聚氨酯的结构与性能解析

合集下载

聚氨酯分子结构与性能的关系

聚氨酯分子结构与性能的关系

聚氨酯分子结构与性能的关系聚氨酯由长链段原料与短链段原料聚合而成,是一种嵌段聚合物。

一般长链二元醇构成软段,而硬段则是由多异氰酸酯和扩链剂构成。

软段和硬段种类影响着材料的软硬程度、强度等性能。

2.3.1 影响性能的基本因素聚氨酯制品品种繁多、形态各异,影响各种聚氨酯制品性能的因素很多,这些因素之间相互有一定的联系。

对于聚氨酯弹性体材料、泡沫塑料,性能的决定因素各不相同,但有一些共性。

2.3.1.1 基团的内聚能聚氨酯材料大多由聚酯、聚醚等长链多元醇与多异氰酸酯、扩链剂或交联剂反应而制成。

聚氨酯的性能与其分子结构有关,而基团是分子的基本组成成分。

通常,聚合物的各种性能,如力学强度、结晶度等与基团的内聚能大小有关。

聚氨酯分子中,除含有氨基甲酸酯基团外,不同的聚氨酯制品中还有酯基、醚基、脲基、脲基甲酸酯基、缩二脲、芳环及脂链等基团中的一种或多种。

各基团对分子内引力的影响可用组分中各不同基团的内聚能表示,有关基团的内聚能(摩尔内能)见表2-11。

酯基的内聚能高,极性强。

因此聚酯型聚氨酯的强度高于聚醚型和聚烯烃型,聚氨酯-脲的内聚力、粘附性及软化点比聚氨酯的高。

聚氨酯材料的结晶性、相分离程度等与大分子之间和分子内的吸引力有关,这些与组成聚氨酯的软段及硬段种类有关,也即与基团种类及密集程度有关。

2.3.1.2 氢键氢键存在于含电负性较强的氮原子、氧原子的基团和含H原子的基团之间,与基团内聚能大小有关,硬段的氨基甲酸酯或脲基的极性强,氢键多存在于硬段之间。

据报道,聚氨酯中的多种基团的亚胺基(NH)大部分能形成氢键,而其中大部分是NH与硬段中的羰基形成的,小部分与软段中的醚氧基或酯羰基之间形成的。

与分子内化学键的键合力相比,氢键是一种物理吸引力,极性链段的紧密排列促使氢键形成;在较高温度时,链段接受能量而活动,氢键消失。

氢键起物理交联作用,它可使聚氨酯弹性体具有较高的强度、耐磨性。

氢键越多,分子间作用力越强,材料的强度越高。

聚氨酯-11 结构-概述说明以及解释

聚氨酯-11 结构-概述说明以及解释

聚氨酯-11 结构-概述说明以及解释1.引言1.1 概述聚氨酯-11(Polyurethane-11)是一种聚合物材料,由聚氨酯单元和较长的碳链组成。

它具有许多优异的性质和广泛的应用领域。

聚氨酯-11具有良好的弹性、耐磨性、耐高温性和耐候性,因此在工业、建筑、医疗、日用品等领域都有重要应用。

聚氨酯-11的化学结构由聚氨酯基团和长链碳酸酯组成。

聚氨酯基团由异氰酸酯与醇反应生成,而长链碳酸酯则由二元酸与二元醇反应得到。

这两个基团的不同组合方式可以调节聚氨酯-11的性质和用途。

聚氨酯-11的物理性质也很独特。

它可以通过改变聚氨酯基团和长链碳酸酯的比例来调节材料的硬度、弹性和耐磨性。

此外,聚氨酯-11还具有良好的拉伸强度、耐化学性和电绝缘性能。

聚氨酯-11在汽车零部件、电缆护套、鞋类、运动器材等领域有广泛的应用。

由于其优异的特性,聚氨酯-11在未来的发展前景非常广阔。

随着科技的进步和人们对功能性材料需求的增加,聚氨酯-11有望在更多领域展现其独特的优势。

综上所述,聚氨酯-11作为一种重要的聚合物材料,具有丰富的化学结构和独特的物理性质。

其在各个领域的广泛应用以及未来的发展前景显示出它的巨大潜力。

在接下来的内容中,我们将详细介绍聚氨酯-11的化学结构和物理性质,以及它在不同领域的应用前景和发展趋势。

1.2 文章结构文章结构部分主要介绍了本文的组织排列和内容安排。

通过良好的文章结构,可以使读者更好地理解和把握文章的主要内容和思路。

本文的结构主要分为三个部分:引言、正文和结论。

在引言部分,我们首先进行了概述,介绍了聚氨酯-11的相关信息和背景。

随后,我们明确了文章的结构和目的,使读者对本文将要讨论和阐述的内容有一个整体的了解和预期。

接下来是正文部分,正文内容主要包括两个方面:聚氨酯-11的化学结构和物理性质。

在这一部分,我们将详细介绍聚氨酯-11的化学组成和分子结构,以及其主要的物理性质和特点。

通过对聚氨酯-11的化学结构和物理性质的深入探讨,读者可以更好地了解这种材料的性质和应用领域。

聚氨酯树脂的结构特点

聚氨酯树脂的结构特点

聚氨酯树脂的结构特点聚氨酯树脂啊,那可是化学世界里一个超级有趣的存在。

它就像一个百变星君,结构特点复杂得像一团乱麻,但又有着独特的秩序。

它的分子结构就像是由好多不同形状的积木搭成的超级建筑。

其中有硬段部分,这硬段就像建筑里的钢铁骨架,坚不可摧,给整个结构撑起了一片天。

如果把聚氨酯树脂比作一个超级英雄,那硬段就是它的金刚不坏之身,让它在各种环境下都能保持稳定的形态,不会轻易被外界的压力和挑战给弄变形,就像超人面对氪石之外的东西都能轻松应对一样。

而软段部分呢,那就是这个超级建筑里柔软的内饰。

软段像是棉花糖一样,柔软又有弹性。

这部分使得聚氨酯树脂具有很好的柔韧性,就好像是瑜伽大师一样,可以随意弯曲、拉伸,怎么折腾都不会轻易断掉。

聚氨酯树脂还有一个很厉害的地方,就是它的链段结构像是一条有着无数关节的长龙。

每个关节都可以灵活转动,这种灵活性让它在不同的应用场景里都能游刃有余。

如果把它用在鞋底,那就像是给脚装上了一个能适应各种地形的弹簧,不管是走在崎岖的山路还是平坦的大道,都能让你感觉轻松自在,仿佛脚下踩的不是鞋底,而是云朵。

它的交联结构更像是一张超级大网。

这张大网把所有的分子都紧紧地连接在一起,就像一个团结的部落,大家手拉手,共同抵御外界的侵袭。

这种交联结构使得聚氨酯树脂的强度和稳定性又提升了一个档次,就像一座城堡,有着坚固的城墙,敌人很难攻破。

从微观角度看,聚氨酯树脂的结构就像一个微观世界里的繁华都市。

各种分子链段就像城市里的街道和建筑,它们相互交织、相互依存。

硬段的建筑高大挺拔,软段的建筑柔软温馨,而交联结构就是连接这些建筑的桥梁和道路,让整个微观都市有条不紊地运行着。

而且,聚氨酯树脂的结构特点还赋予了它神奇的可调节性。

就像一个可以随意变身的变形金刚,可以根据不同的需求调整自己的硬度、弹性等性能。

如果需要它更硬一点,就像把一个温柔的小绵羊瞬间变成强壮的公牛;如果需要更软,又能像把坚硬的石头变成柔软的海绵。

聚氨酯基本知识概括 (2)

聚氨酯基本知识概括 (2)

聚氨酯基本知识概括聚氨酯属于反应型高分子材料,其中的氨基甲酸酯基团是由异氰酸酯官能团和羟基反应生成的。

聚氨酯是由聚亚氨酯和多元醇在催化剂和其它助剂存在下加成聚合反应而生成。

如此,聚亚氨酯是一个含有两个以上异氰酸官能团的分子,而多元醇是一个含有两个以上羟基官能团的分子。

商业制造时,液态异氰酸酯和包含多元醇、催化剂和其它助剂的混合物反应生产聚氨酯,这两种组分即通常所指的聚氨酯配方体系。

北美称异氰酸酯为A组分,或叫“ISO”,多元醇和其它助剂的混合物被称为B组分,或叫“POL Y”,这种混合物有时也被称作树脂或树脂混合物。

在欧洲,A组分和B组分正好相反。

树脂混合的主剂可以包括链增长剂、交联剂、表面活性剂、阻燃剂、发泡剂、颜料和填料。

一、聚氨酯的结构与性能聚氨酯可看作是一种含有软链段和硬链段的嵌段共聚物(~软段~硬段~软段~硬段~软段~)。

软段由低聚物多元醇(通常是聚醚或聚酯二醇)组成,硬段由多异氰酸酯或其与小分子扩链剂组成。

由于非极性、低熔点的软段与极性的、高熔点的硬段热力学不兼容,产生微观相分离,在聚合物体内部形成相区或微相区。

而聚氨酯的粘弹性就来自硬段和软段的相分离。

聚氨酯中存在氨酯、脲、酯、醚等基团产生广泛的氢键,其中氨酯和脲键产生的氢键对硬段相区的形成具有较大的贡献。

聚氨酯的硬段起增强作用,提供多官能团度物理交联(即形成氢键而起“交联”作用),软段基体被硬段相区交联。

软段是由低聚物多元醇构成的,这类多元醇的分子量通常在600-3000之间。

一般来说,软段在PU中占大部分,不同的低聚物多元醇与二异氰酸酯制备的PU 性能各不相同。

软段的结晶性对最终聚氨酯的机械强度和模量有较大的影响。

特别在收到拉伸时,由于应力而产生的结晶化(软段规整化)程度越大,拉伸强度越大。

PU结晶性与其软段低聚物的结晶性基本一致。

结晶作用能成倍地增加粘结层的内聚力和粘结力。

软段的分子量对聚氨酯的力学性能有影响。

硬段由多异氰酸酯或多异氰酸酯与扩链剂组成。

聚氨酯中的软段和硬段的定义-概述说明以及解释

聚氨酯中的软段和硬段的定义-概述说明以及解释

聚氨酯中的软段和硬段的定义-概述说明以及解释1.引言1.1 概述在聚氨酯材料的研究和应用中,软段和硬段是两个重要的概念。

软段和硬段的定义对于聚氨酯材料的性能和应用具有重要的影响。

软段通常指的是聚氨酯分子链中柔软、弯曲的部分,而硬段则是指分子链中较为刚硬和直链的部分。

软段和硬段的比例和分布对聚氨酯材料的力学性能、热性能、耐化学性等方面都有着重要的影响。

本文将对软段和硬段的定义进行深入探讨,分析它们在聚氨酯中的作用及相互关系。

通过对软段和硬段的研究,可以更好地理解聚氨酯材料的结构与性能之间的关系,为聚氨酯材料的设计与改进提供理论依据。

文章结构部分的内容如下:1.2 文章结构本文将分为引言、正文和结论三个部分进行阐述。

在引言部分,将会对聚氨酯中的软段和硬段进行概述,并介绍本文的目的和结构。

接着,在正文部分,将会详细解释聚氨酯的定义,以及软段和硬段的含义和特点。

最后,在结论部分,将对软段和硬段的定义进行总结,并展望它们在未来的应用前景,最终得出结论。

通过这样的文章结构,读者可以系统地了解聚氨酯中软段和硬段的定义,加深对这一概念的理解,并对其在各个领域的应用前景有所了解。

1.3 目的本文旨在深入探讨聚氨酯中软段和硬段的定义,以便读者更加全面地了解聚氨酯的结构和性质。

通过对软段和硬段的详细解释和比较,我们希望能够帮助读者对聚氨酯材料有更深入的认识,进而为相关研究和应用提供更好的参考。

同时,本文还将展望软段和硬段在未来的应用前景,探讨其在材料科学领域中的潜在价值。

最终,我们将总结本文的主要观点和结论,为读者提供一个清晰而全面的认识。

通过本文的阐述,我们期望能够促进对聚氨酯材料的研究和开发,推动材料科学领域的进步和创新。

2.正文2.1 聚氨酯的定义聚氨酯是一种重要的高分子材料,是由异氰酸酯和多元醇在一定条件下反应制成的聚合物。

它具有独特的性质,如耐磨、耐腐蚀、耐高温等,在工程领域有着广泛的应用。

聚氨酯的分子结构中通常包含有软段和硬段两部分。

浅谈聚氨酯的结构与性能

浅谈聚氨酯的结构与性能

5 8・
科技 论坛
浅谈聚氨酯 的结构 与性 能
周 静
( 湖南化 工职业技 术学院 化工 系, 湖南 株洲 4 1 2 0 0 4 )

摘 要: 随着聚氨 酯科 学的迅速发展 , 聚氨酯的应用越 来越广 , 如塑料 、 橡胶 、 纤维 、 涂料 、 粘结剂 、 复合 材料 和具有特 殊功能的功能 高 分子等等 , 在人们的生活中起 着举足轻重的作 用。

2 低 聚 物 链 结 构 对 聚 氨酯 材 料 性 能 的 影 响
聚氨酯是 由多元醇( 包括 带羟基的小分子物 质 ) 和多异氰 酸酯 反应 而来的 , 其 大分 子结 构 中不仅含有 大量 的氨基 甲酸酯键 , 还 含 有醚键 、 酯键 、 油脂的不饱和键 、 以及低聚物多元醇所含有的各种特 殊结构 ( 包括取代基 ) 等 。在大分子键之 间还存在氢键。所 以可 以通 过选用不 同结构的多异氰酸酯和多元醇来改变长链 的结构 。 低聚物 多元 醇的结构具有很大的可调节性 , 从类型上讲 , 可 以选用 聚酯 、 聚 醚、 聚 s一己内酯多 元醇 等 ; 从单体 种类 上讲 , 有环氧 乙烷 、 环氧丙 烷、 四氢呋喃等。选用各种低聚物多元醇或者几种低聚物多元醇一 起使用 , 可 以使聚氨酯材 料的软锻部分 的结构 多样化 , 从而可 以在 很大 的范同改变其使用性能 , 以满足不 同的使用场合 的要求 。 3低聚物 的分子量对聚 氨酯材料的- 眭能的影响 低聚物是聚氨酯材料 的软段部分 , 是呈无规卷曲状态的柔性链
关键词 : 聚氨酯 ; 结构 ; 性 能
是聚氨酯材料弹性的来 聚氨酯 , 全称 聚氨基 甲酸酯 ( p o l y u r e t h a n e ) , 是主链上 含有很 多 段 。软段的玻璃化温度低 于常温呈高弹态 , 软段的分子链越 短 , 柔韧性差 , 而且这种聚 氨基 甲酸酯基 的一类聚合物。聚氨酯的主要 原料有三大类 , 即低 聚 源 。低聚物分子量越低 , 物多元醇 、 扩链剂和多异氰酸酯 。另外 , 在具体应用中 , 为了提高 反 氨酯材料 中的软段含量也相对较低 ,并且整体 的交联密度 变大 , 使 应速率 , 改进加_ 丁特性 和聚氨酯材料 的性能 , 减小成本等 目的 , 需要 得聚氨酯材料的弹性 下降, 杨氏模量增大 , 强度变 大。 另外低聚物 的 加入某些助剂。 分子量的不同 , 也会影响聚氨酯材料 的软化温度 、 溶解性能 、 耐老化 聚氨酯材料 由于其 性能优越 , 易于成型加工 , 在 国民经济 中得 性能等 。 低 聚物 的分子量 , 很大程度上决定了聚氨酯材料 的性能 。 分 到 了广泛的应用 。聚氨酯 材料是世界六大合成材料 之一 。到 目前 为 子量较大 的低聚物多用于制造 聚氨酯 弹性体 , 分子量较小的低聚物 止, 聚氨酯在塑料 、 橡胶 、 合成纤维 、 涂料 、 粘接剂 、 建筑填充材料 、 以 合成 的聚氨酯材料能做工程塑料使 用。所 以 , 不 同分子量 的低 聚物 及 防水 灌浆材料等 各个方 面取得 了广 泛 的应 用 。据 R e s e a r c h a n d 合成 的聚氨酯材料性能相差大 , 用途 也不一样 。 Ma r k e t s 公司研究报告显示 , 2 0 1 0 年全球 聚氨酯市场需求为 1 3 6 5万 我们 可 以利 用不同的反应条 件来调节低 聚物 的分子量 的大小 吨, 预计 到 2 0 1 6年将达到 1 7 9 4 . 6万吨 , 复合年增长率为 4 . 7 %。 按价 和分 布, 嵌段链 的长度 和分布等 因素 , 进 一步调节交联密度 , 就能在 值计算 , 2 0 1 0年估计 为 3 3 0 . 3 3 亿 美元 ,到 2 0 1 6年将达到 5 5 4 . 8 亿 很大 的范 围内改变聚氨酯材料 的性能 , 以满足不 同使用场合要求 。 美元 , 复合年增长率为 6 . 8 %。 而因国内聚氨酯关键原料 MD I 、 T D I 产 随着聚氨酯科 学的迅速发展 , 聚氨酯 的应用越来 越广 , 如塑料 、 能产量 出现过剩 , 聚氨酯下游制品需求增大 , 以及众 跨 国公 司将 业 橡胶 、 纤维、 涂料 、 粘结剂 、 复合材 料和具有特殊功能 的功能高分 子 务重点和研发中心转至亚洲甚 至中国市场 , 未来国 内聚氨酯产业将 等等 , 在人们的生活中起着举足轻重的作用。 现实中 , 聚氨酯 制品往 迎来黄金期 。 往是具有某一特定 的功能 , 只能应 用在一个具体 的领域 , 有 的已经 1聚 氨 酯 的结 构 及 - 陛能 特 点 应用的聚氨酯甚至还有许多不足 , 这些都制约 了聚氨酯材料 的推 广 聚氨 酯化 学结构的特征是其 大分 子主链上 重复含有氨基 甲酸 和应用。为了研究 出性能更优越的聚氨酯材料 , 或 者改善现有材料 酯链段 。 的性 能 , 人们做出了巨大的努力 。聚氨酯 的主要原材料是 聚醚多元 醇。近年来在 聚醚多元醇的合成方面 , 新 的单体 , 新 的聚合方法 , 新 的加工成 型工 艺等成果 的出现 , 改变 了聚醚 多元 醇的结构 , 提升了 R, . O— C. NH. R. NH— e. O— R, 现有聚氨酯 的性能 , 具有很 大的社会价值 。 聚氨酯 的聚集态结构特征是微 相分 离 , 这种结构特征对聚氨酯 性能有很大影响。聚氨酯是由低 聚物多元醇 、 小分子扩链剂和多异 氰酸酯加 聚而成 。低聚物多元 醇一 般是 直链 烷烃 , 由于其 中碳碳单 键的可旋转性 , 分子链具有很大 的柔性 , 存在 多种 构象 , 是聚氨酯大 分子链的软段或软链段 ;而小分子扩链 剂和多异氰酸酯反应后 , 处 在交联点 的位置 , 不易运动 , 是聚氨酯大分子链的硬段或硬链段 。 软 链段 与软链段之间作用力小 , 玻璃化温度低于常温 , 易卷曲和运动 , 室温呈橡胶态 ; 硬链段 含有很多 刚性基 团如氨基 甲缩酯 、 芳环等 , 极 性大 , 相互之间作用力 大, 玻璃 化温度高于常温 , 室温呈玻璃态 。软 链段 的橡胶态 是聚氨酯 中的连续相 , 是聚氨酯 弹性 的来源 ; 硬链段 的玻璃态容易聚集在聚氨酯 中的分散相 ,起着物理交联的作用 , 是 聚氨酯刚性的来源 。 微相分离的存在使得聚氨酯材料具有优异的性 能 。聚氨 酯材 料的特点是 : 优异的弹性 , 弹性模量在 塑料和橡胶 之 间; 良好 的耐磨性 ; 耐氧性和耐臭氧性能优 良; 耐油脂及 耐化学 品性 能优 良; 耐疲 劳f 生及抗振动性好 ; 抗冲击性强等 。 但是材料聚氨酯耐 高温和耐水性较差 , 这阻碍了聚氨酯在一些场所的应用 。

聚氨酯的结构与性能解析

聚氨酯的结构与性能解析
性能。
因此,交联、纳米SiO2保护膜有助于提高PU的 耐老化性能,同时需加入紫外吸收剂及抗氧剂以 提高其耐老化性能。
郝文涛,合肥工业大学化工学院
54
2.5.1
郝文涛,合肥工业大学化工学院
55
郝文涛,合肥工业大学化工学院
56
2.5.2
郝文涛,合肥工业大学化工学院
57
2.5.3
郝文涛,合肥工业大学化工学院
郝文涛,合肥工业大学化工学院
5
软段(Tg低于室温,较长)
主要影响弹性和低温性能, 对硬度、撕裂强度和模量也有重要作用;
硬段
主要对产品模量、硬度和撕裂强度影响大, 且决定该聚合物材料的最高使用温度。
郝文涛,合肥工业大学化工学院
6
硬段氢键
存在着氨基甲酸酯、脲等高极性基团 能提供质子的仲氨基基团 能接受质子的羰基基团
郝文涛,合肥工业大学化工学院
9
2.1.1
郝文涛,合肥工业大学化工学院
10
由于FPUE的硬段间的强氢键作用和偶极效应,使 得微区中部分链段排列有序形成微晶结构;
随着硬段含量的提高,Tg逐渐升高,FPUE的耐寒 性能逐渐降低,而耐热氧化性逐渐提高。
CF3
H2N
O
C
O
NH2
CF3
郝文涛,合肥工业大学化工学院
郝文涛,合肥工业大学化工学院
73
软-硬段氢键
醚氧基 羰基
均能接受质子,与仲氨基形成氢键
郝文涛,合肥工业大学化工学院
7
氢键的形成使硬段间彼此聚集,形成许多微区, 均匀地分散于软段基体中,成为一种不连续的微 相结构。
它们类似填料颗粒,对软段基质起到补强作用。
硬-软段间氢键的形成,使硬段不同程度地渗入软 段基质,降低其纯度,限制其活动性,显著提高 软段的T g,且随氢键化程度的提高而升高。

聚氨酯的结构与性能

聚氨酯的结构与性能

2.4.3
郝文涛,合肥工业大学化工学院
50
氮丙啶基团可在酸存在下开环,与 水性聚氨酯形成交联结构
郝文涛,合肥工业大学化工学院
51
2.4.4
郝文涛,合肥工业大学化工学院
52
2.4.5
郝文涛,合肥工业大学化工学院
53

在聚氨酯的耐老化研究中,
① 使用了紫外线吸收剂、抗氧剂; ② 以羟基硅油为改性剂,以硅烷偶联剂为交联剂; ③ 在分子结构中引入交联结构;
线性链的相对分子质量 聚合物的相结构
合成、加工方法与工艺条件
郝文涛,合肥工业大学化工学院
4
①软硬段尺寸 ②微相分离程度 ③形成分子链间共价键和氢键的能力 ④链段中和区域结构中凝聚链段间形成范德华力 相互作用的趋势 ⑤所用异氰酸酯组分中芳香族环或脂环族环结构 的尺寸和对称性 ⑥分子链的连接程度 ⑦经受加工受热过程后链段的定向作用 ⑧结晶相的类型和含量
郝文涛,合肥工业大学化工学院


36


聚合工艺条件对弹性体耐热性影响
控制缩二脲与脲基甲酸酯的生成 预聚法和半预聚法就要好一些



纳米粒子和填料复合对弹性体耐热性的影响
聚氨酯-蒙脱土 聚氨酯-纳米二氧化硅 碳酸钙、炭黑、石英石、碳纤维、玻璃纤维、尼龙、 固化树脂颗粒等填料
郝文涛,合肥工业大学化工学院
郝文涛,合肥工业大学化工学院
14
2010.1
2.2.1
郝文涛,合肥工业大学化工学院
15
制备过程
首先将自制的聚氨酯预聚体和环氧树脂按质量比为2:1
的比例混合。 加入固化剂,搅拌均匀。 再将磨料和稀土抛光剂按比例加入并充分搅拌均匀,浇 注到模具中,最后加热固化成型。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这些现象产生微相分离形态结构,决定着聚氨酯 材料的物理机械性能。
郝文涛,合肥工业大学化工学院
8
通过微相分离形态结构研究,可有助于深入了解材料 结构与性能间的关系,有助于原材料选择、改性,有 助于新型助剂的开发以及配方设计和工艺条件的确定。
有效地掌握微相分离测试和表征方法,则有可能合理 利用或控制微相分离,以改进聚氨酯最终产品性能。
郝文涛,合肥工业大学化工学院
27
郝文涛,合肥工业大学化工学院
28
2.2.5
郝文涛,合肥工业大学化工学院
29
2.2.6
郝文涛,合肥工业大学化工学院
30
在PUE 分子链上引入热稳定性好的杂环基团(如异氰脲酸 酯、噁唑烷酮、聚酰亚胺环等)能够显著提高PUE的耐热
性能与TDI-80反应得到改性异氰酸酯
郝文涛 合肥工业大学化工学院
2010-3-14
2.0 影响PU性能的因素综述 2.1 耐寒性能 2.2 耐热性能 2.3 耐水解性能 2.4 耐老化性能 2.5 耐光性能
郝文涛,合肥工业大学化工学院
2
郝文涛,合肥工业大学化工学院
3
2.0.1 影响因素
基础原料组分的化学结构和物理特性 线性链的相对分子质量 聚合物的相结构 合成、加工方法与工艺条件
20
水分散有机硅-聚氨酯嵌段共聚物的合成
郝文涛,合肥工业大学化工学院
21
氨基有机硅能够改善PU热性能
郝文涛,合肥工业大学化工学院
22
2.2.3
郝文涛,合肥工业大学化工学院
23
郝文涛,合肥工业大学化工学院
WPSUR – 以氨基有 机硅为扩链剂制备
的水性聚氨酯
MMT – 蒙脱土
该曲线为TG的 微分曲线 (DTG)
软-硬段氢键
醚氧基 羰基
均能接受质子,与仲氨基形成氢键
郝文涛,合肥工业大学化工学院
7

氢键的形成使硬段间彼此聚集,形成许多微区, 均匀地分散于软段基体中,成为一种不连续的微 相结构。
它们类似填料颗粒,对软段基质起到补强作用。
硬-软段间氢键的形成,使硬段不同程度地渗入软 段基质,降低其纯度,限制其活动性,显著提高 软段的T g,且随氢键化程度的提高而升高。
脲酸酯环、聚酰亚胺环、噁唑烷酮环等) 实施交联 提高结晶度
郝文涛,合肥工业大学化工学院
36
② 聚合工艺条件对弹性体耐热性影响
控制缩二脲与脲基甲酸酯的生成 预聚法和半预聚法就要好一些
③ 纳米粒子和填料复合对弹性体耐热性的影响
聚氨酯-蒙脱土 聚氨酯-纳米二氧化硅 碳酸钙、炭黑、石英石、碳纤维、玻璃纤维、尼龙、
24
郝文涛,合肥工业大学化工学院
HDA – 己二胺
APDMS - N - β 氨乙基- γ - 氨丙 基甲基二甲氧基
硅烷
NS - 端氨烃基 聚二甲基硅氧烷
该曲线为TG的 微分曲线 (DTG)
25
2.2.4
郝文涛,合肥工业大学化工学院
26
蓖麻油是一种来源丰富,价格低廉的天然可再生资源,其 羟基官能度为2.7 左右,而且有生物可降解性,已经成为聚 氨酯工业中一种具有很强竞争力的天然原料,除了作为多 元醇成分广泛应用到聚氨酯弹性体材料中,也用于聚氨酯 涂料,其成膜的疏水性、柔软性、耐屈挠性和耐寒性良好。
注到模具中,最后加热固化成型。
郝文涛,合肥工业大学化工学院
16
固化反应跟踪
郝文涛,合肥工业大学化工学院
17

郝文涛,合肥工业大学化工学院
EP的热分解温度似 乎应高于PU,作者 有可能使用了EP预
聚物做的TG
18
2.2.2
郝文涛,合肥工业大学化工学院
19
氨基有机硅合成
郝文涛,合肥工业大学化工学院
固化树脂颗粒等填料
郝文涛,合肥工业大学化工学院
Tg越高,耐寒性越差;Tg越低,耐寒性越好; 因此,软段的柔性对耐寒性影响非常大;
但是,耐寒性的提高往往对应着力学性能的降低。
郝文涛,合肥工业大学化工学院
14
2010.1
2.2.1
郝文涛,合肥工业大学化工学院
15
制备过程
首先将自制的聚氨酯预聚体和环氧树脂按质量比为2:1 的比例混合。
加入固化剂,搅拌均匀。 再将磨料和稀土抛光剂按比例加入并充分搅拌均匀,浇
郝文涛,合肥工业大学化工学院
4
①软硬段尺寸 ②微相分离程度 ③形成分子链间共价键和氢键的能力 ④链段中和区域结构中凝聚链段间形成范德华力
相互作用的趋势 ⑤所用异氰酸酯组分中芳香族环或脂环族环结构
的尺寸和对称性 ⑥分子链的连接程度 ⑦经受加工受热过程后链段的定向作用 ⑧结晶相的类型和含量
郝文涛,合肥工业大学化工学院
31
郝文涛,合肥工业大学化工学院
32
郝文涛,合肥工业大学化工学院
33
郝文涛,合肥工业大学化工学院
34
2.2.7
郝文涛,合肥工业大学化工学院
35
① 结构对聚氨酯弹性体耐热性的影响
伯醇最高,叔醇最低 聚酯型聚氨酯弹性体耐热性能优于聚醚型 1, 5-萘二异氰酸酯(NDI) – 刚性更强 刚性扩链剂 – 氢醌双羟乙基醚 有机硅改性对弹性体耐热性影响 在PU分子的主链上引入热稳定性好的杂环(如异氰
11
2.1.2
郝文涛,合肥工业大学化工学院
12
微相分离研究表明:随着软段含量的提高,聚氨酯
涂膜的微相分离程提高,软段的玻璃化温度下降, 有利于提高涂膜的耐寒性能。
郝文涛,合肥工业大学化工学院
13
聚合物的耐寒性能优劣实际上反映了其分子链在 低温下的运动能力;
由于链段运动是最重要的分子运动形式,因此, 与之对应的玻璃化转变温度(Tg)的高低就反映 了耐寒性能的好坏;
郝文涛,合肥工业大学化工学院
5
软段(Tg低于室温,较长)
主要影响弹性和低温性能, 对硬度、撕裂强度和模量也有重要作用;
硬段
主要对产品模量、硬度和撕裂强度影响大, 且决定该聚合物材料的最高使用温度。
郝文涛,合肥工业大学化工学院
6
硬段氢键
存在着氨基甲酸酯、脲等高极性基团 能提供质子的仲氨基基团 能接受质子的羰基基团
郝文涛,合肥工业大学化工学院
9
2.1.1
郝文涛,合肥工业大学化工学院
10
由于FPUE的硬段间的强氢键作用和偶极效应,使 得微区中部分链段排列有序形成微晶结构;
随着硬段含量的提高,Tg逐渐升高,FPUE的耐寒 性能逐渐降低,而耐热氧化性逐渐提高。
CF3
H2N
O
C
O
NH2
CF3
郝文涛,合肥工业大学化工学院
相关文档
最新文档