重金属对植物生理生化的影响
重金属对植物生长和发育的影响

重金属对植物生长和发育的影响近年来,随着工业化和城市化的加速发展,重金属污染问题愈加突出,成为影响生态环境和人类健康的重要问题之一。
在这些污染物中,重金属因其高毒性、难降解、易积累等特点成为最主要的污染物之一。
重金属的高浓度污染会带来严重的生态环境问题,对植物生长和发育也产生了极大的影响。
重金属对植物的影响是多方面的。
它们不仅会影响植物的生长速度和形态,而且会对植物的基因、蛋白质、酶等产生影响,从而影响植物的代谢和生理过程。
下面我们将从植物生长、生理和分子水平来探讨重金属对植物的影响。
一、植物生长方面的影响重金属能够进入植物体内,并积累在根系、茎、叶中,影响植物的生长和发育。
过量的重金属会影响植物的生理代谢,导致光合作用、呼吸和营养物质的吸收和运输等生理过程受到抑制,进而影响植物的生长速度和形态。
铅、镉、汞等重金属能够累积在植物的不同组织中,严重影响植物在不同生长阶段的发育和生长速度。
比如,高浓度汞、铅、亚铁、钼等重金属的存在会使得种子萌发率降低,发芽延迟,脱落和变黄。
铅、镉、汞等也会阻碍植物细胞的分裂和增殖,引起细胞壁分解和纤维腐解,从而导致幼苗生长速度减缓,形态畸形,茎秆细长,叶片变薄,枯黄早落等生长异常。
甚至在极度污染的情况下,幼苗死亡率会迅速增加,导致植株数量减少。
二、植物生理方面的影响随着重金属进入植物,它们会影响植物的生理代谢和各种生理过程。
例如,重金属的存在对植物的光合作用、呼吸、气孔开放和营养物质的吸收等都会产生影响。
首先,重金属会影响植物的光合作用。
光合作用是植物合成有机物质和释放氧气的主要途径。
然而,重金属的存在会直接阻碍光合作用反应过程中的光反应和暗反应,导致植物无法正常进行光合作用,从而影响其生长和发育。
另一方面,重金属会影响植物的气孔开放和吸收营养物质的过程。
植物的气孔和根系是植物吸收二氧化碳和营养物质的主要途径。
当植物体内有大量的重金属时,植物会受到抑制,导致气孔关闭,降低了植物的二氧化碳吸收率和呼吸速率。
重金属对植物生态的影响研究

重金属对植物生态的影响研究重金属,是指相对标准状态中密度大于5克/立方厘米的金属元素,包括铅、镉、汞等常见的有毒重金属。
这些重金属在环境中普遍存在,会对人类和植物造成不可忽视的影响,尤其是作为一种大量生产和排放的污染物,对生态系统的影响尤其值得关注。
植物是生态系统中最重要的组成部分之一,它们通过吸收土壤中的营养和水分来生存,但同时也会吸收土壤中的污染物。
重金属在植物内部可以积累并影响植物的生长发育,进而影响整个生态系统的平衡。
因此,对重金属对植物生态的影响进行深入研究非常必要。
首先,重金属对植物组织的影响是显著的。
重金属离子可以通过根系渗透到植物内部并在各个部位进行积累,从而使植物形态和生理变化。
例如,铅离子可以降低植物根系的活力和新陈代谢,使植物根部发生变形和脱落;镉则会导致叶片上的气孔关闭以减少水分蒸发,从而降低光合作用对二氧化碳的利用率。
这些影响不仅会影响植物的生长和生产力,还会将积累在植物内部的重金属转移到植食动物体内,对整个生态系统造成连锁反应。
其次,重金属对植物的光合作用和呼吸作用产生深远的影响。
植物光合作用是将光能转化为化学能的过程,是维持植物生命的重要途径。
重金属离子在植物内部累积,会导致光合作用酶的功能受到干扰,进而使植物无法有效地吸收阳光提供的能量,从而影响植物的生长;同时,重金属也会影响植物的呼吸作用,使得植物体内的氧气含量下降,从而影响植物的呼吸和代谢过程。
最后,重金属对植物内部物质代谢的影响也是植物生态中不容忽视的一部分。
植物体内的物质代谢是繁衍生命所必需的过程之一,也是维持生态系统平衡的重要途径。
重金属通过影响植物体内的物质代谢,例如糖类和氨基酸等物质的代谢,会对植物生长发育产生深远的影响。
此外,重金属积累也会影响植物体内肽酶和多酚的合成、分解和转运,影响植物的免疫系统和抗氧化能力。
综上所述,重金属对植物生态的影响非常深远,从形态生理到分子水平都存在显著的影响。
为了保护生态系统的平衡,我们必须对重金属对生态系统的影响进行深入的研究,并尽可能地减少重金属的排放和污染。
重金属对植物生长和生理特性的影响及调控策略研究

重金属对植物生长和生理特性的影响及调控策略研究植物是人类生命的重要组成部分,但面对日益严重的环境污染,植物的生长和生理功能也受到了很大影响。
其中,含有重金属的环境污染是对植物极为不利的因素之一,因此研究重金属对植物的影响,并探究应对策略,对于保护生态环境和人类健康至关重要。
1. 重金属对植物的影响1.1 影响植物的生长和发育重金属能够对植物的生长和发育造成直接的阻碍,其中最常见的就是抑制植物的根系发育,因为重金属在土壤中的大部分都为难溶性状态,对于植物的根尖生长会造成明显的阻碍,进而影响植物的吸收养分和水分的能力。
1.2 影响植物的生理特性重金属还会影响植物的生理特性,主要表现在以下几个方面:(1)影响植物的光合作用:有研究表明,重金属对植物的光合作用产生了不同程度的抑制作用,能够影响光合色素的合成和光合酶的活性。
(2)影响植物的酶活性:重金属对植物体内的酶活性也会产生明显影响。
比如,铅、铜会抑制一些植物体内的酶活性,而镉、锌则可能会刺激酶活性。
(3)影响植物的废物排泄:许多植物在生长期末期会产生一些废物和代谢产物,需要通过各种途径排出。
但是重金属的存在会影响植物废物的代谢和排出,导致蓄积在体内,对植物产生毒害。
2. 植物调控重金属污染的方法2.1 调整土壤环境调整土壤环境是防治重金属污染的一种最直接有效的方法。
根据不同的污染情况,可通过加入生物质炭、复合材料等方法改变重金属离子在土壤中的活性,从而减少其中的有毒成分。
2.2 利用植物吸收和转化能力利用植物的吸收和转化能力是防治重金属污染的另一个可行方法。
目前,已经有很多种植物被用于治理重金属污染的土地环境,比如人工修复和自然修复,其中自然修复能力更强。
2.3 利用新型材料技术利用新型材料技术也是防治重金属污染的一种先进方法。
比如,利用纳米粒子对重金属进行吸附和去除;利用天然材料修复重金属污染,如使用红树林植物寄生在树干上的芦苇等。
3. 结论重金属污染对于植物的危害不可忽视,对于解决环境问题,需要多方面的共同努力。
重金属污染对植物生长和光合作用的影响研究

重金属污染对植物生长和光合作用的影响研究随着现代化的发展以及人类日益增长的活动量,生产和生活排放的废气废水对环境的影响也越来越显著。
其中,重金属污染是目前环境污染中比较严重的一种现象,尤其是对植物生长和光合作用的影响研究已经引起了广泛的关注。
一、重金属对植物生长的影响重金属是指密度大于4.5g/cm^3且比重大于5的金属元素。
在植物生长过程中,它们会通过根系吸收到植物体内,从而对植物的生长和发育造成严重的影响,例如降低植物对养分和水分的吸收能力,影响植物的生理代谢过程,从而引发植物的死亡。
据研究表明,砷、镉、铅、汞等重金属都会对植物生长和发育造成危害。
在生态环境中,重金属会随着风吹水流而参与自然循环。
一旦进入了植物体内,就可能严重影响植物体内酶的代谢水平和养分的吸收速度,从而影响植物的生长和发育。
二、重金属对光合作用的影响光合作用是植物中最重要的生命过程之一,是植物合成有机物质的重要途径。
然而,重金属污染对光合作用的影响却较少有人关注。
重金属离子或离子络合物可以影响光合色素的合成与降解、限制光合膜蛋白能量转移、影响ATP合成、破坏光合膜的完整性,减缓或破坏植物的光合作用作用中罕见物种的保护和开展有益的生态历程。
三、重金属污染对植物的防御和适应机制植物在进化过程中逐渐发展出了针对重金属污染的防御和适应机制。
研究表明,植物在遭受重金属胁迫时,会启动一系列的生理与分子适应反应以抵御外源性压力。
包括通过细胞防御机制降解、抑制或转移重金属离子,维持细胞内环境稳定;提高细胞膜稳定性和代谢能力,以及调节氧化还原系统的功能等。
此外,植物会通过调节膜体组分,即磷脂酰乙醇胺(PA)及其相关器官的含量和分布来适应重金属胁迫。
针对重金属污染的研究更是引起了科学家们极大的兴趣,在未来仍需更深入地探究植物与重金属间的相互关系以及适应机制。
四、针对重金属污染采取有效的措施重金属污染对植物生长和光合作用产生严重影响,也威胁着人类的生存环境。
重金属Cu2+胁迫对绿豆生理生化指标的影响

重金属Cu2+胁迫对绿豆生理生化指标的影响
重金属Cu2+是一种常见的环境污染物,对植物的生理生化过程产生很大影响。
绿豆是一种重要的食用作物和绿化植物,研究重金属Cu2+胁迫对绿豆生理生化指标的影响,有助于了解植物对重金属的响应机制,并为环境保护和植物防护提供科学依据。
绿豆种子在重金属Cu2+胁迫下,幼苗的生长状况受到很大影响。
研究发现,重金属Cu2+的添加导致绿豆幼苗株高和根长显著减少。
与对照组相比,重金属Cu2+胁迫组的绿豆幼苗生长缓慢,生物量减少。
这是因为重金属Cu2+对绿豆根系的发育和营养吸收起到抑制作用,导致营养供应不足,影响植物生长。
重金属Cu2+胁迫还会对绿豆的叶绿素含量和光合作用造成影响。
研究表明,重金属Cu2+胁迫会导致绿豆叶片中叶绿素含量的降低。
与对照组相比,重金属Cu2+胁迫组的绿豆叶片中叶绿素a和叶绿素b的含量显著减少。
这是因为重金属Cu2+胁迫引起叶绿素的破坏和降解,减少了光合作用的光能转化效率。
重金属Cu2+胁迫还会降低绿豆叶片的氧化还原酶活性,抑制抗氧化系统的功能,导致氧化应激的发生。
重金属污染对农作物生长的影响

重金属污染对农作物生长的影响在现代工业化社会中,重金属污染已经成为一个严重的环境问题。
重金属污染指的是镉、铬、汞、铅等重金属元素在环境中的积累,对人类及生态系统产生危害。
这些重金属物质对农作物生长也有明显的影响。
本文将探讨重金属污染对农作物生长的种种影响,并提出可能的解决方案。
首先,重金属污染对土壤的污染会直接影响到农作物的生长。
这些重金属元素通过工业废弃物的排放、化肥的滥用以及土壤自然含量等途径进入土壤。
一旦超过了一定的浓度,重金属物质将对土壤的理化性质产生改变,破坏土壤结构,影响土壤的肥力和透气性。
土壤中的重金属元素会在植物根系吸收到,并通过植物的内物流而积累在植物的各个部位中。
这将导致农作物的生理代谢紊乱,降低植物的抗病能力和产量。
有研究表明,重金属污染对稻谷、小麦等主要粮食作物的生长有明显的抑制作用。
其次,重金属污染对植物的生理特性和养分吸收有着深远的影响。
重金属污染会导致土壤的酸碱度发生变化,进而影响土壤中的氮、磷、钾等养分的有效性。
植物根系吸收养分的能力会因为重金属元素的干扰而降低,长期以往,植物将缺乏必要的营养元素,影响其正常生长和发育。
此外,重金属污染还会干扰植物的光合作用、呼吸和传导等生理过程,导致叶绿素含量下降、气孔关闭,降低了植物光合效率,从而影响农作物的生长速度和产量。
近年来,人们开始意识到重金属污染对农作物的危害,提出了一些解决方案来减轻其影响。
第一,需要加强重金属污染的监测和治理。
通过建立完善的环境监测体系,及时掌握土壤和水体中重金属元素的含量,从源头上控制重金属的排放。
此外,还需要采取一些生物修复技术,如植物吸收和累积修复、微生物降解等手段来清除土壤中的重金属污染物质。
另外,农业生产中的科学管理也能在一定程度上减轻重金属污染对农作物生长的影响。
农民需根据土壤的性质进行适宜施肥,减少化肥的使用量,避免滥用化肥引起的土壤重金属元素浓度过高。
此外,合理轮作、改良土壤结构、配置合理的农作物种植顺序也能减轻农作物暴露在重金属污染中的风险。
植物生理与环境胁迫

植物生理与环境胁迫植物生理学是研究植物体内生命活动的一门学科,它涉及植物的各个方面,包括植物的生长、发育、营养吸收、代谢、生殖等。
植物与环境之间的关系密切,植物的生理过程会受到环境条件的影响,而环境胁迫则对植物产生很大的影响。
本文将重点探讨植物生理与环境胁迫之间的关系。
一、温度胁迫对植物生理的影响温度是植物生长发育的重要因素之一。
适宜的温度有助于植物正常的生理活性,而过高或过低的温度则会对植物产生不良影响。
高温胁迫会导致植物的光合作用减弱,蛋白质的结构和功能受损,影响植物的生长发育和产量。
低温胁迫则会抑制植物的生理过程,减缓植物的生长速度,甚至造成冻害。
二、水分胁迫对植物生理的影响水分是植物生长发育的限制因素之一。
干旱和水涝是常见的水分胁迫形式。
干旱胁迫会导致植物水分亏缺,影响根系的吸水和水分的传输,使植物体内的正常生理功能受到抑制,导致生长发育受阻。
水涝胁迫则会导致土壤氧气供应不足,根系受到缺氧的影响,从而导致植物呼吸过程受损。
三、光照胁迫对植物生理的影响光照是植物进行光合作用的重要能源。
但是,过强或过弱的光照都会对植物产生不良影响。
强光照胁迫会导致光合作用过程中过量的光能无法正常利用,引发氧化损伤,并严重影响植物的生长发育。
弱光照胁迫则会限制光合作用的进行,导致植物体能和产量下降。
四、盐碱胁迫对植物生理的影响盐碱是指土壤中盐类和碱类的累积,会对植物产生负面影响。
盐碱胁迫会导致植物体内的渗透压增加,从而限制了水分的吸收和根系的正常生长。
盐分还会通过根系进入植物体内,导致蛋白质和酶的失活,影响植物的生理代谢。
五、重金属胁迫对植物生理的影响重金属是指在土壤中过量累积的金属元素,例如铅、镉、汞等。
重金属胁迫会导致植物体内酶活性的减弱,破坏植物体内的氧化还原平衡,使植物产生氧化损伤。
此外,重金属还会影响植物的根系生长和根毛形成,进一步阻碍植物的养分吸收。
综合以上所述,植物生理与环境胁迫之间有着密切的联系。
植物对重金属污染的生理适应机制研究与应用

植物对重金属污染的生理适应机制研究与应用在当今的环境中,重金属污染已成为一个严峻的问题。
随着工业的快速发展、采矿活动的增加以及农业中化学物质的不合理使用,大量的重金属如镉、铅、汞、铬等进入土壤、水体等生态系统,对生物的生存和生态平衡构成了严重威胁。
在这一背景下,深入研究植物对重金属污染的生理适应机制不仅有助于揭示植物的生存策略,还为环境污染的治理和生态修复提供了重要的理论基础和实践指导。
植物在长期的进化过程中,形成了一系列复杂而精妙的生理适应机制来应对重金属的胁迫。
首先,植物可以通过细胞壁的吸附和沉淀作用来限制重金属进入细胞内部。
细胞壁作为植物细胞的第一道屏障,其主要成分如纤维素、半纤维素和果胶等富含带负电荷的官能团,能够与重金属离子结合,从而减少重金属向细胞内的运输。
细胞膜在植物抵御重金属污染方面也发挥着关键作用。
细胞膜上的转运蛋白可以调节重金属离子的吸收和排出。
例如,一些阳离子转运蛋白可以将过量的重金属离子排出细胞,以维持细胞内的离子平衡。
同时,细胞膜的脂质组成和流动性也会影响其对重金属的通透性,从而间接影响植物对重金属的耐受性。
植物体内的抗氧化系统在应对重金属胁迫时也会被激活。
重金属离子会诱导植物体内产生活性氧(ROS),如超氧阴离子、过氧化氢和羟基自由基等。
这些活性氧物质如果大量积累,会对细胞造成氧化损伤。
为了消除活性氧的危害,植物体内的抗氧化酶系统,包括超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)等会协同作用,将活性氧转化为无害的物质。
此外,非酶类抗氧化物质,如抗坏血酸、谷胱甘肽等,也能够直接清除活性氧,保护细胞免受氧化损伤。
植物还可以通过螯合作用来降低重金属的毒性。
植物体内的一些有机物质,如金属硫蛋白(MTs)和植物螯合肽(PCs),能够与重金属离子结合形成稳定的复合物。
这些复合物被隔离在液泡中,从而减少了重金属对细胞内重要细胞器和生物大分子的损伤。
重金属进入植物细胞后,还会影响植物的基因表达和蛋白质合成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重金属对植物生理生化特性的影响(综述)摘要随着工农业的迅速发展,环境污染日益严重,特别是重金属在环境中的释放严重污染了土壤、水体和大气,并且可通过食物链进人生物体,危害人类健康,因此,重金属污染已成为世界性的重大环境问题。
重金属的来源有多种途径,除采矿区的尾矿、矿渣、冶炼、有毒气体的排放之外,还有城市垃圾、金属电镀、汽车尾气排放、工业企业向环境排放的“三废”、化工产品在农业中的不合理使用、农田的污水灌溉等等,这些途径都将导致环境的重金属污染。
通常植物在受到重金属污染时都会出现生长迟缓、植株矮小、根系伸长受抑制直至停止、叶片褪绿、出现褐斑等症状,严重时甚至导致作物产量降低和植物死亡[1,2]。
多年来,人们就重金属对植物的毒害作用做了大量的研究工作,特别是近年来有关重金属对植物毒害的分子机理也有较多报道,本文就重金属对植物生理生化的影响的研究现状作一综述。
关键字:重金属,植物,生理生化。
1.影响植物根系对土壤营养元素的吸收重金属污染能影响植物根系对土壤中营养元素的吸收,其主要原因是影响了土壤微生物的活性,影响了酶活性。
重金属与某些元素之间有拮抗作用,也可能会影响植物对某些元素的吸收。
沈阳农业大学张宁、唐咏[3]的研究表明,Cr能明显降低水生植物凤眼莲的根系活力,影响植株生长。
2.引起植物细胞超微结构的改变当植物受到重金属毒害未出现可见症状之前,实际上在细胞内部已有亚细胞结构的变化,从而导致这些细胞器参与的生理生化功能抑制或丧失。
据彭鸣、王焕校等人[2]的研究表明,当重金属污染较轻时,细胞核、线粒体、叶绿体等细胞器没有明显变化,这时植株外部形态也不会表现出很明显的受害症状。
而污染严重时,细胞核、线粒体、叶绿体等细胞器的结构均被破坏,此时植株外部形态会表现出叶片褪绿、萎蔫,根生长受抑制,乃至植株死亡。
3.影响细胞膜透性重金属能影响植物细胞膜透性。
王正秋[4]等对Pb2+,Cr3+,Zn2+对芦苇幼苗质膜的影响进行了研究,结果表明Pb2+,Cr3+,Zn2+对芦苇幼苗根系和叶片的电解质渗漏影响显著,且随处理浓度的增加和处理时间的延长而加剧,其中Cr3+和Zn2+的作用更明显。
张宁、唐咏[3]的研究表明,Cr3+污染可增加凤眼莲膜脂过氧化,并使其细胞膜透性增加,且伤害程度与Cr3+浓度呈正相关,而且膜脂过氧化的发生要早于膜透性的改变。
目前,细胞膜透性被广泛地用作评定植物对重金属反应的方法之一。
4.影响植物光合作用和呼吸作用对于重金属对植物光合作用的影响研究比较广泛,结果表明,对光合作用的影响是植物受害的主要原因。
许多研究[3]说明,重金属Cr3+可使高等植物的叶绿素含量明显降低,原因是重金属离子直接干扰了叶绿素的生物合成。
在大麦幼苗中,Cr3+通过影响原叶绿素酸酯还原酶的活性抑制叶绿素的合成。
据王泽港[5]等报道,重金属离子对叶绿素的影响不是由于取代叶绿素卟啉环中的Mg,而是通过影响叶绿素合成酶以及抑制一些参与光合作用的酶的活性等其他途径而产生的。
张宁、唐咏[3]就Cr3+对凤眼莲光合作用的影响进行了研究,结果表明,较低浓度Cr3+时(Cr≤0.025mmol/L),凤眼莲叶绿素含量有所增加,而较高浓度Cr3+时(Cr3+>10.05mmol/L )叶绿素含量降低,且对叶绿素a的影响要大于叶绿素b,此结果也说明凤眼莲对重金属有一定的抗性。
5.影响植物物质代谢引起化学成分变化重金属污染可影响到植物的物质代谢,从而引起植物体中各种营养成分的变化。
首先,重金属污染可影响植物体中氨基酸含量的变化,如Cr3+在蚕豆种子中存在微量时,可刺激必需氨基酸含量的增加,但超过一定含量后,必需氨基酸含量低于对照,表现为显著负相关。
不同氨基酸的敏感程度不同,其中变化最剧烈的为脯氨酸。
低浓度Cr3+时,脯氨酸含量增加,Cr3+大量积累时又迅速减少。
脯氨酸含量的这种变化可能具有某种生理意义,通常把脯氨酸看作是植物体内的氨基酸库,当植物受到环境胁迫时,体内氨基酸含量发生很大变化,因此,可把脯氨酸含量变化作为植物体内氨基酸代谢是否发生障碍的指标。
重金属可影响植物体中蛋白质的含量,其作用机理尚不十分清楚,可能与干扰蛋白质合成系统的Mg和K有关,也可能直接以DNA为靶子,干扰基因表达,从而影响蛋白质合成。
重金属污染对植物体的糖代谢也有明显影响。
但也有一些相关报道表明,不同重金属对不同植物的影响有所不同,其规律性也不完全一致。
6.重金属导致产生大量自由基,引起膜脂过氧化许多研究认为[4—6],重金属对植物的伤害与自由基的产生有关。
自由基是指含有未配对电子的原子、原子团或特殊状态的分子,其中以氧自由基(oxygen free radical,OFR)对生物体的危害最大。
生物体主要通过抗氧化酶系统防御自由基损伤,此酶系统包括超氧化物歧化酶(superoxide dis—mutase,SOD)、过氧化氢酶(catalase,CAT)、过氧化物酶(peroxidase,POD)。
当重金属污染时,产生大量自由基引起膜组分不饱和脂肪酸的过氧化,从而影响细胞膜的结构和功能,进而引起DNA损伤,改变RNA从细胞核向细胞质的运输。
唐咏[3]的研究结果表明,重金属Pb能改变植物体内防御酶的活性,当Pb浓度较低时,辣椒幼苗的防御酶(POD、SOD)活性有所升高,但超过一定量时(Pb 浓度≥40mol/L),酶活性降低,且处理时间越长作用越明显。
这可能是自由基引起的伤害积累超过了防御酶系统的清除能力,抑制了活性。
同时也说明防御酶系统只能在低浓度重金属和短时间内起保护作用。
Gallego[3]等人的研究表明,Cu、Fe 对植物的影响是直接参与反应,产生自由基,而Cr 是通过间接的方式产生自由基。
如果用自由基清除剂和这些重金属离子一起作用于植物,则对各种酶活性及氧化胁迫都会减轻。
另外,活性氧自由基的累积可引发并加剧膜脂过氧化作用,膜脂过氧化的最终产物是丙二醛(MDA),MDA可与质膜内的氨基酸、蛋白质、不饱和脂肪酸等生物大分子发生反应,阻止新脂类的合成,使膜受到损伤,破坏膜的结构。
所以,膜脂过氧化作用一方面可引起DNA损伤,改变RNA从细胞核向细胞质的运输,同时也可影响细胞膜的结构和功能。
因此常把MDA含量作为反映脂质过氧化作用强弱的一个指标。
7.重金属之间的协同以及拮抗效应铅和铬都是植物生长的非必需元素,虽然它们对植物的作用截然相反,但它们之间存在着复杂的交互影响关系。
总结了铅、铬对植物的生物效应,铅铬交互作用对植物的影响,包括:对元素的吸收积累,酶活性,细胞分裂等,论述了其主要影响因素,并探讨了Pb2+- Cr3+拮抗和Pb2+- Cr3+协同作用的可能机理。
铅污染对植物的生长发育有毒害作用,关于这方面的研究工作,世界各国都做了很多综述。
铅能与许多营养元素包括铬、硒、铜、锰、铁、钙、钾、磷等产生交互作用。
其中,铬是生命过程中重要的微量元素之一。
本文就铅、铬及铅与铬交互作用对植物的生长发育的影响及其影响因素作一综述,并探讨铅与铬交互作用的可能机理,为环境中铅和铬污染防治提供科学依据。
7.1铅和铬的交互作用对植物的影响铬是植物生长的必需元素,是很多酶的组成成分,参与植物的呼吸和氧化过程,与叶绿素和生长素的合成有关,还参与碳水化合物的转化。
铅、铬具有相同的核外电子构型,化学性质相似,存在复杂的交互作用。
目前国内外研究结果主要有两种:拮抗和协同作用,主要是从定性的角度去研究,而在动力学定量方面的研究报道甚少[2—7]。
7.1.1拮抗作用大量实验研究证明向土壤施铬可抑制植物对铅的吸收。
Bipasha[3]等报道在亚麻培育中,用0.1mmol/L Pb2++0.1mmol/L Cr3+处理与用0.1mmol/L Pb2+单独处理相比较,新生根和茎中的铅量分别减少32.7%,58.3%。
McKenna[3]等报道施铬可明显抑制莴苣和菠菜根部对铅的吸收,且阻止Pb2+从根系的木质部运输到茎叶部。
从植物的生理特性变化角度来研究铬肥对铅污染的影响,也有不少报道。
在铅污染的情况下,施铬可提高小麦的光合作用、POD的活性,增强质膜的稳定性,降低小麦体内脯氨酸的含量,从而提高小麦对铅污染胁迫的抵御能力。
在其它植物如水稻、玉米、土豆、萝卜、番茄等也存在Cr3+对Pb2+的拮抗作用,加Cr3+可减少其对Pb2+的吸收积累以及影响其生理特性。
7.1.2协同作用另一些研究表明[3],施铬可促进植物对铅的吸收积累及降低各种抗氧化酶的活性。
在铅污染的土壤上施铬肥,能提高土壤中有效态铅含量,从而提高小麦籽粒中的铅含量;可是在铬污染的土壤上施铅,虽然能提高土壤中有效态铬含量,但是小麦籽粒中铬的含量却降低。
Nan等研究土壤作物系统中铅铬交互作用结果与此有一定差异,其结论是在铅(铬)污染土壤中施铬(铅)均能增加春小麦和玉米中的铅(铬)含量,这可能是由于铅铬的量、土壤性质、作物种类等的不同。
另有报道,加入Cr3+使Pb2+各处理浓度中的水车前体内的SOD、POD、CAT三种防御酶活性降低,且随铬浓度增大,差异显著增强,使得铅的毒害作用增强。
7.2影响铅铬交互作用的因素铅铬交互作用对植物的影响是很复杂的,影响铅铬交互作用的因素主要有:植物种类、植物部位、铅铬绝对含量及其比值等。
曾有报道[3]在同一土壤中,且Pb2+、Cr3+质量分数相同,在玉米籽实中,Pb2+- Cr3+之间表现为互相抑制作用,在大豆籽实中则表现为协同作用。
最近作者利用小白菜田间实验研究铅铬相互作用的结果显示,对于小白菜根部和茎部,当土壤中Pb2+加入量在0~30mg/L时Pb2+- Cr3+呈协同作用,在30~50mg/L时Pb2+- Cr3+呈拮抗作用;而对叶部,当Pb2+加入量在0~20mg/L时Pb2+- Cr3+呈协同作用,在20~50mg/L时Pb2+- Cr3+呈拮抗作用。
余国莹等[3]探讨铅、铬相互作用对小麦种子根生长的影响,对根系活力、过氧化物酶活性及根尖细胞有丝分裂指数进行了测定,其结果表明,当c(Cr3+)/c(Pb2+)>10时,同一水平Cr3+处理中,Pb2+对Cr3+表现为协同作用,而同一水平Pb2+处理中,Cr3+对Pb2+表现为拮抗;当c(Cr3+)/c(Pb2+)<10时,Cr3+对Pb2+表现为协同,而Pb2+对Cr3+则表现为拮抗。
当然对不同植物、不同部位,剂量-效应关系会不大一致。
7.3 铅铬交互作用的机理7.3.1 Pb2+- Cr3+拮抗的机理在对铅和铬的复合作用的研究中发现,铬和铅之间存在着明显的拮抗作用,这可能是由于Cr3+一和Pb2+结合生成沉淀,致使复合污染物的毒性明显减小。
7.3.2 Pb2+- Cr3+协同的机理Pb2+- Cr3+协同的机理在国内外对此研究较少。