脱硫吸收塔2011
脱硫系统吸收塔浆液PH值控制与仿真

22
应用 能源技 术
2011年 第 11期 (总第 167期 )
化为硫酸钙 ,生成 的硫 酸钙即石膏脱水后 可以综
(3)连续(模拟)输人 、输出能力;
合 利用 。
(4)寻址编程方式 ,在利用 串行计算机仿真
1.2 过程控 制
时 ,它可使回响速度加快 ;
在锅炉负 荷和煤 的含 硫量大 范 围变化 时 ,
关键词 :PH值 ;小脑神 经 网络 (CMAC);PID;脱硫 系统 ;仿 真 中图分 类号 :TP273.22 文献标 志码 :B 文章编 号 :1009—3230(2011)11—0021—05
Desulfur ̄ lion Absorption Tower Slurry PH Control and Simulation
CMAC已被 公认 为是一类 联想 记忆 神 经 网络 的重要组成部分 ,它能够学习任意多维非线性映 射 。CMAC算法可有效地用 于非线性函数逼 近、 动态建模 、控制 系统设计 等。CMAC和其它神经 网络的优越性体现在 :
(1)基于 局部学习的神经网络 ,它把信息存 储在局部结构上 ,使每次修正的权值很少 ,在保证 函数非线性逼近性能的前提下 ,学习速度快 ,适合 于实 时控制 ;
石灰石浆液的给入量取决于锅炉负荷、进 口二氧
化硫含量和吸收塔浆液的 PH值。
PH值监测信号将被送至 DCS,与设定值进行
对 比,并综合热交换器进 口SO 信号和锅炉负荷
期望 输 出
信号,作为反馈预示信号发出,随之会启动浆液给 入 系统 ,为 吸收塔浆液罐 及时补充新 的石灰 石
图 2 CMAC目前全 网络 的基本模块
S— M :
脱硫吸收塔的工作原理

脱硫吸收塔的工作原理
脱硫吸收塔是一种常见的空气污染物治理设备,主要用于去除燃煤电厂等工业排放的二氧化硫。
其工作原理可以分为以下几个步骤:
1. 烟气进入吸收塔:燃煤等工业过程产生的烟气通过烟囱进入脱硫吸收塔。
2. 喷射吸收剂:在塔内,喷射一种称为吸收剂的溶液,通常是一种碱性溶液,如石灰乳。
吸收剂溶液具有较高的碱性,能与烟气中的二氧化硫发生化学反应。
3. 硫化物吸收:吸收剂溶液喷射到烟气中,与二氧化硫发生反应生成硫酸盐,如石膏。
这个过程将烟气中的二氧化硫转化为可易于处理的固体废物。
4. 去除固体废物:硫酸盐以悬浮颗粒的形式存在于溶液中,通过设备中的分离器或过滤器来去除。
5. 净化后的烟气排放:经过脱硫吸收塔处理后,烟气中的二氧化硫被大幅减少,这样净化后的烟气可以安全地排放到大气中,不会对环境产生过多的污染。
需要注意的是,脱硫吸收塔的工作原理与具体的型号和工艺参数有关,不同的设备在具体操作上可能存在差异。
以上为常见的脱硫吸收塔的一般工作原理介绍。
湿法脱硫工艺吸收塔及塔内件的设计选型

湿法脱硫工艺吸收塔及塔内件的设计选型1 吸收塔塔型的选择在湿法脱硫工艺中,吸收塔是一个核心部件,一个湿法脱硫工程能否成功,关键看吸收塔、塔内件及与之相匹配的附属设备的设计选型是否合理可靠。
在脱硫工程中运行阻力小、操作方便可靠的吸收塔和塔内件的布置形式,将具有较大的发展前景。
目前,在国内的脱硫工程中,应用较多的吸收塔塔型有喷淋吸收空塔、托盘塔、液柱塔、喷射式鼓泡塔等。
国内学者曾在实验室里对各种塔型做了实验测试(见图1),从测试情况看,在塔内烟气流速相同的情况下,喷淋吸收空塔的系统阻力最小,液柱塔的阻力次之,托盘塔的阻力相对较大。
由于喷淋吸收空塔塔内件较少,结垢的机率较小,运行维修成本较低,因此喷淋吸收空塔已逐渐成为目前应用最广泛的塔型之一。
图2为喷淋吸收空塔(以下简称吸收塔)的结构简图。
2 喷淋吸收空塔主要工艺设计参数(1)烟气流速在保证除雾器对烟气中所携带水滴的去除效率及吸收系统压降允许的条件下,适当提高烟气流速,可加剧烟气和浆液液滴之间的湍流强度,从而增加两者之间的接触面积。
同时,较高的烟气流速还可持托下落的液滴,延长其在吸收区的停留时间,从而提高脱硫效率。
另外,较高的烟气流速还可适当减少吸收塔和塔内件的几何尺寸,提高吸收塔的性价比。
在吸收塔中,烟气流速通常为3~4.5m/s。
许多工程实践表明,3.6m/s≤烟气流速(110%过负荷)≤4.2m/s是性价比较高的流速区域。
(2)液气比(L/G)L/G决定了SO2的吸收表面积。
在吸收塔中,喷淋雾滴的表面积与浆液的喷淋速率成一定的比例关系。
当烟气流速确定以后,L/G成为了影响系统性能的最关键变量,这是因为浆液循环率不仅会影响吸收表面积,还会影响吸收塔的其他设计,如雾滴的尺寸等。
L/G的主要影响因素有:吸收区体积、SO2的去除效率、吸收塔空塔速率、原烟气的SO2浓度、吸收塔浆液的氯含量等。
根据吸收塔吸收传质模型及气液平衡数据计算出液气比(L/G),从而确定浆液循环泵的流量。
脱硫吸收塔2011解答

• 吸收塔 • 氧化和结晶主要发生在吸收塔浆池中。吸收塔浆液池的尺
寸保证能提供足够的浆液停留时间完成亚硫酸钙的氧化和 石膏(CaSO4.2H2O)的结晶。吸收塔浆池上设置4台侧进式 搅拌器使浆液罐中的固体颗粒保持悬浮状态并强化亚硫酸 钙的氧化。 • 吸收塔浆池中浆液的pH值由投入石灰石量控制,而加入吸 收塔的石灰石浆液的量的大小将取决于预计的锅炉负荷、 SO2含量以及实际的吸收塔浆液的pH值。塔内浆液PH值大 约为5.6 ~ 5.8。补充石灰石浆液加入吸收塔浆池与石膏浆 液混合。吸收塔浆池中的混合浆液由浆液循环泵通过喷淋 管组送到喷嘴,形成非常细小的液滴喷入塔内。
吸收塔系统的组成
• 吸收塔除雾器 • 吸收塔喷淋层 • 吸收塔浆池搅拌器 • 氧化空气系统 • 循环浆泵A /B/C • 循环泵入口滤网 • 石膏浆液排出泵 • 氧化风机
工艺介绍
• 吸收塔是脱硫系统的主要设备,因为脱硫系统的吸 附、氧化、结晶都在这里进行;目前有填料塔、液 柱塔、鼓泡塔、喷淋塔、湍球塔、多孔板塔等,我 们的为喷淋塔。
• 烟气通过吸收塔托盘后,被均匀分布到整个吸收塔截面。 B&W公司几十年FGD系统设计的经验表明,吸收塔加装托 盘后,极大地提高了吸收塔的脱硫效率——这不但使得主 喷淋区烟气分布很均匀,而且吸收塔托盘使烟气和石灰石/ 石膏浆液通过在托盘上的液膜区域充分接触达到最大效率 地去除烟气中的SO2。
• 该吸收塔的特点是液/气比较低,从而节省浆液循环 泵的电耗。
• 向吸收塔浆池(在吸收塔的下半部,这部分所起到的是吸 收塔反应区的作用)收集的浆液中喷射空气,将亚硫酸钙 氧化为硫酸钙,并生成石膏晶体。为保持浆液中固体颗粒 的悬浮和强化氧化反应,吸收塔浆池配置四台搅拌器。
• 石膏浆液排出泵将石膏浆液送至石膏水力旋流器进行脱水。
脱硫吸收塔工作原理

脱硫吸收塔工作原理
脱硫吸收塔是一种用于烟气脱硫的装置,其工作原理主要包括以下几个步骤:
1. 烟气进入吸收塔:烟气从燃烧过程中产生,含有二氧化硫等有害气体。
烟气通过烟气进入吸收塔的入口。
2. 喷雾液喷洒:在吸收塔内,喷雾液(通常是含有碱性成分的溶液)通过喷嘴均匀地喷洒到塔内,形成一层喷雾雾化区。
3. 烟气与喷雾液接触:烟气经过喷雾雾化区时,与喷雾液充分接触。
二氧化硫与喷雾液中的碱性成分发生反应,生成硫化钙等可溶性盐。
4. 反应产物收集:通过吸收塔的底部或侧面的收集系统,将反应产物收集起来。
收集系统可以是池底收集或喷淋式等。
5. 再生:收集到的反应产物经处理后即可得到二氧化硫的再生产物,可以用于其他用途或进行进一步处理。
总的来说,脱硫吸收塔通过喷雾液与烟气接触,利用碱性溶液中的碱性成分与二氧化硫反应,将有害气体从烟气中去除,保护环境和人体健康。
火电厂脱硫吸收塔运行中产生结垢的原因和解决办法

火电厂脱硫吸收塔运行中产生结垢的原因和解决办法摘要:介绍了火电厂烟气脱硫鼓泡塔系统结垢的问题,分析了运行中发生结垢原因及其产生的机理,提出了脱硫运行中解决结垢的办法。
关键词:结垢;冲洗水管;溶解度;解决办法引言:国家发展改革委和国家环保总局联合会下发了《燃煤发电机组脱硫电价及脱硫设施运行管理办法(试行)》以来,有力的加快了燃煤机组烟气脱硫设施的投运率,极大的减少了二氧化硫排放量。
随着脱硫设施的投运,脱硫系统均出现了系统结垢问题,吸收塔系统结垢已成为影响脱硫系统安全稳定运行的关键因素之一,系统内部结垢会严重影响脱硫系统的运行稳定性,必要时需停机处理。
本文以台山电厂4号机组鼓泡式吸收塔(以下简称鼓泡塔)为例,讲解鼓泡塔系统结垢产生的原因和解决办法。
1. 脱硫系统垢的形成机理1.1 “湿-干”界面结垢的形成“湿-干”界面结垢主要是吸收塔浆液在高温烟气的作用下,浆液中的水分蒸发导致浆液迅速的固化,这些含有硅、铁、铝以及钙等物质,且有一定粘性的固化后的浆液在遇到塔里部件后会粘附沉降下来,随着高温继续作用,致使沉降后的层面浆液逐渐成为结垢类似水泥的硬垢。
在鼓泡式吸收塔中烟气冷却器入口烟道、烟气冷却器喷嘴、吸收塔升气管外壁、吸收塔鼓泡管内部、氧化风喷嘴喷口位置均易形成此类结垢。
如图1所示:图1:鼓泡管内壁结垢1.2 结晶结垢的形成物质从液态到固态的转变过程统称为凝固,如果通过凝固能形成晶体结构,即为结晶。
(1)结晶硬垢在鼓泡式吸收塔内,当塔内石膏浆液过饱和度大于或等于140%时,浆液中的CaSO4将会在塔内各部件表面析出而形成结晶石膏垢,此类石膏垢以吸收塔内壁面和烟气冷却泵、石膏排出泵入口滤网侧居多,以硬垢为主。
(2)结晶软垢当脱硫系统自然氧量和强制氧量不能满足CaSO3●1/2H2O的氧化成CaSO4●2H2O时,CaSO3●1/2H2O的浓度就会上升而同硫酸钙一同结晶析出形成结晶石膏软垢。
软垢在塔内各部件表面逐渐长大形成片状垢层,但当氧化风量足够时软垢很少发生。
脱硫塔技术方案

第一章项目条件1.1 工程概述本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO2)排放超标的问题,通过对现有系统的技术分析,做出改造方案。
为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。
1.2 工程概况本工程属环境保护项目,对干燥塔、窑炉排出的烟气的粉尘、二氧化硫(SO2)进行综合治理,达到达标排放,计划为合同生效后3个月内建成并满足协议要求。
1.3 基础数据喷雾干燥塔窑炉排出的烟气的基础数据窑炉排出的烟气的基础数据第二章设计依据和要求2.1 设计依据2.2 主要标准规范综合标准序号编号名称1 《陶瓷行业大气污染物排放标准》2 GB3095-2012 《环境空气质量标准》3 GB8978-2006 《环境空气质量标准》4 GB12348-2008 《工厂企业界噪声标准》5 GB13268∽3270-97 《大气中粉尘浓度测定》设计标准序号编号名称1 GB50034-2013 《工业企业照明设计标准》2 GB50037-96 《建筑地面设计规范》3 GB50046-2008 《工业建筑防蚀设计规范》4 HG20679-1990 《化工设备、管道外防腐设计规定》5 GB50052-2009 《供配电系统设计规范》6 GB50054-2011 《低压配电设计规范》7 GB50057-2010 《建筑物防雷设计规范》8 GBJ16-2001 《建筑物设计防火规范》9 GB50191-2012 《构筑物抗震设计规范》10 GB50010-2010 《混凝土结构设计规范》11 GBJ50011-2010 《建筑抗震设计规范》12 GB50015-2010 《建筑给排水设计规范》13 GB50017-2012 《钢结构设计规范》14 GB50019-2003 《采暖通风与空气调节设计规范》15 GBJ50007-2011 《建筑地基基础设计规范》16 GBJ64-83 《工业与民用电力装置的过电压保护设计规范》17 GB7231-2003 《工业管道的基本识别色和识别符号的安全知识》18 GB50316-2008 《工业金属管道设计规范》19 GBZ1-2010 《工业企业设计卫生标准》20 HG/T20646-1999 《化工装置管道材料设计规定》21 GB4053.4-1983 《固定式钢斜梯及工业钢平台》设备、材料标准序号编号名称1 GB/T13927-2008 《通用阀门压力试验》2 GB/T3092-2008 《低压流体输送焊接钢管》3 GB/T13384-2008 《机电产品包装通用技术条件》4 GB10889-89 《泵的振动测量与评价方法》5 ZBJ06006-90 《阀门的试验与检验》6 GB4879-99 《防锈包装》7 GB5117-95 《碳钢焊条》8 JB/T4297-2008 《泵产品涂漆技术条件》9 JB/T4735-1997 《钢制焊接常压容器及释义》10 JB/T8097-99 《泵的振动测量与评价方法》11 SH3518-2000 《阀门检验及管理规程》12 GB50011-2010 《建筑抗震设计规范》施工及验收标准序号编号名称1 GB50205-2001 《钢结构工程施工质量验收规范》2 GB50212-2002 《建筑防腐蚀工程施工及验收规范》3 GB50235-2010 《工业金属管道工程施工及验收规范》4 GB50150-2006 《电气装置安装工程电气设备交接试验标准》5 GB50168-2006 《电气装置安装工程电缆线路施工及验收规范》6 GB50169-2006 《电气装置安装工程接地装置施工及验收规范》7 GB50231-2009 《机械设备安装工程施工及验收规范》8 GB50235-2010 《工业金属管道施工及验收规范》9 GB50236-2011 《现场设备工业管道焊接工程施工及验收规范》10 GB0254-96 《电气装置安装工程低压电器施工及验收规范》2.1.2 设计原则(1)依据国家有关环保法律、法规及产业政策要求对烟气粉尘、二氧化硫(SO2)进行治理,充分发挥建设项目的社会效益、环境效益和经济效益。
脱硫吸收塔浆液失效的原因分析与处理措施

(上 接第 29页)
Supporting Technology of Soft Thick Coal Seams
Liu Xinkun W ang Aiguo Song Guan geheng
Abstract: In order to Solve the supporting problems of soft thick seam,YongAn Coal Industry Co.,Ltd.,together
脱硫 系统采用分散 控制 系统 (DCS)进行控制 。 不能正常上煤 ;同时人炉煤质差 ,锅炉频繁大量投 运行人员 在脱硫控制 室 内通过 FGD—DCS的操作员 油 ,近 1周助燃投油约 100 t,人炉煤灰分 50%左右 ,
· 36·
同 煤 科 技 TONG MEI KEJI
项 目
co ̄/% Od% NOx/% SOd% H20/%
锅 炉 BMCR工 况 设 计 煤 种 校 核 煤 种
13.63 7.11 O.O6 0.13 5.06
为 吸收塔浆 液 失效 。 2.1 浆液失效 (中毒) 的现象
①吸收塔反应闭塞 ,pH值无法控制 ,处于缓慢 下降趋势 ;
Байду номын сангаас
摘 要 石灰 石一石 膏湿 法烟 气脱硫 系统 (FGD)运 行 中 ,由于锅 炉煤 质差投 油助燃 、 电除尘 除 尘效 率低 等
原 因,造成吸收塔浆液失效 (中毒)。通过添加浓度 为 32%的 NaOH和 Ca(OH):,在短 时间内脱硫效率迅速
上升到 95%r2上 ,有效解决了浆液失效情 况下不排浆置换、不开旁路挡板的难题 ,大量节约浆液并保证脱硫
系统 的投 用率 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脱硫吸收系统启 动
目录
目录
运行调整
一、运行中提高脱硫率的调整方法
1 合理控制吸收塔浆液的pH值 吸收塔系统是整个FGD的核心,烟气中的大部分SO2、SO3、HF和HCl等化合物在吸收塔 内被脱除,石膏在吸收塔内结晶和生成。参与脱硫反应的各种化合物活性大小可以从吸收 塔混合浆液的pH值中得到反映,根据工艺设计和调试结果,保持Ca/S摩尔比在1.02左右, 可获得较满意的脱硫效果,因此一般情况下控制浆液的pH在5.2~5.5,有利于脱硫反应。 正常运行时,吸收塔浆液的pH值是根据烟气中SO2的含量大小通过功能组闭环控制石 灰石的加入量,pH的设定值应根据运行工况的变动进行调整,例如当烟气中的粉尘浓度持 续过高时,可适当降低pH设定值;正常运行时如果出现pH值偏离设定值0.2以上时,运行 人员应对以下几个方面进行重点检查:(1)石灰石粉仓料位是否低于最低限定料位。(2) 石灰石粉给料管线是否出现堵管现象。(3)石灰石浆液密度是否控制在1120 kg/m3左右。 (4)石灰石浆液罐的液位是否正常。(5)石灰石浆液补充到吸收塔管线上的调节阀是否 正常工作。 (6)长期运行后石灰石浆液补充到吸收塔的管线是否出现堵管,工艺水冲洗是否正常。 (7)石灰石制浆水源是否出现问题,脱水皮带机滤液等能否正常进入石灰石浆液罐。(8) 石灰石粉的品质(CaCO3纯度和研磨细度)是否合格。(9)pH测量计是否需要校正。并 根据检查情况及时排除故障点,以维持正常运行的pH值。
运行中提高脱硫率的调整方法
• 2 合理调整循环泵的运行方式 烟气自气-气加热器进入吸收塔后,90°折向朝上流动,与喷淋而下的浆液进行大 液气的接触,完成脱硫任务。吸收塔结构详见图1,四层喷淋层对应四台循环泵, 从上到下的排列顺序是4、3、2、1号。 • 在钙硫比(SR)恒定的情况下,SO2的去除率随吸收塔内浆液再循量的增加 和烟气与脱硫剂接触时间的延长而提高。4号循环泵对应的最上层喷淋层与烟气接 触洗涤的时间最长,并且新鲜的石灰石浆液是直接通过3、4号循环泵的入口加入, 因此投入4号循环泵脱硫效率最高,3号循环泵次之,但4号循环泵的扬程要比1号 循环泵的扬程高5.1 m,正常运行电耗高出35 kW· h左右,故不利于经济运行。运 行时可根据FGD接收的烟气量和SO2浓度的具体情况增减或调换循环泵,在确保脱 硫效率的同时,经济、有效地使用不同的循环泵组合方式。例如,当只接收1台炉 烟气脱硫时,投运2台循环泵即可;烟气中SO2浓度不高时,也不必启动4号循环泵, 可以少开1台循环泵,在循环泵切换时要特别注意石灰石浆液补充管线的切换,以 确保新鲜吸收剂的补充;停用循环泵后应做好管路冲洗和注水工作,以防下次启动 时气蚀给循环泵带来危害;长期运行后循环泵可能会出现磨损、结垢和出力降低等 情况,运行人员应根据其运行电流参数的变化,加以分析,并做好防范工作。
流量:6000m3/h
流量:6000m3/h 流量:6000m3/h PN10,DN900,PP材 质
扬程: 22.7m,
扬程 24.4m 扬程 26.3m
叶轮:合金钢
叶轮:合金钢 叶轮:合金钢
功率:560kw
介质固体浓度:15%wt Q=84m3/h,H=40m Q=10200m/hr 配套电机功率: N=280kw H=68.6kPa,
吸收塔顶部布置有放空阀,在正常运行时该阀是关 闭的。当FGD装置走旁路或当FGD装置停运时,电 磁放空阀开启以消除在吸收塔氧化风机还在运行时 或停运后冷却下来时产生的与大气的压差。
• 吸收塔浆液循环泵 • 浆液再循环系统采用单元制设计,每个喷淋层配一台浆液 循环泵,每台吸收塔配三台浆液循环泵。运行的浆液循环 泵数量根据锅炉负荷的变化和对吸收浆液流量的要求来确 定,以达到要求的吸收效率。由于能根据锅炉负荷选择最 经济的泵运行模式,该再循环系统在低锅炉负荷下能节省 能耗。 • 浆液循环泵的技术参数如下: • 泵的型式:离心式 流量:8606m3/h • 浆液扬程: 23/24.8/26.6 m • 电机功率: 900/900/1000 kW
• 该吸收塔的特点是液/气比较低,从而节省浆液循环 泵的电耗。 • B&W公司参考几十年的FGD系统设计经验,确定 了吸收塔内喷淋层和喷嘴的布置、托盘的位置和开 孔率、除雾器和烟气进出口的布置,根据液滴的有 效喷射轨迹及滞留时间确定喷淋组件之间的距离; 同时优化了PH值、液/气比、钙/硫比、氧化空气量、 浆液浓度、烟气流速等性能参数,从而保证FGD系 统连续、稳定、经济地运行。
吸收塔系统的组成
• • • • • • • • 吸收塔除雾器 吸收塔喷淋层 吸收塔浆池搅拌器 氧化空气系统 循环浆泵A /B/C 循环泵入口滤网 石膏浆液排出泵 氧化风机
工艺介绍
• 吸收塔是脱硫系统的主要设备,因为脱硫系统的吸 附、氧化、结晶都在这里进行;目前有填料塔、液 柱塔、鼓泡塔、喷淋塔、湍球塔、多孔板塔等,我 们的为喷淋塔。 • 作用:储存浆液,提供反应空间。 • 结构: • (1)筒体(∮17*X28.9米)钢板卷焊后衬胶而成, 浆液容积1820m3。液位不能大于8米。
• 吸收塔排出泵 • 吸收塔排出泵将石膏浆液从吸收塔中输送到石膏脱 水系统,还可用来将吸收塔浆液池排空到事故浆液 池中。其技术参数如下: • 数量:每塔2台 • 型式:离心式 • 参数:Q=100m3/h H=52m • 电机功率:37kW
• 吸收塔停运后,应维持搅 拌器的运行,只有在吸收 塔进行内部检修工作,排 净浆液后,才允许停运搅 拌器;注:搅拌器不允许 再没有工作介质的情况下 运行
反应原理
• 烟气中的SO2与浆液中碳酸钙发生反应,生成亚硫酸钙: • CaCO3+SO2+H2O--->CaSO3 H2O +CO2 • 通过烟气中的氧和亚硫酸氢根的中间过渡反应,部分的亚 硫酸钙转化成石膏(二水硫酸钙): • CaSO3 H2O + SO2 + H2O---> Ca(HSO3)2 + H2O Ca(HSO3) 2 +½O2 +2H2O ---> CaSO4 2 H2O + SO2 + H2O • 吸收塔浆液池中剩余的亚硫酸钙通过由氧化风机鼓入的空 气发生氧化反应,生成硫酸钙。 • CaSO3H2O +½O2+2 H2O--->CaSO42H2O +H2O
• 除雾器 • 吸收塔设两级除雾器,布置于吸收塔顶部最后一个喷淋组 件的上部。烟气穿过循环浆液喷淋层后,再连续流经两层Z 字形除雾器除去所含浆液雾滴。在一级除雾器的上面和下 面各布置一层清洗喷嘴。清洗水从喷嘴强力喷向除雾器元 件,带走除雾器顺流面和逆流面上的固体颗粒。二级除雾 器下面也布置一层清洗喷淋层。烟气通过两级除雾后,其 烟气携带水滴含量低于75mg/Nm3(干基)。除雾器清洗 系统间断运行,采用自动控制
• 浆液喷林系统 • 浆液喷淋系统包括喷淋组件及喷嘴。一个喷淋层由带连接 支管的母管制浆液分布管道和喷嘴组成,喷淋组件及喷嘴 的布置设计成均匀覆盖吸收塔的横截面,并达到要求的喷 淋浆液覆盖率,使吸收浆液与烟气充分接触,从而保证在 适当的液/气比(L/G)下可靠地实现96.8%的脱硫效率,且 在吸收塔的内表面不产生结垢。 • 使用由碳化硅(SiC)制成的空心锥喷嘴和FRP(玻璃钢)喷 淋管道,可以长期运行而无腐蚀、无磨蚀、无石膏结垢及 堵塞等问题。
• 氧化空气系统 • 烟气中本身含的氧量不足以氧化反应生成的亚硫酸钙。因 此,需提供强制氧化系统为吸收塔浆液提供氧化空气。氧 化空气把脱硫反应中生成的半水亚硫酸钙(CaSO3· 1/2H2O) 氧化为硫酸钙并结晶生成石膏(CaSO4· 2H2O)。 • 氧化空气系统由氧化风机和矛式喷射管组成。每套FGD装 置设二台氧化风机,其中一台备用,其技术参数如下: • 风量: 6248 Nm3/h(湿态) • 压升: 120.96kPa • 出口温度: 121℃ 电机功率: 355kW
功率:22kw
氧化风机
• 在吸收塔内,循环浆液雾滴与烟气逆流接触,捕集烟气中 的SO2、SO3、HF、HCl、粉尘等有害物,浆液中的碳酸 钙与SO2反应,生成亚硫酸钙。脱硫并除尘后的净烟气通 过除雾器除去气流中夹带的雾滴后排出吸收塔。 • 向吸收塔浆池(在吸收塔的下半部,这部分所起到的是吸 收塔反应区的作用)收集的浆液中喷射空气,将亚硫酸钙 氧化为硫酸钙,并生成石膏晶体。为保持浆液中固体颗粒 的悬浮和强化氧化反应,吸收塔浆池配置四台搅拌器。 • 石膏浆液排出泵将石膏浆液送至石膏水力旋流器进行脱水。
系统流程
由锅炉引风机来的热烟气经增压风机升压后,进入喷 淋吸收塔进行脱硫。在吸收塔内,烟气与石灰石/石膏 浆液逆流接触,被冷却到绝热饱和温度,烟气中的SO2 和SO3与浆液中的石灰石反应,形成亚硫酸钙和硫酸钙, 烟气中的HCl、HF也与浆液中的石灰石反应而被吸收。 脱硫后的饱和烟气温度约51℃,经吸收塔顶部除雾器除 去夹带的雾滴后排入烟囱。氧化空气风机将空气鼓入吸 收塔浆池,将亚硫酸钙氧化成硫酸钙,过饱和的硫酸钙 溶液结晶生成石膏(CaSO4· 2H2O)。产生的石膏浆 液通过石膏浆液排出泵连续抽出,视吸收塔浆池的液位 高低决定将石膏浆液送至石膏水力旋流器进行脱水或将 浆液送回吸收塔。
主要设备功能
主要设备
• 吸收塔 • 吸收塔包括一个托盘,三层喷淋装置,每层喷淋装置上布 置有160个空心锥喷嘴,喷嘴进口压头为103.4KPa,喷淋 层上部布置有两级除雾器。 • 烟气通过吸收塔托盘后,被均匀分布到整个吸收塔截面。 B&W公司几十年FGD系统设计的经验表明,吸收塔加装托 盘后,极大地提高了吸收塔的脱硫效率——这不但使得主 喷淋区烟气分布很均匀,而且吸收塔托盘使烟气和石灰石/ 石膏浆液通过在托盘上的液膜区域充分接触达到最大效率 地去除烟气中的SO2。
脱硫吸收塔系统
原理及运行维护
俞兴平
目录
1视图 2吸收塔系统的组成 3工艺介绍 4主要设备功能 5脱硫吸收系统启动