七年级数学之动点面积问题
初中数学动点产生的面积问题学习方法

初中数学动点产生的面积问题学习方法
函数中的动点问题是以函数为背景,充分运用方程、转化、函数以及数形结合等思想来研究解决。
1.求不规则图形或难以同时求出底和高的三角形的面积,一般的思路是割补法:
①有一边“水平”或“竖直”的多边形,作垂线分割成直角三角形或直角梯形,如图1;
②“斜”的三角形一般不易找到它的底和高,通常过顶点作铅垂线和水平线“补”成矩形,再减去各角上的直角三角形面积,如图2.
图1
图2
2.对于“斜”三角形可用“铅垂法”求面积:如图3,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=1/2ah,即三角形面积等于水平宽与铅垂高乘积的一半.
图3
3.底或高不明显,但已知边的关系,可用相似比间接求得.①如图4,同底三角形的面积比等于高的比同高三角形的面积比等于底的比;②如图5,同底等高三角形的面积相等.
图4
图5
【典型例题】
如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.。
动点产生的面积问题

运动变化题是随着图形的某一元素的运动变化,导致问题的结论改变或者保持不变的几何题,它揭示了“运动”与“静止”、“一般”与“特殊”的内在联系.解题的关键是分清几何元素运动的方向和捷径,注意在运动过程中哪些是变量,哪些不是变量,通常要根据几何元素所处的不同位置加以分类讨论,同时,综合运用勾股定理、方程和函数等知识,本节课的内容涉及三角形、特殊的四边形的面积问题.本节主要是在函数背景下求三角形或四边形的面积问题,较复杂的题目可以采取“割补”的思想构造较简单的图形进行求解.动点产生的面积问题内容分析知识结构模块一:面积计算的问题知识精讲【例1】 如图,已知直线l :22y x =-+与x 轴、y 轴分别交于点B 、C ,将直线y=x向上平移1个单位长度得到直线P A ,点Q 是直线P A 与y 轴的交点,求四边形PQOB 的面积. 【难度】★★ 【答案】 【解析】【例2】 如图,已知直线AB :2y x =+与直线OA :13y x =交于点A ,与直线OB :3y x =交于点B 两点.求△AOB 的面积. 【难度】★★ 【答案】 【解析】例题解析【例3】 如图,已知直线3y x =+的图像与x 轴、y 轴分别交于A 、B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1两部分,求直线l 的解析式. 【难度】★★ 【答案】 【解析】【例4】 如图,已知,在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图1,当四边形EFGH 为正方形时,求△GFC 的面积;(2)如图2,当四边形EFGH 为菱形,且BF =a 时,求△GFC 的面积.(用含a 的代数式表示)【难度】★★★ 【答案】 【解析】A B CDE F 图1GHABCDE F 图2GH【例5】 如图1,正方形ABCD 的边长为2,点A (0, 1)和点D 在y 轴正半轴上,点B 、C 在第一象限,一次函数y =kx +2的图像l 交AD 、CD 分别于E 、F . (1)若△DEF 与△BCF 的面积比为1∶2,求k 的值; (2)联结BE ,当BE 平分∠FBA 时,求k 的值. 【难度】★★★ 【答案】 【解析】【例6】 如图,在平面直角坐标系中,函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点. (1)求直线AM 的表达式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请求出点P 的坐标; (3)若点H 为坐标平面内任意一点,是否存在点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由. 【难度】★★★ 【答案】 【解析】【例7】 如图1,已知直角坐标平面内点A (2, 0),P 是函数y =x (x >0)图像上一点,PQ ⊥AP 交y 轴正半轴于点Q . (1)试证明:AP =PQ ;(2)设点P 的横坐标为a ,点Q 的纵坐标为b ,那么b 关于a 的函数关系式是_______;(3)当S △AOQ =23S △APQ 时,求点P 的坐标.【难度】★★★ 【答案】 【解析】本节主要研究点在运动的背景下,产生的面积与动点之间的关系,关键点是找出决定这个面积变化的几个量是怎样变化的,重点在于思维能力的培养,难度较大.模块二:与面积相关的函数解析式知识精讲【例8】 如图,矩形ABCD 中,AB =1,AD =2,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,试写出△APM 的面积y 与点P 经过的路程x 之间的函数关系,写出定义域,并画出函数图像. 【难度】★★ 【答案】 【解析】【例9】 如图,在梯形ABCD 中,AD //BC ,AB =CD =AD =5cm ,BC =11cm ,点P 从点D 出发沿DA 边以每秒1cm 的速度移动,点Q 从点B 出发沿BC 边以每秒2cm 的速度移动(当点P 到达点A 时,点P 与点Q 同时停止移动),假设点P 移动的时间为x (秒),四边形ABQP 的面积为y (cm 2). (1)求y 关于x 的函数解析式,并写出它的定义域;(2)在移动的过程中,求四边形ABQP 的面积与四边形QCDP 的面积相等时x 的值;(3)在移动过程中,是否存在x 使得PQ =AB ,若存在,求出所有的x 的值;若不存在,请说明理由. 【难度】★★ 【答案】 【解析】例题解析BAB CDMP【例10】已知:如图1,在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连结EG并延长交DC于点M,作MN⊥AB,垂足为N,MN交BD于P.设正方形ABCD的边长为1.(1)证明:△CMG≌△NBP;(2)设BE=x,四边形MGBN的面积为y,求y关于x的函数解析式,并写出定义域;(3)如果按照题设方法作出的四边形BGMP是菱形,求BE的长.【难度】★★★【答案】【解析】【例11】已知:在梯形ABCD中,AD//BC,∠B=90°,AB=BC=4,点E在边AB 上,CE=CD.(1)如图1,当∠BCD为锐角时,设AD=x,△CDE的面积为y,求y与x之间的函数解析式,并写出函数的定义域;(2)当CD=5时,求△CDE的面积.【难度】★★★【答案】【解析】AB CDEA BCDEFGPMN【例12】 如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x m =-+交折线OAB 于点E .(1)当点E 恰为AB 中点时,求m 的值;(2)当点E 在线段OA 上,记△ODE 的面积为y ,求y 与m 的函数关系式并写出定义域;(3)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试判断四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,写出该重叠部分的面积;若改变,写出重叠部分面积S 关于m 的函数关系式. 【难度】★★★ 【答案】 【解析】【例13】 如图1,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G . (1)当E 是AB 中点时,求证AG =BF ;(2)当E 在边AB 上移动时,观察BF 、AG 、AE 之间具有怎样的数量关系?并证明你所得到的结论;(3)联结DF ,如果正方形的边长为2,设AE =x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域.【难度】★★★ 【答案】 【解析】xA BCD EFG【例14】 如图1,梯形ABCD 中,AD //BC ,∠B =90°,AD =18,BC =21.点P 从点A 出发沿AD 以每秒1个单位的速度向点D 匀速运动,点Q 从点C 沿CB 以每秒2个单位的速度向点B 匀速运动.点P 、Q 同时出发,其中一个点到达终点时两点停止运动,设运动的时间为t 秒.(1)当AB =10时,设A 、B 、Q 、P 四点构成的图形的面积为S ,求S 关于t 的函数关系式,并写出定义域;(2)设E 、F 为AB 、CD 的中点,求四边形PEQF 是平行四边形时t 的值.【难度】★★★ 【答案】【解析】【例15】 如图1,在菱形ABCD 中,∠B =45°,AB =4.左右作平行移动的正方形EFGH 的两个顶点F 、G 始终在边BC 上.当点G 到边BC 中点时,点E 恰好在边AB 上.(1)如图1,求正方形EFGH 的边长;(2)设点B 与点F 的距离为x ,在正方形EFGH 作平行移动的过程中,正方形EFGH 与菱形ABCD 重叠部分的面积为y ,求y 与x 的函数解析式,并写出它的定义域;(3)联结FH 、HC ,当△FHC 是等腰三角形时,求BF 的长. 【难度】★★★ 【答案】 【解析】ABCDE PAQ 图1备用图HAB C DEF G【例16】 如图1,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形.A (0,4),C (5, 0),点D 是y 轴正半轴上一点,将四边形OABC 沿着过点D 的直线翻折,使得点O 落在线段AB 上的点E 处.过点E 作y 轴的平行线与x 轴交于点N .折痕与直线EN 交于点M ,联结DE 、OM . 设OD =t ,MN =s . (1)试判断四边形EDOM 的形状,并证明;(2)当点D 在线段OA 上时,求s 关于t 的函数解析式,并写出函数的定义域; (3)用含t 的代数式表示四边形EDOM 与矩形OABC 重叠部分的面积.【难度】★★★ 【答案】 【解析】【例17】 已知:如图1,梯形ABCD 中,AD //BC ,∠A =90°,∠C =45°,AB =AD =4.E 是直线AD 上一点,联结BE ,过点E 作EF ⊥BE 交直线CD 于点F .联结BF .(1)若点E 是线段AD 上一点(与点A 、D 不重合),(如图1所示) ①求证:BE =EF ;②设DE =x ,△BEF 的面积为y ,求y 关于x 的函数解析式,并写出此函数的定义域;(2)直线AD 上是否存在一点E ,使△BEF 是△ABE 面积的3倍,若存在,直接写出DE 的长,若不存在,请说明理由.【难度】★★★ 【答案】 【解析】AB DEFABCD图1备用图备用图ABCD【例18】如图,已知正方形ABCD的边长为3,菱形EFGH的三个顶点E、G、H分别在正方形的边AB、CD、DA上,AH=1,联结CF.(1)当DG=1时,求证菱形EFGH为正方形;(2)设DG=x,△FCG的面积为y,写出y关于x的函数解析式,并指出x的取值范围;(3)当DGGHE的度数.【难度】★★★【答案】【解析】A BCDEFGH【例19】已知:如图,四边形OABC的四个顶点坐标分别为O(0,0),A(8,0),B(4,4),C(0,4),直线l:y=x+m保持与四边形OABC的边交于点M、N(M 在折线AOC上,N在折线ABC上).设四边形OABC在l右下方部分的面积为S1,在l左上方部分的面积为S2,记S=S1-S2(S≥0).(1)求∠OAB的大小;(2)当M、N重合时,求l的解析式;(3)当m≤0时,线段AB上是否存在点N,使得S=0?若存在,求m的值;若不存在,请说明理由;(4)求S与m的函数关系式.【难度】★★★【答案】【解析】x【例20】 在边长为4的正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC上一动点,过点P 作PF ⊥CD 于点F ,作PE ⊥PB 交直线CD 于点E ,设P A =x ,PCE S y =△.(1)求证:DF =EF ;(2)当点P 在线段AO 上时,求y 关于x 的函数关系式及自变量x 的取值范围;(3)点P 在运动过程中能否使△PEC 为等腰三角形?如果能,请直接写出P A 的长;如果不能,请简单说明理由. 【难度】★★★ 【答案】 【解析】【习题1】 如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求△ABC 【难度】★★ 【答案】 【解析】随堂检测ABCD E F P O【习题2】已知直线2y x=-+与x轴、y轴分别交于A点和B点,另一条直线(0)y kx b k=+≠经过点C(1,0),且把△AOB分成两部分.若△AOB被分成的两部分面积比为1:5,求k和b的值.【难度】★★★【答案】【解析】【习题3】直线364y x=-+与坐标轴分别交与点A、B两点,点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿O B A→→运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系;(3)当485S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.【难度】★★★【答案】【解析】【习题4】 如图,已知:过点A (8,0)、B (0,y =交于点C ,平行于y 轴的直线l 从原点O 出发,以每秒1个单位长度的速度沿x 轴向右平移,到C 点时停止;l 分别交线段BC 、OC 于点D 、E ,以DE 为边向左侧作等边△DEF ,设△DEF 与△BCO 重叠部分的面积为S (平方单位),直线l 的运动时间为t (秒).(1) 写出点C 的坐标和t 的取值范围; (2) 求s 与t 的函数关系式. 【难度】★★★ 【答案】 【解析】【作业1】 如图,已知直线P A :(0)y x n n =+>与直线PB :2()y x m m n =-+>交于点P .(1)用m 、n 表示出A 、B 、P 点的坐标;(2)若点Q 是直线P A 与y 轴的交点,且四边形PQOB 的面积56,AB=2,试求点P 的坐标,并写出直线P A 与PB 的解析式. 【难度】★★ 【答案】 【解析】课后作业【作业2】 如图所示,直线y kx b =+的截距为6,该直线分别交x 轴、y 轴于E 、F ,点E 的坐标为(-4,0). (1)求直线y kx b =+的表达式;(2)若点P (x ,y )是该直线第二象限上的一个动点,P A ⊥x 轴,PB ⊥y 轴,垂足分别为点A 、B ,试求四边形OAPB 的面积S 与x 的函数关系式,并写出自变量x 的取值范围. 【难度】★★★ 【答案】 【解析】【作业3】 如图,已知:直角梯形ABCD 中,AB ∥CD ,∠A =90°,AB =6,AD =4,DC =3,点P 从点A 出发,沿ADCB 方向移动,动点Q 从点A 出发,在AB 边上移动,设点P 移动的路程为x ,点Q 移动的路程为y ,线段PQ 平分梯形ABCD 的周长. (1) 求y 关于x 的函数解析式,并写出x 和y 的取值范围;(2) 当P 不在BC 边上时,线段PQ 能否平分ABCD 的面积?若能,求出此时x 的值;若不能,说明理由. 【难度】★★★ 【答案】 【解析】ABCDP Q【作业4】如图,在平面直角坐标系中,两个函数162y x y x==-+,的图像交于点A,动点P从点O开始在线段O向点A方向以每秒1个单位的速度运动,作PQ∥x 轴交直线BC于点Q,以PQ为一边向下作正方形PAMN,设它与△ABO重叠部分的面积为S.(1)求点A的坐标;(2)试求出点P在线段OA上运动时,S与运动的时间t(秒)的关系式.【难度】★★★【答案】【解析】。
初一动点问题解题技巧和方法

初一动点问题解题技巧和方法初一动点问题解题技巧和引言初一动点问题是初中数学中的一个重要知识点,也是初中数学解题中常见的问题类型之一。
在解决初一动点问题时,我们需要运用一些特定的技巧和方法。
本文将介绍几种常见的初一动点问题解题技巧和方法。
方法一:坐标法1.首先,我们需要给问题中的物体设定坐标系。
通常可以选择平面直角坐标系或平面极坐标系。
2.接着,根据题意,确定物体的初始位置和移动规律。
3.运用坐标变换公式,计算出物体在不同时刻的坐标。
4.根据问题要求,计算或判断物体在某个特定时刻的位置和状态。
方法二:速度法1.首先,我们需要设定物体的初始速度和加速度等关键信息。
2.根据物体的初始速度和加速度,运用运动学公式计算物体在不同时刻的速度和位移。
3.利用速度-时间图像或位移-时间图像分析问题,找出物体在某个特定时刻的位置和状态。
方法三:速度图像法1.通过绘制物体的速度-时间图像,观察图像的特点。
2.根据图像的形状,判断物体的运动状态,如匀速、匀加速、等速变速等。
3.运用速度-时间图像的面积计算方法,求解问题中的相关量。
方法四:位移图像法1.通过绘制物体的位移-时间图像,观察图像的特点。
2.根据图像的形状,判断物体的运动状态,如匀速、匀变速、反向运动等。
3.运用位移-时间图像的斜率计算方法,求解问题中的相关量。
方法五:等效距离法1.根据问题中的条件,把复杂的运动形式化简为等效距离的运动。
2.运用等效距离的运动规律,计算出物体在不同时刻的位置和状态。
3.根据问题要求,计算或判断物体在某个特定时刻的位置和状态。
方法六:代数法1.根据问题中的条件,设定物体的初始位置和移动规律。
2.利用方程组或代数方程表示物体的运动状态。
3.运用代数方法解方程组或代数方程,求解问题中的相关量。
结论初一动点问题的解题方法有很多种,本文介绍了几种常见的方法,包括坐标法、速度法、速度图像法、位移图像法、等效距离法和代数法。
在解题过程中,我们可以根据具体问题的要求选择合适的方法进行计算和分析,提高解题效率。
初中数学动点问题及练习题附参考答案

初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
初中数学动点面积最值问题

初中数学中,动点面积最值问题通常与几何相关。
下面是一个例子,希望能帮助你理解该类型的问题。
假设有一个长方形,它的一边长为a(已知),另一边长为b(未知)。
现在我们在这个长方形内部选择一个动点P,它的坐标为(x, y)。
我们要求动点P与长方形四个边界的连线所围成的面积S的最大值和最小值。
解决这个问题的方法是,我们需要找到动点P的坐标(x, y)与长方形边界的关系,并分析这个关系如何影响面积S。
具体步骤如下:
1. 画出长方形,并标出其中一个边的长度为a。
2. 假设动点P的坐标为(x, y),则另一边长b可以表示为b = a - 2x(因为P点到两个垂直边的距离都是x)。
3. 面积S可以表示为S = xy = x(a - 2x)。
4. 将面积函数S关于x进行求导,得到S' = a - 4x。
5. 令S' = 0,解方程得到x的值。
6. 判断解得的x值是否在合理范围内,例如x的取值范围是[0, a/2]。
7. 将x的值代入面积函数S,计算出对应的面积值。
最大面积和最小面积分别对应于S的极大值和极小值。
通过求导找到极值点,再进行验证即可确定最值。
需要注意的是,这只是一个简单的例子,实际问题可能更加复杂。
在解决动点面积最值问题时,你可能还需要灵活运用几何知识、代数知识和微积分等数学工具,根据具体情况进行分析和推导。
初一 简单的动点-动点问题

初一简单的动点-动点问题
1.动点问题的解决关键在于动中求静,需要灵活运用数学知识,如分类思想、数形结合思想和转化思想。
举例来说,对于数轴上给定的点,可以通过求其对应的数值来解决问题。
2.在数轴上给定两点A和B,可以通过动点P的运动来解决问题。
例如,当P为AB线段的三等分点时,可以求出P对应的数值。
另外,可以通过求P到A点和B点距离和为10的条件来解出P的数值,或者通过P、A和B点的运动速度比例来求出P的位置。
3.在直角三角形ABC中,可以通过点D在AC线段上的运动来解决问题。
例如,可以求出△ABD的面积与CD的长度之间的关系式,并通过求导数求出△ABD面积的最大值及其对应的CD长度。
另外,可以通过△ABD面积是△ABC面积的一半的条件来求出D的位置。
4.在正方形ABCD中,可以通过动点P沿着ABCD四条边的运动来解决问题。
例如,可以求出当P经过的路程为1cm
时,△APE的面积,并通过已知△APE面积求出P经过的路程x的值。
5.在长方形ABCD中,可以通过动点Q沿着ADCB四条边的运动来解决问题。
例如,可以求出AP的长度,并通过已知△APQ面积求出含x的代数式S。
另外,可以通过点M和Q同时从A出发的条件来求出它们相遇时的位置。
七年级数学之动点面积问题

1、在平面直角坐标系中,已知点A(4,0),点B(0,3),点P从点A出发,以每秒1个单位的速度在x轴上向右平移,点Q从B点出发,以每秒2个单位的速度沿直线y=3向右平移,又P、Q两点同时出发,设运动时间为t秒.(1)当t为何值时,四边形OBPQ的面积为8;(2)连接AQ,当△APQ是直角三角形时,求Q的坐标.2、如图,在下面直角坐标系中,已知A(-4,a),B(-8,0)(1)请用含a的代数式表示△ABO的面积;(2)若a满足关系式(a+4)2≤0,且以点A、B、O为顶点画平行四边形,则请你“利用平移的知识”直接写出符合条件的所有的平行四边形的第四个顶点C的坐标(3)在(2)的条件下,是否存在x轴上的点M(x,0),使△ABM的面积是△ABO的面积的2倍?若存在,求出点M的坐标;若不存在,请说明理由.(4)在(2)的条件下,请你直接写出y轴上的点N的坐标,使△AON的面积是△ABO的面积的3倍3、如图,A,B两点同时从原点O出发,点A以每秒a个单位长度沿x轴的负方向运动,点B以每秒b个单位长度沿y轴的正方向运动.(1)如图1,若|a+2b-5|+(2a-b)2=0,试分别求出1秒钟后,A,B两点的坐标;(2)如图2,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC,∠FCA,∠ABC的平分线交于点G,过点G作BE的垂线,垂足为H,试问∠AGH,∠BGC的大小关系如何?请写出你的结论并证明;(3)如图3,过A,O两点的直线相交于点N,AB的延长线交ON于点M,若∠MAN=∠NOB,∠BAO-∠N=m°,试求∠AMO的度数.4、如图,在平面直角坐标系中,点B、C在x轴上,OB>OC,点A在y轴正半轴上,AD平分∠BAC,交x轴于点D.(1)若∠B=30°,∠C=50°,求∠DAO的度数?(2)试写出∠DAO与∠C-∠B的关系?(不必证明)(3)若点A在y轴正半轴上运动,当点A运动至点P时,请你作出△BPC及其角平分线PQ,并直接写出∠QPO与∠PBC、∠PCB三者的关系?5、如图1,在平面直角坐标系中,A、B两点同时从原点O出发,点A以每秒m个单位长度沿x轴的正方向运动,点B以每秒n个单位长度沿y轴正方向运动.(1)已知运动1秒时,B点比A点多运动1个单位;运动2秒时,B点与A点运动的路程和为6个单位,求m、n;(2)如图2,设∠OBA的邻补角的平分线、∠OAB的邻补角的平分线相交于点P,∠P的大小是否发生改变?若不变,求其值;若变化,说明理由.(3)若∠OBA的平分线与∠OAB的邻补角的平分线的反向延长线相交于点Q,∠Q的大小是否发生改变?如不发生改变,求其值;若发生改变,请说明理由.6、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①DCP BOPCPO∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变其中有且只有一个是正确的,请你找出这个结论并求其值.7、如图,在平面直角坐标系中,已知三点A(0,a),B(b,0),C(b,c),其中a,b,c满足关系式|a-2|+(b-3)2=0,c=2b-a;(1)求a,b,c的值;(2)如果再第二象限内有一点P(m,1),请用含m的式子表示四边形ABOP的面积,若四边形ABOP的面积与△ABC的面积相等,请求出点P的坐标;(3)若B,A两点分别在x轴,y轴的正半轴上运动,设∠BAO的邻补角的平分线和∠ABO的邻补角的平分线相交于第一象限内一点Q,那么,点A,B在运动的过程中,∠Q的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由8、在平面直角坐标系中,D(0,-3),M(4,-3),直角三角形ABC的边与x轴分别交于O、G两点,与直线DM分别交于E、F点.(1)将直角三角形ABC如图1位置摆放,请写出∠CEF与∠AOG之间的等量关系:(2)将直角三角形ABC如图2位置摆放,N为AC上一点,∠NED+∠CEF=180°,请写出∠NEF与∠AOG 之间的等量关系,并说明理由.9、已知如图,在平面直角坐标系中有四点,坐标分别为A(-4,3)、B(4,3)、M(0,1)、Q(1,2),动点P在线段AB上,从点A出发向点B以每秒1个单位运动.连接PM、PQ并延长分别交x轴于C、D两点(如图).(1)在点P移动的过程中,若点M、C、D、Q能围成四边形,则t的取值范围是,并写出当t=2时,点C的坐标(2)在点P移动的过程中,△PMQ可能是轴对称图形吗?若能,请求出符合条件的点P的坐标;若不能,请说明理由.(3)在点P移动的过程中,求四边形MCDQ的面积S的范围10、如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a-2|+(b-3)2=0,(c-4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,12),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.11、如图1,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)如图2,延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.12、在平面直角坐标系中,横坐标、纵坐标都为整数的点叫做整点.设坐标轴的单位长度为1cm,整点P从原点O出发,速度为1cm/s,且整点P只做向右或向上运动,则运动1s后它可以到达(0,1)、(1,0)两个整点;它运动2s后可以到达(2,0)、(1,1)、(0,2)三个整点;运动3s后它可以到达(3,0)、(2,1)、(1,2)、(0,3)四个整点;…请探索并回答下面问题:(1)当整点P从点O出发4s后可以到达的整点共有个(2)在直角坐标系中描出:整点P从点O出发8s后所能到达的整点,并观察这些整点,说出它们在位置上有什么特点?(3)当整点P从点O出发 s后可到达整点(13,5)的位置.12、如图,△OAB的三个顶点坐标分别为O(0,0),A(5,O)B(2,4).(1)求△ABO的面积,(2)若B(2,4),O(0,0)不变,M点在x轴上,M点在什么位置时,△OBM的面积是△OAB面积的2倍,并说明理由.13、如图,在平面直角坐标系中,A,B,C三点的坐标分别为(0,1),(3,0),(2,2)(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,2),试用含a的式子表示四边形ABOP的面积;(3)在(2)的条件下是否存在点P,使得四边形ABOP的面积与△ABC的面积相等?若存在,请求出点P 的坐标;若不存在,请说明理由14、已知点A(a,0)、B(b,0),且(a+4)2+|b-2|=0.(1)求a,b的值;(2)在y轴上是否存在点C,使得△ABC的面积是12?若存在,求出点C的坐标;若不存在,请说明理由;(3)点P是y轴正半轴上一点,且到x轴的距离为3,若点P沿x轴负半轴以每秒1个长度单位平行移动至Q,当运动的时间t为多少秒时,四边形ABPQ的面积S为15个平方单位?写出此时Q点的坐标.15、如图建立平面直角坐标系,长方形OABC中,A(8,0),点C(0,10),点P从原点出发,以每秒1个单(2)在移动过程中,当点P 到x 轴距离为4个单位长度时,则点P 运动的时间为 秒.(3)若点P 出发11秒时,点Q 以每秒2个单位长度的速度也沿着O-C-B-A-O 的路线运动到点O 停止,求t 为何值时点P 、Q 在运动路线上相距的路程为5个单位长度?15、 如图,长方形OABC 中,O 为平面直角坐标系的原点,A ,C 两点的坐标分别为(3,0),(0,5),点B 在第一象限内.(1)如图,请直接写出点B 的坐(2)若过点C 的直线CD 交长方形OABC 的边于点D ,且把长方形OABC 的周长分为3:1两部分,求点D 的坐标.16、如图1,点A (a ,6)在第一象限,点B (0,b )在y 轴负半轴上,且a ,b 满足:(240a b −++=(1)求△AOB 的面积.(2)若线段AB 与x 轴相交于点C ,在点C 的右侧,x 轴的上是否存在点D ,使S △ACD =S △BOC ?若存在,求出D 点坐标;若不存在,请说明理由.(3)如图2,若∠AOx 轴=60°,射线OA 绕O 点以每秒4°的速度顺时针旋转到OA ′,射线OB 绕B 点以每秒10°的速度顺时针旋转到O ′B ,当OB 转动一周时两者都停止运动.若两射线同时开始运动,在旋转过程中,经过多长时间,OA ′∥O ′B ?17、在直角坐标系中,A (-4,0),B (2,0),点C 在y 轴正半轴上,且S △ABC =18. (1)求点C 的坐标;(2)是否存在位于坐标轴上的点P ,S △APC =12S △PBC ?若存在,请求出P 点坐标;若不存在,说明理由.18、在平面直角坐标系中,A(-1,0),B(0,2),点C在x轴上.(1)如图(1),若△ABC的面积为3,则点C的坐标为(2)如图(2),过点B点作y轴的垂线BM,点E是射线BM上的一动点,∠AOE的平分线交直线BM于F,OG⊥OF且交直线BM于G,当点E在射线BM上滑动时,BEOBOF∠∠的值是否变化?若不变,请求出其值;若变化,请说明理由.19、在直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去,设Pn(x n,y n),n=1,2,3,….(1)依次写出x1、x2、x3、x4、x5、x6的值;(2)计算x1+x2+…+x8的值;(3)计算x1+x2+…+x2003+x2004的值.20、如图:一个粒子在第一象限内及x轴,y轴上运动,在第一分钟内,它从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,且每分钟移动1个长度单位.(1)当粒子所在位置分别是(1,1),(2,2),(3,3),(4,4)时,所经过的时间分别是多少?(2)在第2004分钟后,这个粒子所在的位置的坐标是多少?21、问题:如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?(1)小明画出如图的图形,并写出问题:如图,点P在∠AOB的内部,过点P作PE⊥OA,PF⊥OB,垂足分别为E,F,求∠P的度数.请你帮助小明完成解题过程.(2)小刚说,这道题应该还有一种情况:点P在∠AOB的外部.他说的对吗?22、如图,长方形ABCD在平面直角坐标系中,点A(1,8),B(1,6),C(7,6).(1)请直接写出D点的坐标(2)连接线段OB、OD、BD,请直接求出的面积(3)若长方形ABCD以每秒1个单位的速度向下运动,设运动的时间为t秒,问是否存在某一时刻,△OBD的面积与长方形ABCD的面积相等?若存在,请求出t的值;若不存在,请说明理由.23、在△ABC中,∠A=∠C,点E在BC边上,过点E作射线EF∥AB交AC于点F,EM交AC于点M,点N 在射线EF上,且∠EMN=∠ENM,设∠ABC=α,∠MEN=β.(1)如图1,若点M在线段AF上,α=60°,β=30°,求∠FMN的度数;(2)若点M在AC边上(不与点A、C、F重合),α、β为任意角度,探究∠FMN与α、β的数量关系,请在图2中画出图形,并说明理由.24、如图,在△A B C中,AB=AC,BD、CE分别是两腰上的高,且BD、CE相交于O.(1)请你写出三类不同的正确的结论;(2)设∠CBD=α,∠A=β,试找出α与β之间的一种关系等式,并给予适当的说明(友情提示:∠ABC=∠ACB).25、.已知,在四边形ABCD中.∠A=∠C=90゜.(1)求证:∠ABC+∠ADC=180゜;(2)如图1,若DE平分∠ADC,BF平分∠ABC外角,写出DE与BF的位置关系,并证明;(3)如图2,若BF、DE分别平分∠ABC、∠ADC的外角,写出BF与DE的位置关系,并证明.26、如图,四边形ABCD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β,当点P在BC上移动时,猜想α,β与∠B的关系,并说明理由.27、如图,锐角△ABC中,高BE、CF交于点H.(1)若∠BAC=70°,求∠BHC的度数;(2)直接给出四条线段AF、HE、AC、CH之间的数量关系;(3)若AD平分∠BAC交BC于D,AD、CF交于点K,HG平分∠BHC交BC于G.求证:HG∥AD.28、1)如图1,AC平分∠DAB,∠1=∠2,试说明AB与CD的位置关系,并予以证明;(2)如图2,在(1)的条件下,AB的下方两点E,F满足∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E 的补角的和为190°,求∠ABE的度数;(3)如图3,在前面的条件下,若P是BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列结论:①∠DGP-∠MGN的值不变;②∠MGN的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.29、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)求证:AB∥CD;(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE 与∠MCD否存在确定的数量关系?并证明;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论,不需说明理由.30、如图,直线AB∥C D.(1)在图1中,∠B M E、∠E,∠EN D的数量关系为:;(不需证明)在图2中,∠B M F、∠F,∠FN D的数量关系为:(不需证明)(2)如图3,NE平分∠FN D,MB平分∠FM E,且2∠E与∠F互补,求∠FM E的大小.(3)如图4中,∠B M E=60°,EF平分∠M EN,NP平分∠EN D,EQ∥N P,则∠FEQ的大小是否发生变化?若变化,说明理由;若不变化,求∠FEQ的度数.31、如图,在平面直角坐标系xOy中,A,B,C是坐标轴上的定点,平移线段AB得到线段CD,使点A与点C 对应,点B与点D对应.(1)画出线段CD,并写出画法;(2)点P是x轴上的动点(不与点B,C重合),设∠PAC=α,∠PBD=β,∠APB=θ.①当点P在线段BC上时,求证:θ=α+β;②当点P在线段CB(BC)的延长线上时,①中的结论是否成立?并说明理由32、将两个大小不同的含30°角的三角板的直角顶点O重合在一起,保持△COD不动,将△AOB绕点O旋转,设射线AB与射线DC交于点F.(1)如图①,若∠AOD=120°,①AB与OD的位置关系②∠AFC的度数=(2)如图②当∠AOD=130°,求∠AFC的度数.(3)由上述结果,写出∠AOD和∠AFC的关系(4)如图③,作∠AFC、∠AOD的角平分线交于点P,求∠P的度数.33、(1)如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=40°,∠ABC=30°,求∠AEC的大小;(2)如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=m°,∠ABC=n°,求∠AEC的大小;(3)如图③,∠BAD的平分线AE与∠BCD的平分线CE交于点E,则∠AEC与∠ADC、∠ABC之间是否仍存在某种等量关系?若存在,请写出你得结论,并给出证明;若不存在,请说明理由.34、已知:如图(1)所示,D是∠ABC的角平分线和∠ACB的角平分线的交点,过点D作EF∥BC,交AB于E,交AC于F.(1)请你确定EF、BE、CF三者之间的关系,并加以证明.(2)如图(2)所示,当点D为∠ABC的外角的角平分线和∠ACB的外角的角平分线的交点时,EF、BE、CF 三条线段还满足上面的关系吗?若满足,直接写出关系式;若不满足,请写出新的关系式并加以证明.(3)如图(3)所示,当点D为∠ABC的角平分线和∠ACB外角平分线的交点时,EF、BE、CF三条线段还满足上面的关系吗?若满足,直接写出关系式;若不满足,请写出新的关系式并加以证明.35、如图1,在平面直角坐标系中,点A、B的坐标分别为(-1,0)、(3,0),现将线段AB向上平移2个单位,再向右平移1个单位,得到线段CD,连接AC、BD.(1)求点C、D的坐标及四边形ABDC的面积S四边形ABDC;(2)如图2,在y轴上是否存在一点P,连接PA、PB,使S△PA B=S四边形ABDC,若存在这样的一点,求出点P的坐标;若不存在,试说明理由.(3)若点Q在线段CD上移动(不包括C、D两点),QO与线段CD、AB所成的角∠2与∠1如图3所示,给出下列两个结论:①∠2+∠1的值不变②12∠∠的值不变,其中只有一个结论是正确的,请你找出这个结论36、将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.。
2和因动点产生的面积问题

由动点形生成的面积问题面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,解决这类问题常用到以下与面积相关的知识(1)图形的割补 (2)等积变形 (3)等比转化1:将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B (–3,0).(1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当△APE 的面积最大时,求点P 的坐标;(3)在第一象限内的该抛物线上是否存在点G ,使△AGC 的面积与(2)中△APE的最大面积相等?若存在,请求出点G 的坐标;若不存在,请说明理由2 如图,已知二次函数图像的顶点坐标为(2,0),直线1+=x y 与二次函数的图像交于A 、B 两点,其中点A在y 轴上。
(1)二次函数的解析式为y= ; (2)证明点)12,(--m m 不在(1)中所求的二次函数的图像上;(3)若C 为线段AB 的中点,过C 点作x CE ⊥轴于E 点,CE 与二次函数的图像交于D 点。
①y 轴上存在点K ,使以K 、A 、D 、C 为顶点的四边形是平行四边形,则K 点的坐标是 ; ②二次函数的图像上是否存在点P ,使得ABD POE S S ∆∆=2?若存在,求出P 点坐标;若不存在,请说明理由。
3、如图,在直角坐标平面内,O 为坐标原点,A 点的坐标为(1,0),B 点在x 轴上且在点A 的右侧,AB =OA ,过点A 和B 作x 轴的垂线分别交二次函数y =x 2的图象于点C 和D ,直线OC 交BD 于M ,直线CD 交y 轴于点H 。
记C 、D 的横坐标分别为x C ,x D ,点H 的纵坐标y H 。
(1)证明:①S △CMD ∶S 梯形ABMC =2∶3 ②x C ·x D =-y H(2)若将上述A 点坐标(1,0)改为A 点坐标(t ,0),t >0,其他条件不变,结论S △CMD :S 梯形ABMC =2∶3是否仍成立?请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、在平面直角坐标系中,已知点A(4,0),点B(0,3),点P从点A出发,以每秒1个单位的速度在x轴上向右平移,点Q从B点出发,以每秒2个单位的速度沿直线y=3向右平移,又P、Q两点同时出发,设运动时间为t秒.(1)当t为何值时,四边形OBPQ的面积为8;(2)连接AQ,当△APQ是直角三角形时,求Q的坐标.2、如图,在下面直角坐标系中,已知A(-4,a),B(-8,0)(1)请用含a的代数式表示△ABO的面积;(2)若a满足关系式(a+4)2≤0,且以点A、B、O为顶点画平行四边形,则请你“利用平移的知识”直接写出符合条件的所有的平行四边形的第四个顶点C的坐标(3)在(2)的条件下,是否存在x轴上的点M(x,0),使△ABM的面积是△ABO的面积的2倍?若存在,求出点M的坐标;若不存在,请说明理由.(4)在(2)的条件下,请你直接写出y轴上的点N的坐标,使△AON的面积是△ABO的面积的3倍3、如图,A,B两点同时从原点O出发,点A以每秒a个单位长度沿x轴的负方向运动,点B以每秒b个单位长度沿y轴的正方向运动.(1)如图1,若|a+2b-5|+(2a-b)2=0,试分别求出1秒钟后,A,B两点的坐标;(2)如图2,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC,∠FCA,∠ABC的平分线交于点G,过点G作BE的垂线,垂足为H,试问∠AGH,∠BGC的大小关系如何?请写出你的结论并证明;(3)如图3,过A,O两点的直线相交于点N,AB的延长线交ON于点M,若∠MAN=∠NOB,∠BAO-∠N=m°,试求∠AMO的度数.4、如图,在平面直角坐标系中,点B、C在x轴上,OB>OC,点A在y轴正半轴上,AD平分∠BAC,交x轴于点D.(1)若∠B=30°,∠C=50°,求∠DAO的度数?(2)试写出∠DAO与∠C-∠B的关系?(不必证明)(3)若点A在y轴正半轴上运动,当点A运动至点P时,请你作出△BPC及其角平分线PQ,并直接写出∠QPO与∠PBC、∠PCB三者的关系?5、如图1,在平面直角坐标系中,A、B两点同时从原点O出发,点A以每秒m个单位长度沿x轴的正方向运动,点B以每秒n个单位长度沿y轴正方向运动.(1)已知运动1秒时,B点比A点多运动1个单位;运动2秒时,B点与A点运动的路程和为6个单位,求m、n;(2)如图2,设∠OBA的邻补角的平分线、∠OAB的邻补角的平分线相交于点P,∠P的大小是否发生改变?若不变,求其值;若变化,说明理由.(3)若∠OBA的平分线与∠OAB的邻补角的平分线的反向延长线相交于点Q,∠Q的大小是否发生改变?如不发生改变,求其值;若发生改变,请说明理由.6、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①DCP BOPCPO∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变其中有且只有一个是正确的,请你找出这个结论并求其值.7、如图,在平面直角坐标系中,已知三点A(0,a),B(b,0),C(b,c),其中a,b,c满足关系式|a-2|+(b-3)2=0,c=2b-a;(1)求a,b,c的值;(2)如果再第二象限内有一点P(m,1),请用含m的式子表示四边形ABOP的面积,若四边形ABOP的面积与△ABC的面积相等,请求出点P的坐标;(3)若B,A两点分别在x轴,y轴的正半轴上运动,设∠BAO的邻补角的平分线和∠ABO的邻补角的平分线相交于第一象限内一点Q,那么,点A,B在运动的过程中,∠Q的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由8、在平面直角坐标系中,D(0,-3),M(4,-3),直角三角形ABC的边与x轴分别交于O、G两点,与直线DM分别交于E、F点.(1)将直角三角形ABC如图1位置摆放,请写出∠CEF与∠AOG之间的等量关系:(2)将直角三角形ABC如图2位置摆放,N为AC上一点,∠NED+∠CEF=180°,请写出∠NEF与∠AOG 之间的等量关系,并说明理由.9、已知如图,在平面直角坐标系中有四点,坐标分别为A(-4,3)、B(4,3)、M(0,1)、Q(1,2),动点P在线段AB上,从点A出发向点B以每秒1个单位运动.连接PM、PQ并延长分别交x轴于C、D两点(如图).(1)在点P移动的过程中,若点M、C、D、Q能围成四边形,则t的取值范围是,并写出当t=2时,点C的坐标(2)在点P移动的过程中,△PMQ可能是轴对称图形吗?若能,请求出符合条件的点P的坐标;若不能,请说明理由.(3)在点P移动的过程中,求四边形MCDQ的面积S的范围10、如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a-2|+(b-3)2=0,(c-4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,12),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.11、如图1,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)如图2,延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.12、在平面直角坐标系中,横坐标、纵坐标都为整数的点叫做整点.设坐标轴的单位长度为1cm,整点P从原点O出发,速度为1cm/s,且整点P只做向右或向上运动,则运动1s后它可以到达(0,1)、(1,0)两个整点;它运动2s后可以到达(2,0)、(1,1)、(0,2)三个整点;运动3s后它可以到达(3,0)、(2,1)、(1,2)、(0,3)四个整点;…请探索并回答下面问题:(1)当整点P从点O出发4s后可以到达的整点共有个(2)在直角坐标系中描出:整点P从点O出发8s后所能到达的整点,并观察这些整点,说出它们在位置上有什么特点?(3)当整点P从点O出发 s后可到达整点(13,5)的位置.12、如图,△OAB的三个顶点坐标分别为O(0,0),A(5,O)B(2,4).(1)求△ABO的面积,(2)若B(2,4),O(0,0)不变,M点在x轴上,M点在什么位置时,△OBM的面积是△OAB面积的2倍,并说明理由.13、如图,在平面直角坐标系中,A,B,C三点的坐标分别为(0,1),(3,0),(2,2)(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,2),试用含a的式子表示四边形ABOP的面积;(3)在(2)的条件下是否存在点P,使得四边形ABOP的面积与△ABC的面积相等?若存在,请求出点P 的坐标;若不存在,请说明理由14、已知点A(a,0)、B(b,0),且(a+4)2+|b-2|=0.(1)求a,b的值;(2)在y轴上是否存在点C,使得△ABC的面积是12?若存在,求出点C的坐标;若不存在,请说明理由;(3)点P是y轴正半轴上一点,且到x轴的距离为3,若点P沿x轴负半轴以每秒1个长度单位平行移动至Q,当运动的时间t为多少秒时,四边形ABPQ的面积S为15个平方单位?写出此时Q点的坐标.15、如图建立平面直角坐标系,长方形OABC中,A(8,0),点C(0,10),点P从原点出发,以每秒1个单(2)在移动过程中,当点P 到x 轴距离为4个单位长度时,则点P 运动的时间为 秒.(3)若点P 出发11秒时,点Q 以每秒2个单位长度的速度也沿着O-C-B-A-O 的路线运动到点O 停止,求t 为何值时点P 、Q 在运动路线上相距的路程为5个单位长度?15、 如图,长方形OABC 中,O 为平面直角坐标系的原点,A ,C 两点的坐标分别为(3,0),(0,5),点B 在第一象限内.(1)如图,请直接写出点B 的坐(2)若过点C 的直线CD 交长方形OABC 的边于点D ,且把长方形OABC 的周长分为3:1两部分,求点D 的坐标.16、如图1,点A (a ,6)在第一象限,点B (0,b )在y 轴负半轴上,且a ,b 满足:(240a b −++=(1)求△AOB 的面积.(2)若线段AB 与x 轴相交于点C ,在点C 的右侧,x 轴的上是否存在点D ,使S △ACD =S △BOC ?若存在,求出D 点坐标;若不存在,请说明理由.(3)如图2,若∠AOx 轴=60°,射线OA 绕O 点以每秒4°的速度顺时针旋转到OA ′,射线OB 绕B 点以每秒10°的速度顺时针旋转到O ′B ,当OB 转动一周时两者都停止运动.若两射线同时开始运动,在旋转过程中,经过多长时间,OA ′∥O ′B ?17、在直角坐标系中,A (-4,0),B (2,0),点C 在y 轴正半轴上,且S △ABC =18. (1)求点C 的坐标;(2)是否存在位于坐标轴上的点P ,S △APC =12S △PBC ?若存在,请求出P 点坐标;若不存在,说明理由.18、在平面直角坐标系中,A(-1,0),B(0,2),点C在x轴上.(1)如图(1),若△ABC的面积为3,则点C的坐标为(2)如图(2),过点B点作y轴的垂线BM,点E是射线BM上的一动点,∠AOE的平分线交直线BM于F,OG⊥OF且交直线BM于G,当点E在射线BM上滑动时,BEOBOF∠∠的值是否变化?若不变,请求出其值;若变化,请说明理由.19、在直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去,设Pn(x n,y n),n=1,2,3,….(1)依次写出x1、x2、x3、x4、x5、x6的值;(2)计算x1+x2+…+x8的值;(3)计算x1+x2+…+x2003+x2004的值.20、如图:一个粒子在第一象限内及x轴,y轴上运动,在第一分钟内,它从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向来回运动,且每分钟移动1个长度单位.(1)当粒子所在位置分别是(1,1),(2,2),(3,3),(4,4)时,所经过的时间分别是多少?(2)在第2004分钟后,这个粒子所在的位置的坐标是多少?21、问题:如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?(1)小明画出如图的图形,并写出问题:如图,点P在∠AOB的内部,过点P作PE⊥OA,PF⊥OB,垂足分别为E,F,求∠P的度数.请你帮助小明完成解题过程.(2)小刚说,这道题应该还有一种情况:点P在∠AOB的外部.他说的对吗?22、如图,长方形ABCD在平面直角坐标系中,点A(1,8),B(1,6),C(7,6).(1)请直接写出D点的坐标(2)连接线段OB、OD、BD,请直接求出的面积(3)若长方形ABCD以每秒1个单位的速度向下运动,设运动的时间为t秒,问是否存在某一时刻,△OBD的面积与长方形ABCD的面积相等?若存在,请求出t的值;若不存在,请说明理由.23、在△ABC中,∠A=∠C,点E在BC边上,过点E作射线EF∥AB交AC于点F,EM交AC于点M,点N 在射线EF上,且∠EMN=∠ENM,设∠ABC=α,∠MEN=β.(1)如图1,若点M在线段AF上,α=60°,β=30°,求∠FMN的度数;(2)若点M在AC边上(不与点A、C、F重合),α、β为任意角度,探究∠FMN与α、β的数量关系,请在图2中画出图形,并说明理由.24、如图,在△A B C中,AB=AC,BD、CE分别是两腰上的高,且BD、CE相交于O.(1)请你写出三类不同的正确的结论;(2)设∠CBD=α,∠A=β,试找出α与β之间的一种关系等式,并给予适当的说明(友情提示:∠ABC=∠ACB).25、.已知,在四边形ABCD中.∠A=∠C=90゜.(1)求证:∠ABC+∠ADC=180゜;(2)如图1,若DE平分∠ADC,BF平分∠ABC外角,写出DE与BF的位置关系,并证明;(3)如图2,若BF、DE分别平分∠ABC、∠ADC的外角,写出BF与DE的位置关系,并证明.26、如图,四边形ABCD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β,当点P在BC上移动时,猜想α,β与∠B的关系,并说明理由.27、如图,锐角△ABC中,高BE、CF交于点H.(1)若∠BAC=70°,求∠BHC的度数;(2)直接给出四条线段AF、HE、AC、CH之间的数量关系;(3)若AD平分∠BAC交BC于D,AD、CF交于点K,HG平分∠BHC交BC于G.求证:HG∥AD.28、1)如图1,AC平分∠DAB,∠1=∠2,试说明AB与CD的位置关系,并予以证明;(2)如图2,在(1)的条件下,AB的下方两点E,F满足∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E 的补角的和为190°,求∠ABE的度数;(3)如图3,在前面的条件下,若P是BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列结论:①∠DGP-∠MGN的值不变;②∠MGN的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.29、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)求证:AB∥CD;(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE 与∠MCD否存在确定的数量关系?并证明;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论,不需说明理由.30、如图,直线AB∥C D.(1)在图1中,∠B M E、∠E,∠EN D的数量关系为:;(不需证明)在图2中,∠B M F、∠F,∠FN D的数量关系为:(不需证明)(2)如图3,NE平分∠FN D,MB平分∠FM E,且2∠E与∠F互补,求∠FM E的大小.(3)如图4中,∠B M E=60°,EF平分∠M EN,NP平分∠EN D,EQ∥N P,则∠FEQ的大小是否发生变化?若变化,说明理由;若不变化,求∠FEQ的度数.31、如图,在平面直角坐标系xOy中,A,B,C是坐标轴上的定点,平移线段AB得到线段CD,使点A与点C 对应,点B与点D对应.(1)画出线段CD,并写出画法;(2)点P是x轴上的动点(不与点B,C重合),设∠PAC=α,∠PBD=β,∠APB=θ.①当点P在线段BC上时,求证:θ=α+β;②当点P在线段CB(BC)的延长线上时,①中的结论是否成立?并说明理由32、将两个大小不同的含30°角的三角板的直角顶点O重合在一起,保持△COD不动,将△AOB绕点O旋转,设射线AB与射线DC交于点F.(1)如图①,若∠AOD=120°,①AB与OD的位置关系②∠AFC的度数=(2)如图②当∠AOD=130°,求∠AFC的度数.(3)由上述结果,写出∠AOD和∠AFC的关系(4)如图③,作∠AFC、∠AOD的角平分线交于点P,求∠P的度数.33、(1)如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=40°,∠ABC=30°,求∠AEC的大小;(2)如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=m°,∠ABC=n°,求∠AEC的大小;(3)如图③,∠BAD的平分线AE与∠BCD的平分线CE交于点E,则∠AEC与∠ADC、∠ABC之间是否仍存在某种等量关系?若存在,请写出你得结论,并给出证明;若不存在,请说明理由.34、已知:如图(1)所示,D是∠ABC的角平分线和∠ACB的角平分线的交点,过点D作EF∥BC,交AB于E,交AC于F.(1)请你确定EF、BE、CF三者之间的关系,并加以证明.(2)如图(2)所示,当点D为∠ABC的外角的角平分线和∠ACB的外角的角平分线的交点时,EF、BE、CF 三条线段还满足上面的关系吗?若满足,直接写出关系式;若不满足,请写出新的关系式并加以证明.(3)如图(3)所示,当点D为∠ABC的角平分线和∠ACB外角平分线的交点时,EF、BE、CF三条线段还满足上面的关系吗?若满足,直接写出关系式;若不满足,请写出新的关系式并加以证明.35、如图1,在平面直角坐标系中,点A、B的坐标分别为(-1,0)、(3,0),现将线段AB向上平移2个单位,再向右平移1个单位,得到线段CD,连接AC、BD.(1)求点C、D的坐标及四边形ABDC的面积S四边形ABDC;(2)如图2,在y轴上是否存在一点P,连接PA、PB,使S△PA B=S四边形ABDC,若存在这样的一点,求出点P的坐标;若不存在,试说明理由.(3)若点Q在线段CD上移动(不包括C、D两点),QO与线段CD、AB所成的角∠2与∠1如图3所示,给出下列两个结论:①∠2+∠1的值不变②12∠∠的值不变,其中只有一个结论是正确的,请你找出这个结论36、将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.。