带电粒子在复合场中运动专题
高中物理-第一篇 专题三 微专题4 带电粒子在复合场中的运动

(2)电场的电场强度大小E以及磁场的磁感应强度大小B;
答案
mv2 6qL
2 3mv 3qL
1234
对粒子从Q点运动到P点的过程,根据动能
定理有 -qEL=12mv2-12mv02 解得 E=6mqvL2
设粒子从Q点运动到P点的时间为t1,有
0+v0sin 2
θ·t1=L
1234
解得
t1=2
3mv02 3qE
⑤
竖直方向的位移 y=0+2 vyt=m6qvE02
⑥
则粒子发射位置到P点的距离为
d=
x2+y2=
13mv02 6qE
⑦
(2)求磁感应强度大小的取值范围; 答案 3-3q3lmv0<B<2mqlv0
设粒子在磁场中运动的速度为 v,结合题意及几何
关系可知,v=sinv60 0°=233v0
垂直于纸面向外的匀强磁场.OM上方存在电场强度大小为E的匀强电场,
方向竖直向上.在OM上距离O点3L处有一点A,在电场中距离A为d的位置
由静止释放一个质量为m、电荷量为q的带负电的粒子,经电场加速后该
粒子以一定速度从A点射入磁场后,第一次恰好不从ON边界射出.不计粒
子的重力.求:
(1)粒子运动到A点时的速率v0;
d.N边界右侧区域Ⅱ中存在磁感应强度大小为B、方向垂直于纸面向里的匀
强磁场.M边界左侧区域Ⅲ内,存在垂直于纸面向外的匀强磁场.边界线M
上的O点处有一离子源,水平向右发射同种正离子.已知初速度为v0的离子 第一次回到边界M时恰好到达O点,电场及两磁场区域
足够大,不考虑离子的重力和离子间的相互作用.
(1)求离子的比荷;
迹如图乙所示,设此时的轨迹圆圆心为O2,半
专题复习-带电粒子在复合场中的运动

四﹑解题规律 带电微粒在组合场、 复合场中的运动问题是电磁 带电微粒在组合场 、 学与力学知识的综合应用, 学与力学知识的综合应用 , 分析方法与力学问题 分析方法基本相同, 分析方法基本相同 , 只是增加了电场力和洛伦兹 力,解决可从三个方面入手: 解决可从三个方面入手: 1. 力学观点:包括牛顿定律和运动学规律 力学观点: 2. 能量观点:包括动能定理和能量守恒定律 能量观点: 3. 动量观点:包括动量定理和动量守恒定律 动量观点:
解: (1)小球受力如图所示 小球受力平衡时速度最大 小球受力如图所示, 小球受力如图所示 小球受力平衡时速度最大, f FB N 1 = FE + FB = Eq + Bqv m N
1
mg = f = µN 1 = µ ( Eq + Bqv m )
FE mg
mg E 0.1 × 10−2 10 vm = − = − = 5(m/s ) −4 0.5 µBq B 0.2 × 0.5 × 4 × 10 f (2)电场反向后 小球受力如图所示 电场反向后, 电场反向后 小球受力如图所示: FE 开始时, 小球向下加速运动, 开始时,FB =0, 小球向下加速运动,
专题复习:带电粒子在复合场中的运动 例 专题复习:带电粒子在复合场中的运动-例4 如图所示, 例4. 如图所示,纸平面内一带电粒子以某一速度做 直线运动, 直线运动 , 一段时间后进入一垂直于纸面向里的圆 形匀强磁场区域(图中未画出磁场区域) 形匀强磁场区域 ( 图中未画出磁场区域 ) , 粒子飞 出磁场后从上板边缘平行于板面进入两面平行的金 属板间,两金属板带等量异种电荷, 属板间 , 两金属板带等量异种电荷 , 粒子在两板间 经偏转后恰从下板右边缘飞出。已知带电粒子的质 经偏转后恰从下板右边缘飞出。 量为m,电量为 电量为q,其重力不计, 量为 电量为 ,其重力不计,粒子进入磁场前的速 度方向与带电板成θ=600角。匀强磁场的磁感应强度 度方向与带电板成 带电板长为l, 板距为d, 为B, 带电板长为 板距为 板间电压为U。试解答: 板间电压为 。试解答: (1)上金属板带什么电 )上金属板带什么电? θ (2)粒子刚进入金属板时速度为多大 ) (3)圆形磁场区域的最小面积为多大 )圆形磁场区域的最小面积为多大?
带电粒子在复合场中的运动整理

专题:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.1对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.2在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.3对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器2.磁流体发电机3.电磁流量计.4.质谱仪5.回旋加速器1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系重力忽略不计2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.不考虑重力作用,离子荷质比q/mq、m分别是离子的电量与质量在什么范围内,离子才能打在金属板上4.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:1当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;2两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;3电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.5.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m,电量+q的粒子在环中作半径为R的圆周运动,A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A板时,A板电势升高为U,B板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B板时,A板电势又降为零,动能不断增大,而绕行半径不变.l设t=0时粒子静止在A板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n圈回到A板时获得的总动能E n.2为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时的磁感应强度B n.3求粒子绕行n圈所需的总时间t n设极板间距远小于R.4在2图中画出A板电势U与时间t的关系从t=0起画到粒子第四次离开B板时即可. 5在粒子绕行的整个过程中,A板电势是否可始终保持为+U为什么RAB6.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=×10-27㎏、电荷量为q =+×10-19C的α粒子不计α粒子重力,由静止开始经加速电压为U=1205V的电场图中未画出加速后,从坐标点M-4,2处平行于x轴向右运动,并先后通过两个匀强磁场区域.1请你求出α粒子在磁场中的运动半径;2你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;3求出α粒子在两个磁场区域偏转所用的总时间.7.如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在y≥0的区域内q=+、质量还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=一带电量0.2Cm=的小球由长0.4m0.4kgl=的细线悬挂于P点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.g=10m/s2,求:1小球运动到O点时的速度大小;2悬线断裂前瞬间拉力的大小;3ON间的距离8.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB,并垂直AC 边射出不计粒子的重力.求: 1两极板间电压;2三角形区域内磁感应强度;3若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.9.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求:1微粒再次经过直线OO´时与O 点的距离; 2微粒在运动过程中离开直线OO ´的最大高度;3水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.M O O ´ v B EO t /s B /T5π 15π 25π 35π 10π 20π 30π10.如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m.现有一质量m =4×10-20kg,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B =、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:1粒子在磁场中做圆周运动的半径; 2粒子在磁场中运动的时间; 3圆形磁场区域的最小半径;4若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.11.如图所示,在x>0的空间中,存在沿x 轴方向的匀强电场,电场强度E=10N/C ;在x<0的空间中,存在垂直xy 平面方向的匀强磁场,磁感应强度B=.一带负电的粒子比荷q/m=160C/kg,在x=0.06m 处的d 点以8m/s 沿y 轴正方向的初速度v 0开始运动,不计带电粒子的重力.求: 1带电粒子开始运动后第一次到达y 轴时的坐标. 2带电粒子进入磁场后经多长时间会返回电场. 3带电粒子的y 方向分运动的周期. 30OP Av12.如图所示,一绝缘圆环轨道位于竖直平面内,半径为R,空心内径远小于R.以圆环圆心O为原点在环面建立平面直角坐标系xOy,在第四象限加一竖直向下的匀强电场,其他象限加垂直环面向外的匀强磁场.一带电量为+q、质量为m的小球在轨道内从b点由静止释放,小球刚好能顺时针沿圆环轨道做圆周运动.1求匀强电场的电场强度E.2若第二次到达最高点a,小球对轨道恰好无压力,求磁感应强度B.3求小球第三次到达a点时对圆环的压力.13.如图所示的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为B,右边是一个电场强度大小未知的匀强电场,其方向平行于OC且垂直于磁场方向.一个质量为m,电荷量为-q的带电粒子从P孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=60°,粒子恰好从C孔垂直于OC射入匀强电场,最后打在Q点,已知OQ=2OC,不计粒子的重力,求:1粒子从P运动到Q所用的时间t.2电场强度E的大小.3粒子到达Q点的动能E kQ.14.如图所示,在半径为R的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板问距离为两板与电动势为E的电源连接,一带电量为一质量为-q、质量为m的带电粒子重力忽略不计,开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出,己知带电粒子与筒壁的碰撞无电荷量的损失,且每次碰撞时间极短,碰后以原速率返回.求:1筒内磁场的磁感应强度大小.2带电粒子从A点出发至第一次回到A点射出所经历的时间.专题二:带电粒子在复合场中的运动——参考答案1 1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O点4R 处飞越x 轴如图所示图中电场与磁场均未画出故有L =2R,L =2×2R,L =3×2R 即 R =L /2n,n=1、2、3………………… ①设粒子静止于y 轴正半轴上,和原点距离为h,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE n =l 、2、3……2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+R 1一d/22,R 1=5d/4……④ R 22=2d 2+R 2一d/22,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U.24、解析:1根据动能定理,得20012eU mv =解得002eU v m =2欲使电子不能穿过磁场区域而打在荧光屏上,应有mv r d eB=<而212eU mv =由此即可解得222d eB U m <HPBv45°打在荧光屏上的位置坐标为x,则由轨迹图可得2222x r r d =-- 注意到mv r eB=和212eU mv =所以,电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系为222222(22)()2d eB x emU emU d e B U eB m =--≥35、解析:1E n =nqv2∵nqU=½mv 2n∴v n =m nqU2 Rmv n 2=qv n B n B n =mv n /qR以v n 结果代入,B n =qR m m nqU 2=R 1qnmv2 3绕行第n 圈需时n v R π2=2πR qv m 2n 1 ∴t n =2πR qv m 21+21+31+……+n14如图所示,对图的要求:越来越近的等幅脉冲5不可以,因为这样粒子在A 、B 之间飞行时电场对其做功+qv,使之加速,在A 、B 之外飞行时电场又对其做功-qv 使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大; 6、解析:1粒子在电场中被加速,由动能定理得 221mv qU =α粒子在磁场中偏转,则牛顿第二定律得rv m qvB 2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--q mU B r m 2由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为3带电粒子在磁场中的运动周期qBmv r T ππ22==O M 2 -22-4 4 x /my /m -2 vB B4,2-α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间 631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qB m T t πs 47、解:1小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② 2小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ 3绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧8、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB = 在磁场中运动半径d l r AB 23431== ∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401=方向垂直纸面向里 ⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ……… 2分 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 049、解:1由题意可知,微粒所受的重力 G =mg =8×10-3N电场力大小F =Eq =8×10-3N因此重力与电场力平衡微粒先在洛伦兹力作用下做匀速圆周运动,则2v qvB m R=解得 R =mvBq=0.6m 由 2RT vπ=解得T =10πs则微粒在5πs 内转过半个圆周,再次经直线OO´时与O 点的距离 l = 2R =1.2m2微粒运动半周后向上匀速运动,运动的时间为t =5πs,轨迹如图所示,位移大小 s =vt =πm=1.88m因此,微粒离开直线OO´的最大高度 h =s +R =2.48m3若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´下方时,由图象可知,挡板MN 与O 点间的距离应满足L =+m n =0,1,2…若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´上方时,由图象可知,挡板MN 与O 点间的距离应满足 L =+ m n =0,1,2…若两式合写成 L =+ m n =0,1,2…同样给分 510、解:1由r v m qvB 2=,vrT π2=得:m qBmvr 3.0==2画出粒子的运动轨迹如图,可知T t 65=,得:s s qB m t 551023.5103535--⨯=⨯==ππ 3由数学知识可得:︒︒+=30cos 30cos 2r r L 得:m qB mv L 99.010334)134(=+=+=11.1y=0.069m2t=3T== 12.12313.12314.12。
高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】

专题分层突破练9带电粒子在复合场中的运动A组1.(2021湖南邵阳高三一模)如图所示,有一混合正离子束从静止通过同一加速电场后,进入相互正交的匀强电场和匀强磁场区域Ⅰ。
如果这束正离子束在区域Ⅰ中不偏转,不计离子的重力,则说明这些正离子在区域Ⅰ中运动时一定相同的物理量是()A.动能B.质量C.电荷D.比荷2.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。
匀强磁场与盒面垂直,加速器接在交流电源上,A处粒子源产生的质子可在盒间被正常加速。
下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度3.(2021四川成都高三二模)如图所示,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103 N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直于坐标平面向外的匀强磁场。
一个质量m=1×10-10 kg、电荷量q=1×10-6 C的带正电粒子,以v0=6×103 m/s的速率从坐标原点O沿x轴正方向进入电场。
不计粒子的重力。
(1)求粒子第一次离开电场时的速度。
(2)为使粒子能再次进入电场,求磁感应强度B的最小值。
4.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为d),(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿(0,0),(0,√33着y轴负方向的匀强电场,电场强度大小为E。
一质量为m、电荷量为-q的粒子从y轴上的某点M 由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。
(1)求M点到O点的距离。
专题带电粒子在复合场中的运动

专题:带电粒子在复合场中的运动基础知识一、复合场的分类:] 1、复合场:即电场与磁场有明显的界线,带电粒子分别在两个区域内做两种不同的运动,即分段运动,该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.2、叠加场:即在同一区域内同时有电场和磁场,些类问题看似简单,受力不复杂,但仔细分析其运动往往比较难以把握。
二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛伦兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛伦兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛伦兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器如图所示,粒子经加速电场后得到一定的速度v,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中出去,则有qvB=qE,v=E/B,若v= v=E/B,粒子做直线运动,与粒子电量、电性、质量无关若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>E/B,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.2.磁流体发电机如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速。
专题三第3讲带电粒子在复合场中的运动

且速度与y轴负方向成45°角,不计粒子所受的重力.求:
栏目 导引
专题三 电场与磁场
(1)电场强度E的大小; (2)粒子到达a点时速度的大小和方向; (3)abc区域内磁场的磁感应强度B的最小值.
栏目 导引
专题三 电场与磁场
解析:(1)设粒子在电场中运动的时间为 t,则有 x= v0t= 2h 1 2 y= at = h 2 qE= ma mv2 0 联立以上各式可得 E= . 2qh
有什么特点?能确定电性吗?
(3) 带电微粒进入第三象限做匀速圆周运动,重力和电场力 应具有什么关系?
栏目 导引
专题三 电场与磁场
【解析】 (1)在第一象限内,带电微粒从静止开始沿 Pa 做匀 加速直线运动,受重力 mg 和电场力 qE1 的合力一定沿 Pa 方 向,电场力 qE1 一定水平向左. 带电微粒在第四象限内受重力 mg、 电场力 qE2 和洛伦兹力 qvB 做匀速直线运动, 所受合力为零. 分析受力可知微粒所受电场 力一定水平向右,故微粒一定带正电. 所以,在第一象限内 E1 方向水平向左(或沿 x 轴负方向 ). 根据平行四边形定则,有 mg=qE1tan θ 解得 E1= 3mg/q.
值.(不考虑粒子间相互影响)
栏目 导引
专题三 电场与磁场
【解析】 (1)当粒子的运动轨迹恰好与 MN 相切时, r 最大, mv2 mv0 0 粒子速度最大由 qv0B= ,得 r0= r0 qB r0 由几何关系可知,此时 sin 45° = d- r0 d 得 r0= = ( 2- 1)d 2+ 1 qBd 2- 1 qBd 两者联立,解得: v0= = m m 2+ 1 qBd 2- 1 即粒子速度的取值范围为 0< v′0≤ . m
高二物理专题练习-带电粒子在复合场中的运动大题专题(详细解答)

专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
带电粒子在复合场中运动专题

带电粒子在复合场中运动专题带电粒子在复合场中的运动是研究电磁学的重要问题之一。
复合场是指同时存在电场和磁场的场景,这种场景在自然界中广泛存在,例如电磁波、天体等,也在工程应用中得到广泛应用,例如地球磁场、医学影像等。
带电粒子在单一场中的运动在理解带电粒子在复合场中运动之前,我们需要先了解带电粒子在单一场中的运动。
在电场中,带电粒子会受到电场力的作用,从而在电场力的作用下做直线运动。
在磁场中,带电粒子会受到洛伦兹力的作用,从而顺着磁力线做螺旋运动。
这些都是比较基础的电磁学知识,这里不再详细讨论。
带电粒子在复合场中的运动在复合场中,带电粒子受到的是电场力和洛伦兹力的共同作用,因此它的运动轨迹就变得非常复杂。
具体来说,当电场和磁场方向垂直时,带电粒子的运动轨迹是一个圆形轨迹;当电场和磁场方向不垂直时,带电粒子的运动轨迹是一个螺旋形轨迹。
对于一般情况下的复合场,我们可以通过综合考虑电场和磁场的不同方向,得到带电粒子的具体轨迹。
在实际应用中,比如医学影像中的磁共振成像、天体物理学中的宇宙射线等,都涉及到带电粒子在复合场中的运动。
应用实例:医学影像中的磁共振成像医学影像领域中的磁共振成像(Magnetic Resonance Imaging,MRI)是一种非常常见的影像技术。
其中,磁共振成像剖面中的图像显示了人体基本组织和器官的细节,从而对诊断疾病起到了重要的作用。
磁共振成像的关键是产生一种特定的复合场,从而对人体组织产生特定的影响,从而得到影像。
在磁共振成像中,主磁场是垂直于病人身体的一个长方向的静磁场,而辅助磁场则是通过各种方式产生的交变磁场和脉冲磁场。
在此复合场的作用下,人体内的氢原子会产生共振现象,从而产生极低频信号,通过信号采集和处理后,便得到了图像。
磁共振成像是一种非常成功的医学诊断技术,它的关键是对带电粒子在复合场中运动的理解和应用。
结论带电粒子在复合场中的运动问题是电磁学研究的重要问题之一,在实际应用中也经常涉及到该问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合场专题(1)1.复合场模型电场、磁场、重力场(或其中两种场)并存于同一区域的情况。
2.带电粒子在复合场中的运动情况分析(1)当带电粒子在复合场中所受合力为零时,做匀速直线运动(如速度选择器)或处于静止状态。
(2)当带电粒子所受的重力与电场力等值反向,络伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。
3.带电粒子在复合场中的受力情况分析带电粒子在复合场中的运动问题是电磁学知识和力学知识的结合,分析方式和力学问题的分析方式基本相同,即均用动力学观点、能量观点来分析,不同之处是多了电场力、络伦兹力,二力的特点是电场力做功与路径无关,络伦兹力方向始终和运动速度方向垂直永不做功等。
针对训练1.质量为m ,带电量为q 的液滴以速度v 从与水平成45 角斜向上进入正交的匀强电场和匀强磁场叠加区域,电场强度方向水平向右,磁场方向垂直zi 面向里,如图11-4-20所示.液滴带正电荷,在重力、电场力及磁场力共同作用下在场区做匀速直线运动.试求: 电场强度E 和磁感应强度B 各多大?2.如图11-4-19所示,一带电液滴在相互垂直的匀强电场和匀强磁场中运动,已知电场强度的大小为E ,方向竖直向下,磁感应强度为B ,方向垂直zi 面向里.若此液滴在垂直于磁感应强度的平面内做半径为R 的匀速圆周运动,设液滴的质量为m ,求:液滴的速度大小和绕行方向;图11-4-19图11-4-203、两块金属a 、b 平行放置,板间存在与匀强电场正交的匀强磁场,假设电场、磁场只存在于两板间的空间区域。
一束电子以一定的初速度v 0从两极板中间,从垂直于电场、磁场的方向射入场中,无偏转地通过场区,如图所示。
已知板长l =10cm ,两板间距d=3.0cm ,两板间电势差U=150V ,v 0=2.0×107m/s 。
求:(1)求磁感应强度B 的大小;(2)若撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能增加多少?(电子所带电荷量的大小与其质量之比kg C m e /1076.111⨯=,电子电荷量的大小e=1.60×10—19C )4、如图所示,相互垂直的匀强电场和匀强磁场,其电场强度和磁感应强度分别为E 和B ,一个质量为m ,带正电荷量为q 的小球,以水平速度v 0从a 点射入,经一段时间后运动到b .试计算:(1)小球刚进入叠加场a 点时的加速度.(2)若到达b 点时,偏离入射方向的距离为d ,此时速度大小为多大?5.如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在y≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T一带电量m=的小球由长0.4m0.2Cq=+、质量0.4kgl=的细线悬挂于P点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.(g=10m/s2),求:(1)小球运动到O点时的速度大小;(2)悬线断裂前瞬间拉力的大小;(3)ON间的距离复合场专题(2)1、如图所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy 平面向里,电场线平行于y 轴。
一质量为m 、电荷量为q 的带正电的小球,从y 轴上的A 点水平向右抛出,经x 轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x 轴上的N 点第一次离开电场和磁场,MN 之间的距离为L ,小球过M 点时的速度方向与x 轴的方向夹角为 。
不计空气阻力,重力加速度为g ,求(1) 电场强度E 的大小和方向;(2) 小球从A 点抛出时初速度v 0的大小;(3) A 点到x 轴的高度h.2、如图所示,某空间内存在着正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直于zi 面向里。
一段光滑绝缘的圆弧轨道AC 固定在场中,圆弧所在平面与电场平行,圆弧的圆心为O ,半径R =1.8m ,连线OA 在竖直方向上,圆弧所对应的圆心角θ=37°。
现有一质量m =3.6×10—4kg 、电荷量q =9.0×10—4C 的带正电的小球(视为质点),以v 0=4.0m/s的速度从水平方向由A 点射入圆弧轨道,一段时间后小球从C 点离开圆弧轨道。
小球离开圆弧轨道后在场中做匀速直线运动。
不计空气阻力,sin37°=0.6,cos37°=0.8。
求:(1)匀强电场场强E 的大小;(2)小球刚射入圆弧轨道瞬间对轨道压力的大小。
3、如图所示,在足够在的空间范围内,同时存在着竖直向上的匀强电场和垂直zi面向外的匀强磁场,电场强度为E,磁感应强度为B。
足够长的光滑绝缘斜面固定在水平面上,斜面倾角为30°。
有一带电的物体P静止于斜面顶端有物体P对斜面无压力。
若给物体P一瞬时冲量,使其获得水平的初速度向右抛出,同时另有一不带电的物体Q从A处静止开始顺斜面滑下(P、Q均可视为质点),P、Q两物体运动轨迹在同一坚直平面内。
一段时间后,物体P恰好与斜面上的物体Q相遇,且相遇时物体P的速度方向与其水平初速度方向的夹角为60°。
已知重力加速度为g,求:(1)P、Q相遇所需的时间;(2)物体P在斜面顶端客观存在到瞬时冲量后所获得的初速度的大小。
4.(2015·福建理综,22)如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直zi面向外,磁感应强度大小为B。
一质量为m、电荷量为q的带正电的小滑块从A点由静止开始顺MN下滑,到达C点时离开MN做曲线运动。
A、C两点间距离为h,重力加速度为g。
(1)求小滑块运动到C点时的速度大小v C;(2)求小滑块从A点运动到C点过程中克服摩擦力做的功W f;(3)若D点为小滑块在电场力、络伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点。
已知小滑块在D点时的速度大小为v D,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小v P。
复合场专题(3)1.如图所示,水平地面上有一辆固定有竖直光滑绝缘管的小车,管的底部有一质量m =0.2g 、电荷量q =8×10-5C 的小球,小球的直径比管的内径略小.在管口所在水平面MN 的下方存在着垂直zi 面向里、磁感应强度B 1= 15T 的匀强磁场,MN 面的上方还存在着竖直向上、场强E =25V/m 的匀强电场和垂直zi 面向外、磁感应强度B 2=5T 的匀强磁场.现让小车始终保持v =2m/s 的速度匀速向右运动,以带电小球刚经过场的边界PQ 为计时的起点,测得小球对管侧壁的弹力F N 随高度h 变化的关系如图所示.g 取10m/s 2,不计空气阻力.求:(1)小球刚进入磁场B 1时的加速度大小a ; (2)绝缘管的长度L ;(3)小球离开管后再次经过水平面MN 时距管口的距离△x .2、如图甲所示,宽度为d 的竖直狭长区域内(边界为L 1、L 2),存在垂直zi 面向里的匀强磁场和竖直方向上的周期性变化的电场(如图乙所示),电场强度的大小为E 0.E >0表示电场方向竖直向上.t =0时,一带正电、质量为m 的微粒从左边界上的N 1点以水平速度v 射入该区域,顺直线运动到Q 点后,做一次完整的圆周运动,再顺直线运动到右边界上的N 2点.Q 为线段N 1N 2的中点,重力加速度为g .上述d 、E 0、m 、v 、g 为已知量.(1)求微粒所带电荷量q 和磁感应强度B 的大小;(2)求电场变化的周期T ;(3)改变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值.F N /×2v B B3、如图所示,在竖直平面内有范围足够大、场强方向水平向左的匀强电场,在虚线的左侧有垂直zi面向里的匀强磁场,磁感应强度大小为B.一绝缘“⊂”形杆由两段直杆和一半径为R为半圆环组成,固定在zi面所在的竖直平面内.PQ、MN与水平面平行且足够长,半圆环MAP在磁场边界左侧,P、M点在磁场界线上,NMAP段是光滑的,现有一质量为m、带电量为+q的小环套在MN杆上,它所受到的电场力为重力的12倍.现在M右侧D点由静止释放小环,小环刚好能到达P点,求:(1)D、M间的距离x0;(2)上述过程中小环第一次通过与O等高的A点时弯杆对小环作用力的大小;(3)若小环与PQ杆的动摩擦因数为μ(设最大静摩擦力与滑动摩擦力大小相等).现将小环移至M点右侧5R处由静止开始释放,求小环在整个运动过程中克服摩擦力所做的功.4.(2014·江南十校联考)如图所示,半圆有界匀强磁场的圆心O1在x轴上,OO1距离等于半圆磁场的半径,磁感应强度大小为B1。
虚线MN平行x轴且与半圆相切于P点。
在MN 上方是正交的匀强电场和匀强磁场,电场场强大小为E,方向沿x轴负向,磁场磁感应强度大小为B2。
B1、B2均垂直纸面,方向如图所示。
有一群完全相同的正粒子,以相同的速率沿不同方向从原点O射入第Ⅰ象限,其中沿x轴正方向进入磁场的粒子经过P点射入MN 后,恰好在正交的电磁场中做直线运动,粒子质量为m,电荷量为q(粒子重力不计)。
(1)求粒子初速度大小和有界半圆磁场的半径;(2)若撤去磁场B2,求经过P点射入电场的粒子从y轴射出电场时距离O点的距离;(3)试证明:题中所有从原点O进入第Ⅰ象限的粒子都能在正交的电磁场中做直线运动。