(x)+1/2*x)-1/4*cos(x)^2-1/4*x^2;yx=diff(y,x);>> y1=simple(yx)y1 =x*sin(x)^2(4) xdx ⎰sec 3syms x yy=sec(x)^3;f=int(y,x)f =1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x))clearsyms x yy=1/2/cos(x)^2*sin(x)+1/2*log(sec(x)+tan(x));yx=diff(y,x);y1=simple(yx)y1 =1/cos(x)^32. 求下列积分的数值解1)dx x x ⎰-10clearsyms xy=int(x^(-x),x,0,1)y =int(x^(-x),x = 0 .. 1)vpa(y,10)ans =1.2912859972)xdx e x cos 3202⎰πclearsyms xy=int(exp(2*x)*cos(x)^3,x, clearsyms xy=int((1/(2*pi)^(1/2))*exp(-x^2/2),x,0,1)y =7186705221432913/36028797018963968*erf(1/2*2^(1/2))*2^(1/2)*pi^(1/0,2*pi) y =22/65*exp(pi)^4-22/65vpa(ans,10)(3) dx x e 210221-⎰π>> clear>> syms x>> y=int(1/(2*pi)^(1/2)*exp(-x^2/2),0,1);>> vpa(y,14)ans =.341344746068552(4)>> clear>> syms x>> y=int(x*log(x^4)*asin(1/x^2),1,3);Warning: Explicit integral could not be found.> In sym.int at 58>> vpa(y,14)ans =2.45977212823752(5)>> clear>> syms x>> y=int(1/(2*pi)^(1/2)*exp(-x^2/2),-inf,inf);>> vpa(y,14)ans =.99999999999999练习2.51判断下列级数的收敛性,若收敛,求出其收敛值。
matlab课后习题解答第二章

matlab课后习题解答第⼆章第2章符号运算习题2及解答1 说出以下四条指令产⽣的结果各属于哪种数据类型,是“双精度”对象,还是“符号”符号对象3/7+; sym(3/7+; sym('3/7+'); vpa(sym(3/7+)〖⽬的〗不能从显⽰形式判断数据类型,⽽必须依靠class指令。
〖解答〗c1=3/7+c2=sym(3/7+c3=sym('3/7+')c4=vpa(sym(3/7+)Cs1=class(c1)Cs2=class(c2)Cs3=class(c3)Cs4=class(c4)c1 =c2 =37/70c3 =c4 =Cs1 =doubleCs2 =symCs3 =symCs4 =sym2 在不加专门指定的情况下,以下符号表达式中的哪⼀个变量被认为是⾃由符号变量.sym('sin(w*t)'),sym('a*exp(-X)'),sym('z*exp(j*th)')〖⽬的〗理解⾃由符号变量的确认规则。
〖解答〗symvar(sym('sin(w*t)'),1)ans =wsymvar(sym('a*exp(-X)'),1)ans = asymvar(sym('z*exp(j*th)'),1) ans = z5求符号矩阵=333231232221131211a a a a a a a a a A 的⾏列式值和逆,所得结果应采⽤“⼦表达式置换”简洁化。
〖⽬的〗理解subexpr 指令。
〖解答〗A=sym('[a11 a12 a13;a21 a22 a23;a31 a32 a33]')DA=det(A) IA=inv(A);[IAs,d]=subexpr(IA,d) A =[ a11, a12, a13] [ a21, a22, a23] [ a31, a32, a33] DA =a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31 IAs =[ d*(a22*a33 - a23*a32), -d*(a12*a33 - a13*a32), d*(a12*a23 - a13*a22)] [ -d*(a21*a33 - a23*a31), d*(a11*a33 - a13*a31), -d* (a11*a23 - a13*a21)] [ d*(a21*a32 - a22*a31), -d*(a11*a32 - a12*a31), d*(a11*a22 - a12*a21)] d =1/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)8(1)通过符号计算求t t y sin )(=的导数dtdy。
(完整版)MATLAB)课后实验答案[1]
![(完整版)MATLAB)课后实验答案[1]](https://img.taocdn.com/s3/m/306ff29b690203d8ce2f0066f5335a8102d266cb.png)
(完整版)MATLAB)课后实验答案[1]实验⼀ MATLAB 运算基础1. 先求下列表达式的值,然后显⽰MATLAB ⼯作空间的使⽤情况并保存全部变量。
(1) 0122sin 851z e =+(2) 21ln(2z x =,其中2120.455i x +??=?- (3) 0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e az a a --+=++=--L (4) 2242011122123t t z t t t t t ?≤=-≤,其中t =0:0.5:2.5 解:4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建⽴⼀个字符串向量,删除其中的⼤写字母。
解:(1) 结果:(2). 建⽴⼀个字符串向量例如:ch='ABC123d4e56Fg9';则要求结果是:实验⼆ MATLAB 矩阵分析与处理1. 设有分块矩阵33322322E R A O S=?,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对⾓阵,试通过数值计算验证2 2E R RS A O S +??=。
解: M ⽂件如下;5. 下⾯是⼀个线性⽅程组:1231112340.951110.673450.52111456x x x ??=???(1) 求⽅程的解。
(2) 将⽅程右边向量元素b 3改为0.53再求解,并⽐较b 3的变化和解的相对变化。
(3) 计算系数矩阵A 的条件数并分析结论。
解: M ⽂件如下:123d4e56g9实验三选择结构程序设计1. 求分段函数的值。
2226035605231x x x x y x x x x x x x ?+-<≠-?=-+≤<≠≠??--?且且及其他⽤if 语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y 值。
解:M ⽂件如下:2. 输⼊⼀个百分制成绩,要求输出成绩等级A、B、C、D、E。
MATLAB基础及其应用教程周开利邓春晖课后答案

第三章习题及参考答案解答:>> p=[1 -1 -1];>> roots(p)ans =-0.61801.6180解答:取n=5,m=61>> x=linspace(0,2*pi,5); y=sin(x);>> xi=linspace(0,2*pi,61);>> y0=sin(xi);>> y1=interp1(x,y,xi);>> y2=interp1(x,y,xi,'spline');>> plot(xi,y0,'o',xi,y1,xi,y2,'-.');>> subplot(2,1,1); plot(xi,y1-y0);grid on >> subplot(2,1,2); plot(xi,y2-y0);grid on分段线性和三次样条插值方法与精确值之差取n=11,m=61>> x=linspace(0,2*pi,11); y=sin(x);>> xi=linspace(0,2*pi,61);>> y0=sin(xi);>> y1=interp1(x,y,xi);>> y2=interp1(x,y,xi,'spline');>> plot(xi,y0,'o',xi,y1,xi,y2,'-.');>> subplot(2,1,1); plot(xi,y1-y0);grid on>> subplot(2,1,2); plot(xi,y2-y0);grid on分段线性和三次样条插值方法与精确值之差解答:>> x=[0,300,600,1000,1500,2000];>> y=[0.9689,0.9322,0.8969,0.8519,0.7989,0.7491]; >> xi=0:100:2000;>> y0=1.0332*exp(-(xi+500)/7756);>> y1=interp1(x,y,xi,'spline');>> p3=polyfit(x,y,3);>> y3=polyval(p3,xi);>> subplot(2,1,1);plot(xi,y0,'o',xi,y1,xi,y3,'-.'); >> subplot(2,1,2);plot(xi,y1-y0,xi,y3-y0);grid on插值和拟合方法相比较,都合理,误差也相近。
MATLAB基础及其应用教程周开利邓春晖课后答案

第三章习题及参考答案解答:>> p=[1 -1 -1];>> roots(p)ans =-0.61801.6180解答:取n=5,m=61>> x=linspace(0,2*pi,5); y=sin(x);>> xi=linspace(0,2*pi,61);>> y0=sin(xi);>> y1=interp1(x,y,xi);>> y2=interp1(x,y,xi,'spline');>> plot(xi,y0,'o',xi,y1,xi,y2,'-.');>> subplot(2,1,1); plot(xi,y1-y0);grid on>> subplot(2,1,2); plot(xi,y2-y0);grid on分段线性和三次样条插值方法与精确值之差取n=11,m=61>> x=linspace(0,2*pi,11); y=sin(x);>> xi=linspace(0,2*pi,61);>> y0=sin(xi);>> y1=interp1(x,y,xi);>> y2=interp1(x,y,xi,'spline');>> plot(xi,y0,'o',xi,y1,xi,y2,'-.');>> subplot(2,1,1); plot(xi,y1-y0);grid on>> subplot(2,1,2); plot(xi,y2-y0);grid on分段线性和三次样条插值方法与精确值之差解答:>> x=[0,300,600,1000,1500,2000];>> y=[0.9689,0.9322,0.8969,0.8519,0.7989,0.7491]; >> xi=0:100:2000;>> y0=1.0332*exp(-(xi+500)/7756);>> y1=interp1(x,y,xi,'spline');>> p3=polyfit(x,y,3);>> y3=polyval(p3,xi);>> subplot(2,1,1);plot(xi,y0,'o',xi,y1,xi,y3,'-.');>> subplot(2,1,2);plot(xi,y1-y0,xi,y3-y0);grid on插值和拟合方法相比较,都合理,误差也相近。
matlab课后习题答案

第2章 MATLAB 矩阵运算基础2.1 在MA TLAB 中如何建立矩阵⎥⎦⎤⎢⎣⎡194375,并将其赋予变量a ? >> a=[5 7 3;4 9 1]2.5 计算矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡897473535与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡638976242之和。
>> a=[5 3 5;3 7 4;7 9 8]; >> b=[2 4 2;6 7 9;8 3 6];>> a+bans =7 7 7 9 14 13 15 12 142.6 求⎥⎦⎤⎢⎣⎡+-+-+-+-++=i 44i 93i 49i 67i 23i 57i 41i 72i 53i 84x 的共轭转置。
>> x=[4+8i 3+5i 2-7i 1+4i 7-5i;3+2i 7-6i 9+4i 3-9i 4+4i]; >> x’ans =4.0000 - 8.0000i 3.0000 - 2.0000i 3.0000 -5.0000i 7.0000 +6.0000i 2.0000 +7.0000i 9.0000 - 4.0000i 1.0000 - 4.0000i 3.0000 + 9.0000i 7.0000 + 5.0000i 4.0000 - 4.0000i2.7 计算⎥⎦⎤⎢⎣⎡=572396a 与⎥⎦⎤⎢⎣⎡=864142b 的数组乘积。
>> a=[6 9 3;2 7 5];>> b=[2 4 1;4 6 8]; >> a.*b ans =12 36 3 8 42 402.9 对于B AX =,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,求解X 。
>> A=[4 9 2;7 6 4;3 5 7];>> B=[37 26 28]’;-0.5118 4.0427 1.33182.10 已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a ,分别计算a 的数组平方和矩阵平方,并观察其结果。
matlab课后习题答案

习题二之阳早格格创做1.怎么样明白“矩阵是MATLAB最基础的数据对于象”?问:果为背量不妨瞅成是仅有一止或者一列的矩阵,单个数据(标量)不妨瞅成是仅含一个元素的矩阵,故背量战单个数据皆不妨动做矩阵的惯例去处理.果此,矩阵是MATLAB最基础、最要害的数据对于象.2.设A战B是二个共维共大小的矩阵,问:(1)A*B战A.*B的值是可相等?问:没有相等.(2)A./B战B.\A的值是可相等?问:相等.(3)A/B战B\A的值是可相等?问:没有相等.(4)A/B战B\A所代表的数教含意是什么?问:A/B等效于B的顺左乘A矩阵,即A*inv(B),而B\A等效于B矩阵的顺左乘A矩阵,即inv(B)*A.3.写出完毕下列支配的下令.(1)将矩阵A第2~5止中第1, 3, 5列元素赋给矩阵B.问:B=A(2:5,1:2:5); 或者B=A(2:5,[1 3 5])(2)简略矩阵A的第7号元素.问:A(7)=[](3)将矩阵A的每个元素值加30.问:A=A+30;(4)供矩阵A的大小战维数.问:size(A);ndims(A);(5)将背量t的0元素用呆板整去代替.问:t(find(t==0))=eps;(6)将含有12个元素的背量x变换成34 矩阵.问:reshape(x,3,4);(7)供一个字符串的ASCII码.问:abs(‘123’); 或者double(‘123’);(8)供一个ASCII码所对于应的字符.问:char(49);4.下列下令真止后,L1、L2、L3、L4的值分别是几?A=1:9;B=10-A;...L1=A==B;L2=A<=5;L3=A>3&A<7;L4=find(A>3&A<7);问:L1的值为[0, 0, 0, 0, 1, 0, 0, 0, 0]L2的值为[1, 1, 1, 1, 1, 0, 0, 0, 0]L3的值为[0, 0, 0, 1, 1, 1, 0, 0, 0]L4的值为[4, 5, 6]5.已知完毕下列支配:(1)与出A的前3止形成矩阵B,前二列形成矩阵C,左下角32⨯子矩阵形成矩阵D,B与C的乘积形成矩阵E.问:B=A(1:3,:);C=A(:,1:2);D=A(2:4,3:4);E=B*C;(2)分别供E<D、E&D、E|D、~E|~D战find(A>=10&A<25).问:E<D=010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,E&D=110111⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,E|D=111111⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,~E|~D=001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦find(A>=10&A<25)=[1; 5].6.当A=[34, NaN, Inf, -Inf, -pi, eps, 0]时,分解下列函数的真止截止:all(A),any(A),isnan(A),isinf(A),isfinite(A).问:all(A)的值为0any(A)的值为1isnan(A)的值为[0, 1, 0, 0, 0, 0, 0]isinf(A)的值为[0, 0, 1, 1, 0, 0, 0]isfinite(A)的值为[1, 0, 0,0, 1, 1, 1]7.用结构体矩阵去保存5名教死的基础情况数据,每名教死的数据包罗教号、姓名、博业战6门课程的结果.问:student(1).id='0001';student(1).name='Tom';student(1).major='computer';student(1).grade=[89,78,67,90,86,85];8.修坐单元矩阵B并回问有闭问题.B{1,1}=1;B{1,2}='Brenden';B{2,1}=reshape(1:9,3,3);B{2,2}={12,34,2;54,21,3;4,23,67};(1)size(B)战ndims(B)的值分别是几?问:size(B)的值为2,2.ndims(B)的值为2.(2)B(2)战B(4)的值分别是几?问:B(2)=147258369⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,B(4)=[12][34][2][54][21][3][4][23][67]⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(3)B(3)=[]战B{3}=[]真止后,B的值分别是几?问:当真止B(3)=[]后,B={1, [1, 4, 7; 2, 5, 8; 3, 6, 9], {12, 34, 2; 54, 21, 3; 4, 23, 67}}当真止B{3}=[]后,B={1,[]; [1, 4, 7; 2, 5, 8; 3, 6, 9],{12, 34, 2; 54, 21, 3; 4, 23, 67}}习题三1.写出完毕下列支配的下令.(1)修坐3阶单位矩阵A.问:A=eye(3);(2)修坐5×6随机矩阵A,其元素为[100,200]范畴内的随机整数.问:round(100+(200-100)*rand(5,6));(3)爆收均值为1,圆好为0.2的500个正态分散的随机数.问:1+sqrt(0.2)*randn(5,100);(4)爆收战A共样大小的幺矩阵.问:ones(size(A));(5)将矩阵A对于角线的元素加30.问:A+eye(size(A))*30;(6)从矩阵A提与主对于角线元素,并以那些元素形成对于角阵B.问:B=diag(diag(A));2.使用函数,真止圆阵左旋90o或者左旋90o的功能.比圆,本矩阵为A,A左旋后得到B,左旋后得到C.问:B=rot90(A);C=rot90(A,-1);3.修坐一个圆阵A,供A的顺矩阵战A的止列式的值,并考证A与A-1是互顺的.问:A=rand(3)*10;B=inv(A);C=det(A);先估计B*A,再估计A*B,由估计可知B*A=A*B,即A·A-1=A-1·A是互顺.4.供底下线性圆程组的解.问:A=[4,2,-1;3,-1,2;12,3,0];b=[2;10;8];x=inv(A)*b圆程组的解为x=6.000026.666727.3333 -⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦5.供下列矩阵的主对于角线元素、上三角阵、下三角阵、秩、范数、条件数战迹.(1)112351423052111509A-⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦(2)0.434328.9421B⎡⎤=⎢⎥-⎣⎦问:(1)与主对于角线元素:diag(A);上三角阵:triu(A);下三角阵:tril(A);秩:rank(A);范数:norm(A,1); 或者 norm(A);或者 norm(A,inf);条件数:cond(A,1); 或者 cond(A,2); 或者 cond(A,inf)迹:trace(A);(2)【请参照(1)】.6.供矩阵A的特性值战相映的特性背量.问:[V,D]=eig(A);习题四1.从键盘输进一个4位整数,按如下准则加稀后输出.加稀准则:每位数字皆加上7,而后用战除以10的余数与代该数字;再把第一位与第三位接换,第二位与第四位接换.问:a=input('请输进4位整数:');A=[a/1000,a/100,a/10,a];A=fix(rem(A,10));A=rem(A+7,10);b=A(3)*1000+A(4)*100+A(1)*10+A(2);disp(['加稀后的值为:',num2str(b)]);2.分别用if语句战switch语句真止以下估计,其中a、b、c 的值从键盘输进.问:(1) 用if语句真止估计:a=input('请输进a的值:');b=input('请输进b的值:');c=input('请输进c的值:');x=input('请输进x的值:');y=a*x^2+b*x+c;endy=a*((sin(b))^c)+x;endy=log(abs(b+c/x));enddisp(['y=',num2str(y)]);(2) 用switch语句真止估计:a=input('请输进a的值:');b=input('请输进b的值:');c=input('请输进c的值:');x=input('请输进x的值:');switch fix(x/0.5)case {1,2}y=a*x^2+b*x+c;case num2cell(3:6)y=a*((sin(b))^c)+x;case num2cell(7:10)y=log(abs(b+c/x));enddisp(['y=',num2str(y)]);3.爆收20个二位随机整数,输出其中小于仄衡值的奇数.问:A=fix(10+89*rand(1,20));sum=0;for i=1:20sum=sum+A(i);endB=A(find(A<(sum/20)));C=B(find(rem(B,2)==0));disp(C);4. 输进20个数,供其中最大数战最小数.央供分别用循环结媾战调用MATLAB 的max 函数、min 函数去真止. 问:(1) 用循环结构真止:v_max=0;v_min=0;for i=1:20x=input(['请输进第', num2str(i), '数:']);if x>v_maxv_max=x;end;if x<v_minv_min=x;end;enddisp(['最大数为:', num2str(v_max)]);disp(['最小数为:', num2str(v_min)]);(2) 用max 函数、min 函数真止:for i=1:5A(i)=input(['请输进第', num2str(i), '数:']);enddisp(['最大数为:', num2str(max(A))]);disp(['最小数为:', num2str(min(A))]);5. 已知:236312222s =+++++,分别用循环结媾战调用MATLAB 的sum 函数供s 的值.问:(1) 用循环结构真止:s=0;for i=0:63s=s+2^i;ends(2) 调用sum函数真止:s=0:63;s=2.^s;sum(s)6.当n分别与100、1000、10000时,供下列各式的值.(1)111111(1)(ln2) 234nn+-+-++-+=(2)1111() 3574π-+-+=(3) 11111() 4166443n+++++=(4)224466(2)(2)133557(21)(21)2n nn nπ⎛⎫⨯⨯⨯⨯⎛⎫⎛⎫⎛⎫⎛⎫=⎪⎪⎪⎪ ⎪⨯⨯⨯-⨯+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭央供分别用循环结媾战背量运算(使用sum或者prod函数)去真止.问:(1) 用循环结构真止:sum=0;for k=1:100sum=sum+(-1)^(k+1)/k;endsum使用sum函数:x=[];for k=1:10000x=[x, (-1)^(k+1)/k];endsum(x)(2)用循环结构真止:sum=0;for k=1:100sum=sum+(-1)^(k+1)/(2*k-1);endsum使用sum函数:x=[];for k=1:100x=[x, (-1)^(k+1)/(2*k-1)];endsum(x)(3)用循环结构真止:sum=0;for k=1:100sum=sum+1/(4^k);endsum使用sum函数真止:x=[];for k=1:100x=[x, 1/(4^k)];endsum(x)(4)用循环结构真止:t=1;for k=1:100t=t*(((2*k)*(2*k))/((2*k-1)*(2*k+1)));endt使用prod函数真止:x=[];for k=1:100x=[x, ((2*k)*(2*k))/((2*k-1)*(2*k+1))];endprod(x)7. 编写一个函数文献,供小于任性自然数n的斐波那契(Fibnacci)数列各项.斐波那契数列定义如下:问:function x=fibnacci(n)for i=1:nif i<=2x(i)=1;elsex(i)=x(i-1)+x(i-2);endend8.编写一个函数文献,用于供二个矩阵的乘积战面乘,而后正在下令文献中调用该函数.问:函数文献myfnc.m:function [x, y]=myfnc(A, B)tryx=A*B;catchx=[];endy=A.*B;下令文献myexe.m:A=input('请输进矩阵A:');B=input('请输进矩阵B:');[x, y]=myfnc(A, B);if length(x)==0display('二矩阵的维数没有匹配,无法举止乘积运算!');disp('矩阵A 战矩阵B 的乘积为:'); xenddisp('矩阵A 战矩阵B 的面乘为:'); y9. 先用函数的递归调用定义一个函数文献供1n m i i =∑,而后调用该函数文献供100501021111k k k k k k ===++∑∑∑. 问:函数文献myfnc.m :function sum=myfnc(n, m)if n<=1sum=1;elsesum= myfnc (n-1, m)+n^m;end正在下令窗心中调用myfnc.m 文献,估计100501021111k k k k k k ===++∑∑∑: sum=myfnc(100, 1)+myfnc(50, 2)+myfnc(10,-1) 10.写出下列步调的输出截止.① s=0;a=[12,13,14;15,16,17;18,19,20;21,22,23]; for k=afor j=1:4if rem(k(j),2)~=0s=s+k(j);endendends问:真止截止为②下令文献exe.m真止后的截止为:x =41220y=2 4 6。