双柱式桥梁墩台盖梁_L_h_2时_作为深梁的计算

双柱式桥梁墩台盖梁_L_h_2时_作为深梁的计算
双柱式桥梁墩台盖梁_L_h_2时_作为深梁的计算

第15卷第2期2000年6月

河北工业大学成人教育学院学报

Journal of Continue Educati on of H ebei U niversity of T echno logy

V o l.15N o.2

JUN.2000双柱式桥梁墩台盖梁(L h<2时)

作为深梁的计算

宋娃丽 孙军成 李 磊

(河北工业大学 天津 300130)

摘 要 近年来,我国较多地采用钻孔灌注桩双柱式桥梁墩台,当盖梁的计算跨径与盖梁高之比小于2时,盖梁可按深梁设计,本文论述了盖梁按深梁设计的计算方法和步骤。

关键词 双柱式盖梁 深梁 计算跨径 正截面 斜截面

近年来,我国较多采用钻孔灌注桩双柱式桥墩,它由钻灌注桩与钢筋砼盖梁组成(见图1)。盖梁的截面形状一般为矩形或T形1,我国的桥涵设计规范2规定,对于简支梁当盖梁的计算跨径与盖梁高之比小于2,对于连续梁小于2.5时,盖梁可按深梁设计。

1 盖梁的计算跨径取值

盖梁按深梁设计时,深梁的计算跨径取净跨径的1.15倍或两支座中心线间距离,两者中的最小者,这里,两支座中心线之矩即为两柱中心线间距离L,净跨径为L-d,由此L j=m in{L,1.15(L-d)}

2 内力统计

对于双柱式墩台盖梁,当按简支深梁计算时,其内力计算方法与普通梁的计算方法相同。

图1 双栏式墩台盖梁示意图 图2 盖梁各载面内力的计算示意图

2.1活载

在计算活载引起的盖梁各截面内力时,对于汽车及挂车荷载,在桥梁的横向布置应选取最不利情况:

a.计算支点截面负弯矩,应采用非对称偏载布置,荷载的横向分布宜采用偏心受压法。3

b.对于跨中正弯矩,应采用对称布置,荷载的横向分布宜采用杠杆法。

通过横向分布的计算,即可得到各片梁的横向分布系数m i,然后将各片梁的横向分布系数m i,乘以整个墩(台)的支反力,即得各片梁的支反力R i。

由各支点反力R i,可用截面法或利用跨中(支点)的弯矩和剪力影响线,求得跨中(支点)各截面的弯矩和剪力值。对于支点负弯矩,由于盖梁的支承为面支承,而并非点支承,应考虑支承宽度对

收稿日期:1999-10-12 宋娃丽 女 1964年 副教授

弯矩的影响。将柱的圆形截面换算为等面积的矩形,由面积互等可得

Π4

d 2=b 2b =0.886d

正方形支承范围内,支点负弯矩可考虑削峰处理,在0.886d 范围内削去负弯矩的峰值(如图3所示)。

2.2恒载

由恒载计算出各柱的支承反力,再采用结构力学的截面法,即可求得盖梁各截面的M 和Q 值。恒载的负弯矩也可采用削峰处理

图3 支点负弯矩的削峰处理 图4 深梁正截面A g 的计算

2.3荷载组合

按承载能力极限状态设计,根据桥梁规范1中的第4.1.2条,进行荷载组合,得到M j 和Q j 。3 当L h <2时,盖梁按深梁的计算

3.1深梁的正截面抗弯承载能力的计算

如图4所示,对于无水平分布钢筋的深梁,当梁发生弯曲破坏时,以跨中截面为例,由力的平衡

方程M j ΦM

Λ=1Χs R g A g Z A g =Χs

M j R s Z

Χs :多筋的安全系数

R g :纵向受拉钢筋抗拉设计强度

A g :纵向受拉钢筋的面积

Z :内力偶臂

由于深梁顶部砼处于双向受压状态,且跨中截面应变不符合平截面假定,故不能采用普通梁应力图形4。

对于简支双柱式盖梁

当1

当L h <1时,Z =0.64L

3.2深梁的斜截面抗剪承载力

斜截面抗剪承载力计算主要是防止斜压破坏,桥涵规范要求对深梁的斜截面强度必须满足

Q j ΦQ p =0.02Χb Χc

R a bh 式中R a :砼轴心抗压设计强度

b :盖梁宽度

h :梁高,当h >L 时,应以L 代替式中的h

Χ

b :构件工作条件系数,取0.95(下转第21页)61河北工业大学成人教育学院学报2000年

4 小 结

满足各跨的线刚度与跨度比为相同常数的连续梁,可以用荷载,通过分配计算直接求得各个支座反力。由于不必先求弯矩,直接由荷载求出支反力,所以有利于某些中间误差的控制。由于本文方法是以力矩分配法的计算为基础的,所以计算过程中的反力渐近性及其收敛速度问题等也与相应的力矩分配计算过程有同类型的性质。但反力初值计算、反力表达方式和传递系数等与常见方法不同。

这种连续梁的分配系数、传递系数只与跨度和远端支承情况有关。

在上述条件下,如果连续梁是等跨的,那么计算可以进一步简化。

参考文献

1 王燮文.奇异函数及其在力学中的应用.北京:科学出版社,1993

2 龙驭球,包世华.结构力学.北京:高等教育出版社,1996

3 [美]H.I.劳森著,邹汉道,肖允薇,张忠国译.结构分析.北京:科学出版社,1995

4 刘光好.一种弯矩图形心计算公式.[见]杜清华主编:力学与工程应用,第六卷.北京:中国林业出版社,1996(10)

5 刘光好.广义图乘法对称型公式的证明及算例.[见]杜清华主编:力学与工程应用,第七卷.北京:中国林业出版社,1998

6 刘光好.关于内力杆端位移关系和弯矩分析的研究.工程力学增刊.1998.V o1.1536-539

7 M A T H ESON.J.A.L H yp ersta tic S truchu res V ol.l L ond on B u tter w orths scien.P ub,1959

8 刘光好.广义图乘法及内力图一些性质的研究.河北工业大学学报,1996;(2):115-119

(上接第16页)

Χc:砼安全系数

若上式不满足,则应增大梁的宽度b与砼的强度等级使之满足。

算例 双柱式盖梁,b×h=80c m×100c m,计算跨径L j=180c m,截面计算弯矩M j=115KN.m,采用20号砼, 级钢筋,试进行配筋计算。

解:深梁的正截面抗弯承载能力

M jΦMΛ=1

Χs R g A g Z

R g=340M P a

Χs=1.25

L h=180 100=1.8

Z=0.2(2.2h+L)=0.2(2.2×100+180)=80c m=800m m

A g=1.25×115×106

340×800

=528m m2

参考文献

1 中华人民共和国交通部标准.公路钢筋砼及预应力砼桥梁设计规范.北京:人民交通出版社,1985 2 中华人民共和国交通部标准.地基与基础规范.北京:人民交通出版社,1985

3 江祖铭.墩台与基础.公路设计手册.北京:人民交通出版社,1994

4 叶见曙.结构设计原理.北京:人民交通出版社,199712

第2期 刘光好等 关于连续梁支座反力分配的几个问题

三柱式盖梁抱箍法施工及计算

盖梁抱箍法施工及计算 第一部分盖梁抱箍法施工设计图 一、施工设计说明 1、概况 桥长1012.98米,各墩为三柱式结构(墩柱为直径2.0m的钢筋砼结构),墩柱上方为盖梁。盖梁为长26.4m,宽2.4m,高2.6m的钢筋砼结构,引桥盖梁砼浇筑量大,约156.1m3。 图1-1 盖梁正面图(单位:m) 二、盖梁抱箍法结构设计 1、侧模与端模支撑 侧模为特制大钢模,面模厚度为δ6mm,肋板高为10cm,在肋板外设2[14背带。在侧模外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带上下各设一条φ20的栓杆作拉杆,上下拉杆间间距2.7m,在竖带外设φ48的钢管斜撑,支撑在横梁上。 端模为特制大钢模,面模厚度为δ6mm,肋板高为10cm。在端模外侧采用间距1.2m的2[14b作竖带,竖带高2.9m;在竖带外设φ48的钢管斜撑,支撑在横梁上。 2、底模支撑 底模为特制大钢模,面模厚度为δ8mm,肋板高为10cm。在底模下部采用间距0.4m工

16型钢作横梁,横梁长4.6m。盖梁悬出端底模下设三角支架支撑,三角架放在横梁上。横梁底下设纵梁。横梁上设钢垫块以调整盖梁底2%的横向坡度与安装误差。与墩柱相交部位采用特制型钢支架作支撑。 3、纵梁 在横梁底部采用单层四排上下加强型贝雷片(标准贝雷片规格:3000cm×1500cm,加强弦杆高度10cm)连接形成纵梁,长30m,每两排一组,每组中的两排贝雷片并在一起,两组贝雷梁位于墩柱两侧,中心间距253.6cm,贝雷梁底部采用3m长的工16型钢作为贝雷梁横向底部联接梁。贝雷片之间采用销连接。纵、横梁以及纵梁与联接梁之间采用U 型螺栓连接;纵梁下为抱箍。 4、抱箍 采用两块半圆弧型钢板(板厚t=16mm)制成,M24的高强螺栓连接,抱箍高1734cm,采用66根高强螺栓连接。抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层2~3mm厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。 5、防护栏杆与与工作平台 (1)栏杆采用φ50的钢管搭设,在横梁上每隔2.4米设一道1.2m高的钢管立柱,竖向间隔0.5m设一道钢管立柱,钢管之间采用扣件连接。立柱与横梁的连接采用在横梁上设0.2m高的支座。钢管与支座之间采用销连接。 (2)工作平台设在横梁悬出端,在横梁上铺设2cm厚的木板,木板与横梁之间采用铁丝绑扎牢靠。 四、主要工程材料数量汇总表 见表一。 需要说明的是:主要工程材料数量是以单个盖梁需用量考虑。

盖梁支架设计计算

泉州至南宁高速公路过龙陂高架桥咼墩盖梁施工方案计算书 设计:_________________ 复核:_________________ 审批:_________________ 浙江省交通工程建设集团有限公司

2009221

过龙陂咼架桥盖梁支架设计计算书 一、概况: 盖梁尺寸为11.95X 2.3 X 3.7m (长X 宽X 高),在悬臂部分设置了 2.525 X 2m 倒角,盖 梁支架拟采用[]18a 、][14a 、120a 加工为锚固式三角托架,三角托架的结构如图一所示, 具体尺寸见加工图,三角架的上部锚固采用预埋锥形螺母锚固钢板的形式, 下部撑脚直接支 撑在砼面上。三角支架安装完成后,吊装盖梁施工平台 3、2和侧面模板4、5,其相互关系 见图二。 图一:盖梁承载三角架加工示意图 图二:三角支架、工作平台和侧面模板位置的相互关系 二、荷载统计和整体计算: 单个三角架自重1.6t ;单侧悬挑砼方量17.71方,自重44.275t ;悬挑砼下模板支架单个 计重 1.95t ;砼大面施工模板共 108平方米,计重21.6t ;跳板和施工平台约 41.4平方,荷载 林4, W5 . X 吐制尺初 Mil

每平米0.2t,计荷载8.28t,荷载总计125.53t。 根据以上的荷载统计,对支架整体结构进行了分析计算,其模型如下(计算模型中三角支架部分荷载为12t/m2,未折减倒角砼重量,加载区域 2.65mx 3m其余平面荷载1t/m2): 荷载分布示意图(图中荷载未考虑砼倒角荷载削减) BJ?7?+W!L 支架最大位移7.6mm (安全)El : IQ Hlh< i 1 __________ t#: zAh 商伍加齐 M]& Afridi UEJIH小E豁 K?? H刪:旳 Mlh i 22 Sr*: ■ E! EE*. H股亠3: aiTiE^tms* 支架最大组合应力94.6Mpa (安全) 舀工力 flft? I JHGH*-4O 2 O.IJXOJ*—K€ 耳4 £jaaoo?? -P-.^Qlw+W? zmwHT? 4丹饰”叭

曲线桥梁计算

目前解决曲线桥梁计算方法有以下几种: 1、空间梁元模型法 2、空间薄壁箱梁元模型法 3、空间梁格模型法 4、实体、板壳元模型法 第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。 第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。 第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。 剪力-柔性梁格法的原理 是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性。 对于梁格法的讨论这里也有不少帖子进行了讨论,实际与梁格之间的等效关系,主要表现在梁格各个构件的刚度计算上,理论上,原型和等效梁格承受相等的外荷载时,必须具有恒等的挠曲和扭转,等效梁格中每一构件的内力也必须等于该构件所代表的原型截面的,事实上这种理想状况是达不到的,模拟也是近似的,但事实是按梁格计算能把握住结构的总体性能,对于设计来说应该是能满足精度的。梁格也是近似的模拟,只要计算者能够和好的模拟了横向纵向的特性,应该是可以作为设计依据的。你在这里说的横向的切分使得预应力产生的次内力问题我不太清楚你指的什么,但是只要横向的刚度业等效了原型,对于计算应该不会出现逆所说的结构内力失真,这条可以通过结果验证。 当然任何结构,只要不怕麻烦都可以用实体单元来分析,只要正确模拟,实体分析也是最精确的,但是对于这种模型要准确模拟可不是一件容易的事,并且预应力的损失计算,施加等等都非常麻烦,还有最后结果的查看也不方便,因此除了结构局部的分析,一般是没有拿实体来进行全桥的整体分析的,至于说单梁我也说了,有些时候精度是可以的,但是对于这种结构相对于梁格来说单梁的精度是不如梁格的。特别是在没有把握的前提下可以做一下梁格的分析,对结果进行对比,能放心一些,其实对于设计,能用单梁算的近量用单梁能用平面的尽量不用空间,这也应该是一个原则,前提是对简化做到心中有数。像这种结构来说如果开始计算就用梁格或者更麻烦的实体来配筋都不是一般的麻烦,配筋计算还是最好用简化的单梁,如果不放心然后用其他方式来验算,这样比较合适 在midas分析中应该注意的问题: 如果你要计算的是普通钢筋混凝土结构,主要看内力结果,可以在划分的时候简单一些,直接“一刀切”,也就是顶底板在同一位置切开,但是在计算其抗弯惯性矩的时候一定要注意纵向梁格的界面惯性矩是相对于整体截面的中性轴的,而不是划分以后的梁格截面本身的惯性矩,对于预应力混凝土的结构你就得注意梁格的划分了,在划分的时候尽量使得划分以后的各个梁格截面要跟原截面的中性轴一致,只有这样计算出来的应力结果才能比较准确,当然,如果是等截面的梁只要划分一个截面就可以了,算起来也不是很费时费力,但是如果是变截

桥梁盖梁抱箍法的施工及计算

盖梁抱箍法施工及计算 一、施工设计说明 1、工程简介 高速公路****有桥梁2座。墩柱为两柱式或三柱式结构,墩柱上方为盖梁,如图1所示。本图尺寸为其中一种形式,该盖梁设计砼37立方米,计算以该图 尺寸为依据,其他尺寸形式盖梁施工以该计算结果相应调整。 图1盖梁正面图(单位:cm) 2、设计依据 (1)公路桥涵钢结构及木结构设计规范(JTJ025-86) (2)路桥施工计算手册 (3)其他相关资料及本单位以往施工经验。 二、盖梁抱箍法结构设计 1、盖梁模板底模支撑 在盖梁底模下部采用间距1m工14型钢作横梁,横梁长3.7m。横梁底下设纵梁。 3、纵梁 在横梁底部采用单层;两排贝雷片(标准贝雷片规格:3000cmx 1500cm )连 接形成纵梁,长18m两排贝雷梁位于墩柱两侧,中心间距120cm贝雷片之间采用销连接。纵、横梁以及纵梁与联接梁之间采用U型螺栓连接;纵梁下为抱箍。 4、抱箍 采用两块半圆弧型钢板(板厚t=10mm制成,M24的高强螺栓连接,抱箍高70cm采用14根高强螺栓连接。抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。为了提高墩柱与抱箍间的摩擦力,同时对 墩柱砼面保护,在墩柱与抱箍之间设一层2?3mn厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。 5、防护栏杆与工作平台 ⑴ 栏杆采用? 50的钢管搭设,在横梁上每隔2米设一道1.2m高的钢管立柱, 竖向间隔

0.5m设一道钢管横杆,钢管之间采用扣件连接。立柱与横梁的连接采用在横梁上设0.2m 高的支座。钢管与支座之间采用销连接。 (2)工作平台设在横梁悬出端,在横梁上铺设5cm厚的木板,木板与横梁之间采用铁丝绑扎牢靠。 三、盖梁抱箍法施工设计计算 (一)、设计检算说明 1、设计计算原则 (1)在满足结构受力情况下考虑挠度变形控制。 (2)综合考虑结构的安全性。 (3)采取比较符合实际的力学模型。 (4)尽量采用已有的构件和已经使用过的支撑方法。 2、对部分结构的不均布,不对称性采用较大的均布荷载。 3、本计算未扣除墩柱承担的盖梁砼重量。以做安全储备。 4、抱箍加工完成实施前,必须先进行压力试验,变形满足要求后方可使用。 (二)、横梁计算 采用间距1m工14型钢作横梁,横梁长3.7m。共设横梁18根,总重约11kNo 1、荷载计算 (1)盖梁砼自重:G仁37荻24.5kN/m3=906.5kN (2)模板自重:G2=81.3kN (3)施工荷载与其它荷载:G3=21kN 横梁上的总荷载:G=G1+G2+G3 =1008.8kN q1=1008.8/17.2=58.65kN/m 横梁采用1m间距的工字钢,则作用在单根横梁上的荷载G =58.65 X 1=58.65kN 作用在横梁上的均布荷载为: q2= =58.65/1.7=34.5kN/m 2、力学模型 如图所示。 q? = 3z1 J l< N. /1 图2横梁计算模型 3、横梁抗弯与挠度验算 横梁的弹性模量E=2.1 X 105MPa惯性矩l=712cm4;抗弯模量Wx=102cm 为了简化计算,

盖梁支架受力计算知识讲解

盖梁支架受力计算 (预埋钢棒上安工字钢横梁法) 一、概况 汨罗江特大桥盖梁除悬浇主墩及28#过渡墩盖梁另外计算外,最重盖梁为 40mT梁盖梁,其尺寸为15.9m(长)×2.3m(宽)×2.1m(高),若经计算该盖 梁支架满足要求,则其他盖梁支架均满足要求。 针对该工程特点设计便易操作的盖梁支架系统。混凝土及模板系统的恒载、 施工操作的活荷载通过型钢直接传递给牛腿,牛腿递给墩柱及桩基础。 二、设计计算依据 (1)《路桥施工计算手册》 (2)《公路桥涵钢结构及木结构设计规范》 (3)《机械设计手册》 三、支架模板的选用 盖梁模板: 1.1、侧模:采用组合钢模拼装。 1.2、底模:方正部分用组合钢模拼装。 1.3、横梁:采用[14#a槽钢,间距40cm。 1.4、主梁:采用I45a工字钢。 1.5、楔块:采用木楔。 1.6、穿心钢棒:采用45号钢,直径10cm。长度每边外露30cm. 四、计算方法 1、总荷载计算 盖梁砼荷载F1:体积71.85立方米,比重2.6吨/立方米,自重:195.9吨, 合F1=185.9*10=1859KN 模板重量F2:盖梁两侧各设置一根I45a工字钢作为施工主梁,长18米(工 字钢荷载),q1=80.4×10×18×2/1000=28.94 KN;主梁上铺设[ 14a槽钢,每 根长3.0米,间距为40cm,墩柱外侧各设置8根,两墩柱之间设置19根。 q2=(19+8×2)×3.0×14.53×10/1000=15.26KN(铺设槽钢的荷载);

槽钢上铺设钢模板,每平方按0.45KN 计算, q3=(15.9×2.1×2+2.3×15.9+2.1×2.3×2)×0.45=50.9 KN (底模和侧模、端头模的荷载); q4=6KN (端头三角支架自重) F2=q1+q2+q3+q4+q4=107.1KN F3:人员0.5吨,合5KN F4:小型施工机具荷载:0.55吨,合5.5KN F5:振捣器产生的振动力及混凝土冲击力;本次施工时采用HZ6X-50型插入式振动器,设置2台,每台振动力为5KN ,施工时混凝土冲击力按5KN 计,则F5=2×5+5=15KN 总荷载: F=F1+F2+F3+F4+F5 =1859+107.1+5+5.5+15=1991.6KN 2、穿心钢棒(45号钢)受力安全分析 共有4个受力点,每点受力:Q max =F/4=1991.6/4≈497.9KN ; 钢棒截面积:S=0.05*0.05*3.14=0.0079m 2 最大剪应力:τmax =Q max /S=497.9/0.0079=63.03Mpa 45号钢钢材的允许剪力: [τ]=125Mpa 则[τ] =125 >τmax =63.03Mpa 结论:穿心钢棒(45号钢)受力安全 3、I45a 工字钢主梁受力安全分析 工字钢均布荷载:q=F/2/15.9=1991.6/2/15.9=62.63KN/m R1=R2=ql/2(a+l/2)=2340.17KN 工字钢横梁AB 段最大弯矩出现在中间处(x=a+l/2=7.95m ),a=3.25m , l=9.4m ;跨中最大弯矩 M max =62.63*9.4*7.95/2*[(1-3.25/7.95) *(1+2*3.25/9.4)-7.95/9.4] =360.98KN ?m 横梁CA 段和BD 段最大弯矩出现在支承点A 、B 两处,最大弯矩 2 12M qa =-=-1/2*62.63*3.252=-330.76 KN ?m

浅谈对梁格的几点认识

浅谈对梁格的几点认识 上海浦东建筑设计研究院有限公司杭州分公司黄声涛 【摘要】: 梁格分析法是用计算机分析桥梁上部结构比较实用有效的空间分析方法,它具有基本概念清晰、易于理解和使用等特点,因此在桥梁结构分析中得到了广泛的采用。但是对于抗扭等需要做整体截面来考虑时,单梁模型则较真实得反应了结构整体受力性能。【关键词】梁格法箱梁截面特性空间单梁 一、梁格法基本原理 梁格法的基本思想是用等效梁格代替桥梁上部结构,将分散在板式或箱梁每一区段内的弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格构件内,横向刚度集中于横向梁格构件内。理想的刚度等效原则应该满足:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲将是恒等的,并且每一梁格内的弯矩、剪力和扭矩等于该梁格所代表的实际结构部分的内力。 二、适用范围 梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。之所以需要用梁格体系来分析结构,就是因为原本当作杆系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了,或者干脆采用实体模型分析。虽然梁格法对原结构进行了面目全非的简化,大量几何参数要预先准备,人为偏差较难避免,但是相对于单梁和实体单元模型,梁格模型既能考虑桥梁横截面的畸变,又能直接输出各主梁的内力,便于利用规范进行强度验算,整体精度满足设计要求。正是由于这个优点使得梁格法成为计算曲线梁桥、宽梁桥的最佳方法。 三、梁格划分 对于有腹板的箱型、T型梁桥,其梁格模型中纵向主梁的个数,应当是腹板的个数。对于实心板梁,纵向主梁的个数可按计算者意愿决定。全桥顺桥向划分M个梁段,共有M+1 个横截面,每个横截面位置,就是横向梁单元的位置。支点应当位于某个横截面下面,也就是在某个横向梁单元下面。每一道横梁都被纵向主梁和支点分割成数目不等的单元。纵、横梁单元用同一种最普通的12自由度空间梁单元,能考虑剪切变形影响即可。对于箱梁而言,一般来说,横向梁格划分一个腹板一个梁格。且假若能尽量满足划分梁格后的各个梁格质心与原箱梁腹板的中心重合将对预应力效应模拟的准确性很有帮助。而纵向梁格每跨8到10 个梁格可以基本满足精度要求。下面结合箱梁实例来谈一谈如何进行梁格截面划分。

盖梁抱箍法施工及计算()

盖梁抱箍法施工及计算摘要:详细介绍了抱箍法盖梁施工的支撑体系结构设计,盖梁结构的内力计算和抱箍支撑体系的内力验算,以及本工艺的施工方法。 关键词:盖梁抱箍结构计算施工 1.工程概况 广州西二环高速公路徐边高架桥为左、右幅分离式高架桥,全桥长1280m,全桥共有盖梁84片,下部结构为三立柱接盖梁,上部结构为先简支后连续20m空心板和30m T梁,另有15跨现浇预应力混凝土连续箱梁。全桥施工区鱼塘密布,河涌里常年流水,墩柱高度较高,给盖梁施工带来难度。为加快施工,减少地基处理,本桥盖梁拟采用抱箍法施工。 2.抱箍支撑体系结构设计 2.1盖梁结构 以20m空心板结构的支撑盖梁为例,盖梁全长20m,宽1.6 m,高1.4m,砼体积为42.6 m3,墩柱Φ1.2m,柱中心间距7m。 2.2抱箍法支撑体系设计 盖梁模板为特制大钢模,侧模面板厚度t=5mm,侧模外侧横肋采用单根[8槽钢,间距0.3m,竖向用间距0.8m的2[8槽钢作背带,背带高1.55m,在背带上设两条Φ18的栓杆作对拉杆,上、下拉杆间距1.0m,底模板面模厚6mm,纵、横肋用[8槽钢,间距为0.4m×0.4m,模板之间用螺栓连接。 盖梁底模下部采用宽×高为0.1m×0.15m的方木作横梁,间距0.25m。盖梁底模两悬出端下设三角支架支撑,三角架放在横梁上。在横梁底部采用贝雷片连接形成纵梁,纵梁位于墩柱两侧,中心间距1.4m,单侧长度21m。纵梁底部用四根钢管作连接梁。横梁直接耽在纵梁上,纵梁之间用销子连接,连接梁与纵梁之间用旋转扣件连接。 抱箍采用两块半圆弧型钢板制成,钢板厚t=16mm,高0.6m,抱箍牛腿钢板厚20mm,宽0.27m,采用10根M24高强螺栓连接。为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层3mm厚的橡胶垫,纵梁与抱箍之间采用U型螺栓连接。抱箍构件形象示意图如图1所示。 2.3防护栏杆 栏杆采用φ48的钢管搭设,在侧模上每隔5m焊接一道1.2m高

盖梁支架计算书

汕湛高速揭博项目T11标 盖梁支架计算书 四川路桥建设股份有限公司 2014年3月30日

目录 1、工程概况 (1) 2、总体施工方案 (1) 3、支承平台设置 (4) 4、计算依据 (5) 5、计算参数 (5) 6、计算结果 (9) 7、结论 (22) 8、抱箍试验 (23)

盖梁抱箍法施工方案 一、工程概况 本标段主线共设置大中桥7座(不含互通区和服务区),分别为白昌屋大桥(30米T梁),万年坑大桥(30米T梁),叶塘1号大桥(25米小箱梁),叶塘2号大桥(25米小箱梁),秋香江大桥(25米小箱梁),上赖水大桥(30米T梁),黎坑大桥(25米小箱梁);九和互通内共设置桥梁3座,其中主线桥2座,匝道1座,分别为三社坑大桥(25米小箱梁),围坪大桥(25米小箱梁),D匝道桥(20米现浇箱梁);紫金西互通内共设桥梁3座,其中主线桥2座,分别为玉竹坑中桥(25米小箱梁),围澳水大桥(25米小箱梁)和L线秋香江大桥(25米小箱梁);瓦溪服务区共设置主线桥1座,为四联大桥(30米T梁)。下部结构采用桩基础、地系梁、承台、柱式桥墩、肋板、台帽、盖梁和耳背墙。其中D匝道桥桥墩采用花瓶墩。 二、总体施工方案 因本标段桥梁盖梁高度较高,采用满堂支架施工盖梁耗时长、占用大量钢管扣件等周转材料、不经济。拟采用在墩柱上安设抱箍支承平台施工。 盖梁统计表

考虑最不利情况(跨度及盖梁尺寸均最大),采用秋香江1.8m*2.4m*17.437m盖梁(两柱)、上濑水大桥2.1m*2.4m*15.3m盖梁(两柱)和四联大桥2.1m*2.4m*20.1m(三柱)盖梁作为计算模型。盖梁简图

梁格法截面特性计算

梁格法截面特性计算 读书报告

目录 第一章梁格法简介 (1) 1.1梁格法基本思想 (1) 1.2梁格网格的划分 (1) 1.2.1纵梁的划分 (2) 1.2.2 虚拟横梁的设置间距 (2) 第二章梁格分析板式上部结构 (3) 2.1 结构类型 (3) 2.2 梁格网格 (3) 2.3 截面特性计算 (4) 2.3.1 惯性矩 (4) 2.3.2 扭转 (4) 第三章梁格法分析梁板式上部结构 (5) 3.1 结构类型 (5) 3.2 梁格网格 (5) 3.3 截面特性计算 (6) 3.3.1 纵向梁格截面特性 (6) 3.3.2 横向梁格截面特性 (7) 第四章梁格法分析分格式上部结构 (8) 4.1 结构形式 (8) 4.2 梁格网格 (8) 4.3 截面特性计算 (9) 4.3.1 纵向梁格截面特性 (9) 4.3.2 横向梁格截面特性 (12) 第五章箱型截面截面特性计算算例 (15)

第一章梁格法简介 1.1梁格法基本思想 梁格法主要思路是将上部结构用一个等效梁格来模拟,如图1.1示,将分散在板式或箱梁每一段内弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格内,而横向刚度则集中于横向梁格构件内。从理论上讲,梁格必须满足一个等效原则:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲应是恒等的,而且在任一梁格内的弯矩、剪力和扭矩应等于该梁格所代表的实际结构的部分内力。 图1.1 (a)原型上部结构(b)等效梁格 1.2梁格网格的划分 采用梁格法对桥梁结构进行分析时,首先考虑的是如何对梁格单元的合理划分。网格划分的枢密程度是保证比拟梁格与实际结构受力等效的必

盖梁抱箍法施工及计算4工字钢

江门市滨江新区规划四路 K0+516.157大桥盖梁抱箍施工方案 编制: 审核: 日期:

盖梁抱箍法施工及计算 目录 第一部分盖梁抱箍法施工设计 一、施工设计说明 二、盖梁抱箍法结构设计 三、主要工程材料数量汇总表 第二部分盖梁抱箍法施工设计计算 一、设计检算说明 二、侧模支撑计算 三、横梁计算 四、纵梁计算 五、抱箍计算

第一部分盖梁抱箍法施工设计图 一、施工设计说明 1、概况 江门市滨江新区规划四路K0+516.157大桥长120米(6×20米),全桥共有5个桥墩,共20条墩柱,墩柱上方为盖梁,共5个盖梁。每个盖梁长25.5572m,宽1.6m,高1.20m的钢筋砼结构,墩柱盖梁施工拟采用抱箍法施工。 图1-1 盖梁正面图(单位:cm) 2、设计依据 (1)交通部行业标准,公路桥涵钢结构及木结构设计规范(JTJ025-86) (2)《公路桥涵钢结构及木结构设计规范(JTJ025-86)》 (3)《机械设计手册》 (4)《建筑施工手册》(第四版)

(5)桥梁施工经验。 二、盖梁抱箍法结构设计 1、侧模与端模支撑 侧模为为15mm厚的胶合板,背带肋条为10×10cm方木,间距30cm,在竖肋外设2[4槽钢背带。背肋高1.3m;在背带上按间距40cm设φ14的栓杆作拉杆(共3排),在侧模与底模连接处设6×6角钢,角钢与背带平行。 2、底模支撑 底模为钢模,模板厚度为δ2.5mm,设纵向肋条(肋条:3×3cm),肋条间距20cm。在底模下部采用间距30cm的2[8#槽钢,2根槽钢焊接牢固。横梁长2.7m(超出部分作支模、挂网、操作平台用)。盖梁悬出端底模下设三角支架支撑,三角架放在横梁上。横梁底下设纵梁。 3、纵梁 纵梁采用2根I45b工字钢。两根工字钢位于墩柱两侧,中心间距100cm,工字钢间用φ20钢筋对拉连接,间距为3m。工字钢连接处采用高强螺栓与焊接相结合。 (1)、力学性能指标。 查《简明施工计算手册》、《钢结构设计规范》GB50017-2003得I45b工字钢的截面特性(I截面惯性矩;W截面抵抗矩): E=2.6×105MPa;W x =1500.4cm4;I X =33759cm4;A=111.4cm2;S X =887.1cm; [σ]=215MPa;[τ]=125MPa;d=13.5mm,每延米重887.1Kg (2)、梁长27m,位于墩柱两侧。 4、抱箍

盖梁支架计算书(B版)

虎门二桥S4标 沙田枢纽立交主线桥 盖梁施工支架计算书(B版) 虎门二桥S4标项目经理部 2015年10月·广州

目录 1工程概况 (1) 1.1 工程简介 (1) 2盖梁施工方案简介 (7) 2.1 0#墩L型悬臂盖梁落地支架简介 (7) 2.2 1#~14#墩悬臂盖梁支架简介 (8) 2.3 圆柱墩盖梁抱箍支架简介 (8) 3盖梁施工支架计算 (10) 3.1 计算说明 (10) 3.2 计算参数 (10) 3.3 0#墩L型悬臂盖梁施工支架计算 (10) 3.4 1#~14#墩悬臂盖梁施工支架计算 (15) 3.5 圆柱墩盖梁施工支架计算 (20) 4抱箍计算 (23) 4.1 设计指标 (23) 4.2 D160cm计算 (23) 4.3 D180cm抱箍计算 (29)

1工程概况 虎门二桥项目起点位于广州市南沙区东涌镇,终点位于东莞市沙田镇,主线全线长12.891km,含大沙水道、坭洲水道两座悬索桥,其中大沙水道桥采用主跨为1200m悬索桥,坭洲水道桥采用548+1688m双跨钢箱梁悬索桥。坭洲水道桥跨越坭洲水道(狮子洋)桥位处河面宽度约2300m,西塔中心里程为K8+052.618,东塔中心里程为K9+740.618。坭洲水道桥总体布置图如下图所示。 坭洲水道桥总体布置图 1.1工程简介 沙田枢纽立交主线桥里程范围为K11+426.618~K12+941.618,分左右两幅,每幅共有49个墩(0#墩作为东引桥与沙田立交的过渡墩,其墩身施工方案已划入东引桥工程段,其盖梁施工划入沙田枢纽立交工程段),总共98个墩,桥墩有板式墩、双柱圆柱墩、三柱圆柱墩、四柱圆柱墩等四种类型。 板式墩共有32个,其中板厚1.6m的有28个,板厚1.8m的有4个;双柱墩共27个,其中柱径1.8m的有5个,柱径1.6m的有22个;三柱墩共有21个,其中柱径1.6m的有19个,柱径2.2m的有2个;四柱墩共有9个,柱径均为1.6m。 本工程段墩身最大高度为20.263m,墩身最大方量为166.6m3。 左右幅0#~18#墩、21#~46#墩、49#墩上设有盖梁,其中左右幅0#墩盖梁为变高L型悬臂梁,左右幅1#~14#墩盖梁形式为变高T形悬臂梁,其余均为矩形梁(左右幅19#~20#、47#~48#墩上为连续小箱梁,不设盖梁)。 左右幅0#墩盖梁为预应力变高L型悬臂盖梁,盖梁截面呈L型,采用C40混凝土,长度为18.7m,截面形式为3.5×[(2.2~1.1)+1.2]m,1.2m加高块位于预制小箱梁侧,宽度1.05m。盖梁方量108.0m3。 左右幅1#~14#墩变高悬臂盖梁为预应力混凝土结构,采用C40混凝土,盖梁长度均为18.7m,截面尺寸为2×(2.2~1.1)m,悬臂长度5.05m,混凝土方

如何用梁格法计算曲线梁桥桥梁分析

如何用梁格法计算曲线梁桥桥梁分析 一、梁格法既有相当精度又较易实行 对曲线梁桥, 可以把它简化为单根曲梁、 平面梁格计算, 也可以几乎不加简化地用块体 单元、板壳单元计算。 单根曲梁模型的优点是简单, 缺点是: 几乎所有类型的梁单元都有刚性截面假定, 因而 不能考虑桥梁横截面的畸变,总体精度较低。 块体单元、板壳单元模型,优点是:与实际模型最接近,不需要计算横截面的形心、剪 力中心、翼板 有效宽度,截面的畸变、翘曲自动考虑;缺点:输出的是梁横截面上若干点的 应力, 不能直接用于强度计算。 对于位置固定的静力荷载, 当然可以把若干点的应力换算成 横截面上的内力。 对于位置不固定的车辆荷载, 理论上必须采用影响面方法求最大、 最小内 力。板壳单元输出的只能是各点的应力影响面。 把各点的应力影响面重新合成为横截面的内 力影响面,要另外附加大量工作。这个缺点使得它几乎不可能在设计中应用。 梁格法的优点是: 可以直接输出各主梁的内力, 便于利用规范进行强度验算, 整体精度 能满足设计要求。 由于这个优点, 使得该法成为计算曲线梁桥和其它平面形状特殊的梁式桥 的唯一实用方法。 它的缺点在于, 它对原结构进行了面目全非的简化, 大量几何参数要预先 计算准备,如果由计算者手工准备,不仅工作量大,而且人为偏差较难避免。 二、如何建立梁格力学模型 1. 纵梁个数、横梁道数、支点与梁单元 对于有腹板的箱型、 于 实心板梁,纵向主梁的个数可按计算者意愿决定。全桥顺桥向划分 M 个梁段, 个横截面, 每个横截面位置,就是横向梁单元的位置。支点应当位于某个横截面下面, 是在某个横向梁单元下面。 每一道横梁都被纵向主梁和支 点分割成数目不等的单元。 梁单元用同一种最普通的 12 自由度空间梁单元,能考虑剪切变形影响 即可。 2. 纵向主梁的划分、几何常数计算 对于箱型梁桥,从什么地方划开,使其成为若干个纵向主梁?汉勃利提出了一个原则: 应当使划分以 后的各工型的形心大致在同一高度上。 笔者曾经用有限条法进行过考核, 依据这一原则, 依各主梁弯矩、 剪力计算出的正应力、 剪应力, 与有限条的吻合性确实较好。 试算的具体划分步骤如下: T 型梁桥,其梁格模型中纵向主梁的个数,应当是腹板的个数。对 共有 M+1 也就 纵、横 发现

桥梁的墩台和基础

第五讲桥梁的墩台和基础 一桥梁的墩台(一)梁桥的重力式墩台 依靠其自身的重力及作用其上的重力维持稳定的,称为重力 式墩台。 桥墩由墩帽、墩身和基础组成。桥台由台帽、台身、基础和 侧墙、护坡等组成。 墩(台)帽上安放支座,形成桥面横披,调整邻跨的支 座高度。 1. 墩帽 墩帽宽度,顺桥方向为b:: b≥f + a0 + 2c1 + 2c2≥ 100cm 横桥方向为B B≥s + b0 + 2c1 + 2c2 f——相邻两跨支座中心的距离 S——两外侧主梁(支座)的中心距 c2---20—40cm; c1一般5—10cm 2. 墩身 平面形状可用圆端形或尖端形;墩顶宽度,小跨径桥梁不宜 小于0.8m,中跨径桥梁不宜小于1.0m;

墩身侧面坡度 5号或15号以上的混凝土浇筑或用浆砌块石或料石砌筑,也可用混凝土预制块砌筑。大桥常采用钢筋混凝土空心墩3. U形桥台 适用于填土高度小于8~10m的桥梁。 二)拱桥的重力式墩台

墩帽上设拱座,以支承拱脚; 墩顶的宽度 约为拱跨的1/10~1/25(石砌墩), 1/15~1/30(混凝土墩)。 重力式桥台、齿键式桥台、组合式桥台 (三) 轻型墩台 利用钢筋混凝土的强度和整体刚度,或某种支承构件,形成墩台 。

1.桩柱式桥墩 桩柱式桥墩,由柱、盖梁、横系梁组成,用于跨径不大( 8~12m)的梁桥。盖梁高度一般为盖梁宽度的0.8 ~ 1.2倍。 柱的布置,宜使恒载作用下,盖梁在柱顶内外两侧的弯矩接近相等。桩柱式墩, H大于7m时,应该设横系梁。桩柱式桥台常作成埋置式的。台帽上设耳墙 2. 轻型桥台 3. 钢筋混凝土薄壁墩台 4.城市立交的轻型墩台 二桥梁的基础 桥梁的基础,将桥梁墩、台的各种荷载传至地基。 桥梁的基础的设计首先要确定基底的埋置深度和基础类型。

项目盖梁支架安全验算

盖梁支架安全验算书 一、支架搭设说明 桥梁共7座,全部为墩柱式结构,上部为盖梁,盖梁施工采用抱箍法。 侧模采用6mm厚钢板,背肋采用[10槽钢,间距100cm;对拉杆采用Ф16mm圆钢;底模采用1.5cm厚竹胶板,分配梁采用10×10cm 方木,间距30cm,在墩柱处采用I10#工钢加强;横梁采用25b工字钢,长5m(预留操作平台位置),间距0.6m;纵梁采用56a双拼工钢,长18m(上庄大桥左线长20m),间距1.9~2.5m(工钢离开墩身25cm);抱箍采用两块半圆弧型钢板(板厚t=16mm,A3钢)制成,高1300cm,并设4道1.6cm厚三角形劲板,同时劲板作牛腿面使用,采用56根M24的高强螺栓(10.9级)连接,螺栓的扭矩要求M≥67kg·m。抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层2~3mm厚的橡胶垫。 二、支架计算 墩柱间距5.6m,墩帽梁尺寸为及浇筑的混凝土方量如下: 从表中可以看出,正交时盖梁的最大浇筑方量为70.74方。斜交时最大方量为:84.85方。计算中取左幅1#墩进行检算。 1、受力检算 1.1 侧模(需计算最大侧压力) 侧模采用6mm厚钢板,背肋采用[10槽钢,间距100cm;对拉杆采用Ф16mm圆钢; 根据公式: 公式1: 公式2: 式中:F--新浇混凝土对模板的最大侧压力

h---有效压头高度(m) V---混凝土浇筑速度(m/h),暂定为1m/h t0---新浇混凝土的初凝时间(h),暂定为2h γ---混凝土体密度(KN/m3),取26KN/m3 K1---外加剂影响修正系数,不掺外加剂时取1.0;掺缓凝 作用的外加剂时取1.2。本次计算取1.2。 K2---混凝土塌落度影响修正系数,塌落度小于30mm时,取 0.85;50~90mm时,取1.0;110~150mm时,取 1.15。 本次计算取1.15 根据公式1:P=15.7872KN; 公式2: h =0.6072m 1.2 底模 底模采用1.5cm厚竹胶板,分配梁采用10×10cm方木,间距20cm,在墩柱处采用I10#工钢加强;横梁采用25b工字钢,长5m(预留操作平台位置),间距0.6m;纵梁采用56a双拼工钢,长18m(上庄大桥左线长20m),间距1.9~2.5m(工钢离开墩身25cm)。 2.1、竹胶板验算 竹胶板力学参数(竹胶板取100cm): I=48.6cm4W=54cm3S=40.5cm3 验算过程所要考虑的荷载(横桥向长度取1 m计算): 施工人员荷载:q1=2.5×1=2.5 KN/m 振捣荷载:q2=2.0×1=2KN/m 梁体自重:q3=(2.691×0.85+1.9×0.15)×26=66.8811KN/m q= q1+q2+q3=1.4×(2.5+2)+1.2×66.8811=88.62KN/m 按简支梁计算: M max=1/8×q×l2=1/8×66.8811×0.1 2=0.0836KN·m

迈达斯梁格法讨论

迈达斯梁格法讨论

1.在用桥博进行梁格法计算时,在单元的截面信息中输入的自定义抗扭惯性矩是整个纵向构件单元截面的抗扭惯性矩,还是如【桥梁上部构造性能】中所提,不包括腹板在内的仅由顶、底板构成的抗扭惯性矩? 答:我曾经对同一座简支弯桥分别用桥博单梁、梁格和MIDAS单梁、梁格建模计算进行比较分析。结果表明:1、仅考虑恒载的情况;对于梁格法,无论是桥博还是MIDAS,内力而言,四种模型计算结果弯矩结果一致(我所说的一致指误差在5%以内),程序无法提供腹板剪力流产生的扭矩,在手动计算并组合后,两种程序梁格法计算的扭矩结果一致,且均较单梁计算的扭矩略偏大,约10%左右(这应该是由于刚度模拟误差产生的),由此可以得出汉勃利对于梁格法力学理论的阐述是正确的,因此,对于梁格法,我个人的观点,其可以考虑弯扭耦合而得出较精确的弯矩并指导整体受力配筋是没有疑问的,问题在于,梁格法扭矩需修正的适用性,我们可以通过手动计入两侧腹板剪力流产生的扭矩来得到较为正确的扭矩并无异议,但对于很多情况这并不利于直接指导我们设计,比如我们需要观察扭矩

包络图来判断弯桥偏心的设置时,会发现我们直接用单梁模型可以更为节省时间和精力(至少无需你去修正组合)而得到可以直接应用的数据,单梁的缺陷在于不能正确考虑各片梁实际受力的差异,但这并不影响整体的设计,比如偏心的设计,整体抗扭性能的评估,而在细节上的处理,我们需要用梁格法的计算去确保安全。 2、关于活载的情况,梁格法而言,出于分析对比,我也用桥博和MIDAS分别计算了活载下的关键截面扭矩对比,在这里就不说弯矩了,因为结果比较吻合(8%的差别)。MIDAS自定义车道比较方便,可以同时考虑多种工况,这比桥博方便许多,但需要注意的是,对于同一工况,如果你用不同的梁来做偏心实现的话,产生的内力差别很大,且用哪片梁直接导致这片梁内力变大,我用的是V6.71,不知道 MIDAS2006是否没有这样的问题,为了解决这一问题,我在活载偏载于哪片梁时,采取该片梁去定义车道偏心,结果表明,两种程序计算结果比较吻合。在用单梁模型计算时,两种程序计算结果完全一致,同上面恒载的情况,单梁结果要比梁格小,这也是因为刚度的模拟误差产生的。综上所述,两点结论:1、在做整体设计时(比如设置预偏心),个人感觉用单梁模型可以较为

抱箍法盖梁施工方案

抱箍法盖梁施工方案 一、工程概况 本标段荣乌高速公路棋盘井至乌海段工程QWTJ-2 标段起止桩号为 K10+018- K24+000,标段长度13.982Km,包括大、中桥884米/4座(预应力箱梁);分离式立交:995 米/5 座(预应力组合箱梁,现浇预应力箱梁);巴音陶亥互通立交桥1 处(现浇预应力箱梁)。 桥墩盖梁为桥墩的重要组成部分,与桥墩系梁一样也为悬空体,因其结构及位置因素施工具有一定困难,因此将其自桥墩墩身中摘出,另行编制施工方案。首件工程编制依据: (1 )荣乌高速公路棋盘井至乌海段工程施工招标文件; (2)荣乌高速公路棋盘井至乌海段工程施工图设计; (3)现行国家施工规范、规程、规则、及验收标准及地方标准; (4)我方对施工现场踏勘所获得的有关资料; 考虑到桥位处原地面地基承载力不高,而采用抱箍法施工盖梁可以克服满堂支架对地基承载力要求较高的缺点。我合同段拟对所有的圆柱墩盖梁采用抱箍法施工。抱箍承重原理:在盖梁施工时,用半圆形钢带抱紧墩柱,在钢带两端焊接牛腿,将盖梁底模的承重横梁架在牛腿上,利用钢带抱紧墩柱所产生的摩擦力来承担盖梁自重、模板自重、施工荷载等。 工程量:K17+083桥1号墩左幅盖梁:钢筋7.32t,混凝土30.41m3 二、施工方法: 2.1 凿除柱顶浮浆: 将柱顶砼浮浆全部凿除,裸露新鲜砼。并冲刷干净,以保证墩柱与盖

梁砼联接牢固 2.2 安装盖梁承重挂篮: 首先安装承重抱箍, 利用抱箍握紧墩柱产生的磨擦力来承担盖粱自身重量和施工荷载。抱箍与墩柱之间加一层10mm厚的橡胶垫,目的是增 加抱箍与墩柱之间的磨擦力, 不啃伤墩柱砼。抱箍在每次使用前需经过认真检查,必须保证所有焊缝均饱满、不开焊,否则应加焊。抱箍用高强螺栓在紧固时必须保证每个螺栓受力均匀且达到设计拉力强度,确保抱箍与墩柱之间有充分的摩擦力以及承受上部荷载。在施工时,现场管理人员必须对每个螺栓的紧固情况进行认真检查。 在每承重抱箍下端加装一副抱箍,两抱箍间以槽钢、木楔支撑,以提高承载力,增加抱箍可靠性,抱箍上为承重横梁。 承重横梁采用30 号工字钢, 与承重包箍牛腿之间以一对木楔支撑, 工字钢内侧用钢丝绳拉紧,中部设槽钢支撑在地面,地面承载力不足时在地面上加铺砼垫板或钢板;工字钢上放一排长2.5 米10 号工字钢或木方,垂直30工字钢布置,间距40-50cm,并与30号工字钢绑扎牢固;底模板两边搭设木板, 利于施工操作。 2.3 施工放样: 测量人员将盖梁轴线放出后,施工人员按盖梁轴线和盖梁标高安装底模, 并调整盖梁底模达到设计高标。 2.4 盖梁底模安装:

浅析铁路曲线桥墩台中心坐标计算

浅析铁路曲线桥墩台中 心坐标计算 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

浅析铁路曲线桥墩 台中心坐标计算 (中交 广东 广州) 摘 要:结合在建的某铁路设计资料,采用坐标计算法计算铁路曲线桥梁工作线偏角,并推算出桥梁墩台中心坐标,全过程采用VB 语言程序结合Excel 电子表格自动计算。 关键词:曲线桥梁工作线;偏距E 值;交点距L ;桥梁偏角?;桥梁偏角坐标计算法 Abstract : Key words : 1引言 高速铁路采用的桥梁部份所占比例较大,需要计算的曲线桥梁墩台坐标计算工作量繁重。与直线桥相比,曲线桥墩台坐标的计算要复杂的多,涉及的内容也较多,如何能快速准确计算出曲线桥梁墩台坐标对测量内业计算至关重要。传统的采用前后视偏角计算法计算桥梁偏角,F B A δδα+=,δB 前视偏角,δB 后视偏角,由于梁体在线路上的位置不同,δB 、δF 的计算方法也不一样,不同情形下桥梁线路偏角的计算公式也不同,计算起来繁琐。 本文结合在建的某铁路,谈谈自已采用坐标计算法计算桥梁偏角,推算曲线桥梁墩台坐标的一些快速计算方法及编程实现。 2 基本原理 2-1. 梁和桥台在曲线上的布置形式 桥梁位于曲线上,线路中线为具有一定半径的圆曲线或缓和曲线,而预制梁的中线为直线,这就要求梁中线必须随着线路中线的弯曲形成与线路曲线基本相符的连续折

线,如图2-1-1所示。这条连续折线称为曲线桥梁的工作线,其顶点为相邻两梁中线的交点,相邻两交点之间的水平距离,称为交点距,亦称墩中心距或跨距,以L表示。 在曲线桥上,桥梁工作线为折线,线路中线为曲线,两者并不重合,列车通过时,桥梁必然承受偏心荷载。为了使桥梁承受较小的偏心荷载,桥梁设计中,每孔梁中心线的两个端点并不位于线路中心线上,而必须将梁的中线向曲线外侧移动一段距离。根据跨长及曲线半径,梁中线向曲线外侧所移动的距离,可以等于以梁长为弦线 的中矢值,此布置方式称为切线布置,如图 2-1-2(a)所示;也可以等于该中矢值的 一半,称为平分中矢布置,如图2-1-2(b)所示。两种布置形式比较,平分中矢布置较为有利,铁路曲线桥基本上都采用这种布置形式。 桥台在曲线上的布置形式与梁稍有不同,如果将桥台的中心线和与其相邻的梁跨中线布置在同一条直线上,则台尾中心必然偏离到线路中线的外侧,如图2-2-1所示。设其偏距为d,如果d≤10cm 时,则桥台就采用这种布置形式;否则,应旋转桥 图2-1-1

小半径曲线梁桥计算分析论文

小半径曲线梁桥计算分析 摘要:针对曲线梁桥受力的复杂性采用空间梁单元法和梁格法对某一小半径弯桥进行建模计算,并对结果进行对比分析和总结,得出两种方法在设计计算中各自特点,可供工程技术人员设计时参考借鉴。 关键词:曲线梁桥;耦合扭矩;空间梁单元法;梁格法 abstract: based on the complexity of the curved girder bridges stress by spatial beam element method and a small radius of grillage method a curved bridge model calculation, and the results are analyzed and compared, it summarizes the two methods in the design and calculation of their own characteristics for the engineering and technical personnel design for reference. keywords: curve beam bridge; coupling torque; space beam element method; grillage method 中图分类号:u448文献标识码:a 文章编号: 1 引言 随着我国交通运输事业的迅速发展以及城市化进程的加快,在公路互通和城市立交中运用曲线梁桥是实现交通联结的必要手段。曲线梁桥可改善城市交通的紧张状况,有效解决周围环境的限制(例如地下管线、地下文物及沿街建筑干扰),实现各方向交通道

相关文档
最新文档