水性聚氨酯的分类

合集下载

水性聚氨酯的合成简介

水性聚氨酯的合成简介

5 水性聚氨酯的制备方法
5.Байду номын сангаас 丙酮法
先用多元醇与二异氰酸酯反应制成端基是NCO的高 粘度预聚体,加入助溶剂如丙酮使其粘度降低,然后 用亲水性单体扩链,在高速搅拌下加入水进行乳化。
5 水性聚氨酯的制备方法
5.2 预聚体分散法: 合成以-NCO为端基的预聚体,当相对分子量 不太大而且粘度较小时,不加或只加入少量 溶剂,先用亲水单体部分扩链,在高速搅拌 下将其分散于水中,再用反应性高的二胺类 物质进行扩链。
4 水性聚氨酯的分类
4.2.3 非离子型WPU 非离子型水性聚氨酯,即分子中不含离子基团的水 性聚氨酯。其制备方法有:a.普通聚氨酯预聚体或 聚氨酯有机溶液在乳化剂存在下进行高剪切力强制 乳化;b.制成分子中含有非离子型亲水性链段或亲 水性基团,亲水性链段一般是中低分子量聚氧化乙 烯亲,水性基团一般是羟甲基。 4.2.4 混合型WPU 聚氨酯分子中同时含有离子型或非离子型基团等。
5 水性聚氨酯的制备方法
5 水性聚氨酯的制备方法
水性聚氨酯的制备方法有外乳化和自乳化两种。 外乳化法是采用外加乳化剂,在高剪切力存在下将 聚氨酯预聚体分散于水中的强制乳化方法。该法得 到的乳液粒径较大(0.7~3μm),储存稳定性差。 且产品中有乳化剂残留,影响质量。 自乳化法即在聚合物链上引入适量的亲水基团,在 一定条件下自发分散形成乳液。可分为以下几种:
5 水性聚氨酯的制备方法
以上的自乳化法中以丙酮法和预聚体分散法 较为成熟。
谢谢!
下一讲 水性聚氨酯的改性
3.2 低聚物多元醇 水性聚氨酯合成用低聚物多元醇主要包括聚醚型、 聚酯型两大类,它构成聚氨酯的软段。 3.3 扩链剂 为了调节分子量及软、硬段比例,在水性聚氨酯合 成中常使用扩链剂。扩链剂主要是多官能度醇类或 胺类化合物

高性能水性环保聚氨酯胶粘剂及施工工艺

高性能水性环保聚氨酯胶粘剂及施工工艺

高性能水性环保聚氨酯胶粘剂及施工工艺目前,世界合成胶粘剂发展的趋势突出表现为环保和高性能化[1]。

随着环保法规的日趋严格,各发达国家大力研制水性胶粘剂。

由于水性聚氨酯胶粘剂的综合性能优越,在各类水性胶粘剂中独树一帜,近年来受到国内外的广泛关注,特别是高性能水性聚氨酯胶粘剂的开发研究已成为热点课题。

1、水性聚氨酯水性聚氨酯是配制水性聚氨酯胶粘剂的基础物质和关键组分,它的性能直接决定胶粘剂的最终性能。

根据粒子所带电荷种类,水性聚氨酯可分为阴离子,阳离子,非离子三种类型。

水性聚氨酯的制备一般是先合成一定分子量的聚氨酯预聚体,然后在剪切力作用下将预聚体分散在水中。

目前其制备方法以亲水单体扩链、自乳化法为主(所谓亲水单体扩链法),即在聚氨酯预聚体的分子结构中引入亲水性扩链剂,所得聚合物无需外加乳化剂就能直接分散于水中形成水性聚氨酯。

亲水单体扩链法的合成工艺有溶剂法、预聚物分散水中扩链法、熔融分散缩聚法等。

早在四、五十年代,水性聚氨酯已有少量的研究,但由于贮存稳定性差等原因,这项研究工作进展不大,直到1972年德国Bayer公司正式将聚氨酯水分散液作为皮革涂料后,才开始迅速发展[8]。

据报道,1992年至1997年间水性聚氨酯的年平均增长率为8%[9]。

我国从70年开始研究水性聚氨酯,近年来研究工作也十分活跃[10]。

研制工作具有以下特点:(1)从产品结构来看,主要是乳液型,水溶性次之,胶乳型则不常见。

(2)从原料来看,多元醇主要用聚醚型,聚酯型次之,聚碳酸酯极少见。

异氰酸酯的品种更少,只有TDI,HDI、MDI仅见报道。

扩链剂多用醇类,胺类较少使用。

(3)从制备方法及种类来看,一般是自乳化,羧酸型、阴离子体系;外乳化,磺酸型,季铵盐型乳化体系较少;熔融分散,固体自发分散法等则未涉及。

(4)从理论与应用角度来看,着重应用开发,理论研究很少。

欲配制高性能水性聚氨酯胶粘剂,必须制备高性能水性聚氨酯。

大多数水性聚氨酯主要是线性热塑性聚氨酯,由于其涂膜没有交联,分子量较低,因而耐水性,耐溶剂性,胶膜强度等性能还较差。

水性聚氨酯胶解析(一)

水性聚氨酯胶解析(一)

水性聚氨酯胶解析(一)2009-11-21 23:08水性聚氨酯胶解析水性聚氨酯胶的发展概况水性聚氨酯胶粘剂是指聚氨酯溶于水或分散于水中而形成的胶粘剂,有人也称水性聚氨酯为水系聚氨酯或水基聚氨酯。

依其外观和粒径,将水性聚氨酯分为三类:聚氨酯水溶液(粒径<0.001um,外观透明)、聚氨酯分散液(粒径0.001-0.1 um,外观半透明)、聚氨酯乳液(粒径>0.1 ,外观白浊)。

但习惯上后两类在有关文献资料中又统称为聚氨酯乳液或聚氨酯分散液,区分并不严格。

实际应用中,水性聚氨酯以聚氨酯乳液或分散液居多,水溶液少。

由于聚氨酯类胶粘剂具有软硬度等性能可调节性好以及耐低温、柔韧性好、粘接强度大等优点,用途越来越广。

目前聚氨酯胶粘剂以溶剂型为主。

有机溶剂易燃易爆、易挥发、气味大、使用时造成空气污染,具有或多或少的毒性。

近10多年来,保护地球环境舆论压力与日俱增,一些发达国家制订了消防法规及溶剂法规,这些因素促使世界各国聚氨酯材料研究人员花费相当大的精力进行水性聚氨酯胶粘剂的开发。

水性聚氨酯以水为基本介质,具有不燃、气味小、不污染环境、节能、操作加工方便等优点,已受到人们的重视。

聚氨酯从30年代开始发展,而在50年代就有少量水性聚氨酯的研究,如1953年Du Pont公司的研究人员将端异氰酸酯基团聚氨酯预聚体的甲苯溶液分散于水,用二元胺扩链,合成了聚氨酯乳液。

当时,聚氨酯材料科学刚刚起步,水性聚氨酯还未受到重视,到了六、七十年代,对水性聚氨酯的研究开发才开始迅速发展,1967年首次出现于美国市场,1972年已能大批量生产。

70-80年代,美、德、日等国的一些水性聚氨酯产品已从试制阶段发展为实际生产和应用,一些公司有多种牌号的水性聚氨酯产品供应,如德国Bayer公司的磺酸型阴离子聚氨酯乳液ImPranil和Dispercoll KA等系列、Hoechst公司的Acrym系列、美国Wyandotte化学公司的X及E等系列,日本大日本油墨公司的Hydran HW 及AP系列、日本公司的聚氨酯乳液CVC36及水性乙烯基聚氨酯胶粘剂CU系列、日本光洋产业公司的水性乙烯基聚氨酯胶粘剂KR系列等等。

水性聚氨酯膜(WPU)

水性聚氨酯膜(WPU)

水性聚氨酯薄膜一、透气膜膜性材料在现代人类社会活动中占有举足轻重的地位。

我们常见的膜材:聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、尼龙(PA)、聚酯( PET)等,除了一些传统的性能如轻薄、柔软、透明或着色、阻隔、防护等功能可以满足人们日益增长的需求外,一些新的功能性膜材正在改变人们的生活。

具有透气功能的膜性材料是其中重要的增长极。

目前具有透气功能的材料有:1.微孔透气膜微孔型透气薄膜的结构是靠牵伸两种不相容组分如在聚合物中加入无机微粒而形成的。

其结构中存在很多像毛细管一样的微孔。

这些微孔构成了允许气体通过的通道,但由于外界的液体液滴的直径大于微孔的直径所以不能通过。

这类膜材的代表有PE透气膜:此种透气膜以聚烯烃树脂为载体,加入微细特殊填充料(如CaCO3)后用流延冷辊成型法挤出而成,经纵向拉伸处理后,具有独特的微孔结构。

这些以高密度分布在薄膜表面的特殊结构微孔,使薄膜既能阻隔液体水的渗漏,又能让水蒸汽等气体分子通过。

该薄膜的原材料主要由基本树脂(LLDPE+LDPE、HDPE、EVA或PP)和无机填充物(CaCO3含量在45%~50%之间)组成。

在湿度90%、37℃的条件下测量,水蒸气透气率(WVTR)可达到500~5000g/m2(24h),耐水压(60~200cm水柱)。

在通常情况下,该薄膜的温度比非透气性薄膜低1.0~1.5℃,手感柔软(与自然的棉制品相似),吸附力强。

图1 微孔透气膜及微孔透气膜电镜图2.分子透气膜分子薄膜是致密的无微孔薄膜,由简单的挤出吹膜或其他的工艺技术生产,然后贴附到织物上的。

水气在分子薄膜上的渗透过程可称为“主动扩散”过程。

这与气球中的氦气渗出的过程类似。

渗透物附着在高浓度的一边,利用存在的压力差扩散渗透到薄膜的另一边。

对于分子薄膜,聚合物的化学结构和薄膜的厚度是决定渗透力的主要因素这类膜材的代表有PU透气膜:又称聚氨酯透气膜,主要采用挤出、压延和吹塑等工艺来制备,由于聚氨酯分子结构的特点,人们可以通过调节聚氨酯嵌段成分比例改变其弹性、硬度和亲水性。

水性聚氨酯简介

水性聚氨酯简介

水性聚氨酯胶黏剂简介一、水性聚氨酯胶黏剂分类到目前为止,水性聚氨酯的研究已有60多年,其有各种各样的分类方式,通常采用的分类方式有以下六种。

1、按使用形式分类按使用形式分类,可分为单组份与双组分水性聚氨酯。

(1)单组份水性聚氨酯单组份水性聚氨酯应用最早,一般指可直接投入生产使用的或者无需交联剂的水性聚氨酯,有着耐水性较差的缺点,但通过交联改性可以获得较高的稳定性、力学性能、耐水性的提升。

(2)双组分水性聚氨酯双组分水性聚氨酯是指多异氰酸酯预聚体与多元醇两个组分,其单独使用时不能直接投入生产,必须添加交联剂。

使用时将两组分混合,多异氰酸酯与多元醇和空气中的水反应,生成聚脲与聚氨酯,从而产生交联。

双组分水性聚氨酯的耐水性较好,但多异氰酸酯与水反应生成CO2,导致聚氨酯胶膜气泡较多,外观较差,且不环保。

2、按亲水基团分类根据水性聚氨酯分子主链或者侧链上的离子基团性质或是否携带离子基团,可将其分为阴离子、阳离子和非离子型。

(1)阴离子型水性聚氨酯因为反应完全、综合性能好而最为常用,可以分为羧酸型和磺酸型,其离子基团一般在侧链上。

(2)阳离子型水性聚氨酯为主链或侧链上含有锍离子或铵离子的水性聚氨酯,亲水的铵离子一般由含氨基的扩链剂经酸化或者烷基化的反应形成,也可以将含氨基的聚氨酯与环氧氯丙烷以及酸反应生成,阳离子型水性聚氨酯的主要缺点是热稳定性与力学性能较差。

(3)非离子型水性聚氨酯的分子主链或侧链中不带有亲水离子基团。

要使非离子型水性聚氨酯乳化,就必须加入乳化剂并在高速旋转的剪切乳化机下乳化,也可以通过形成非离子亲水基团来进行乳化,如羟甲基,非离子型的水性聚氨酯耐水性较差。

3、按原料分类水性聚氨酯的主要原料为低聚多元醇和多异氰酸酯。

(1)低聚多元醇按主要原料多元醇分类,有聚酯多元醇、聚醚多元醇、聚四氢呋喃、聚丙烯酸多元醇、丙烯酸酯、聚碳酸酯多元醇、聚己内酯二醇、蓖麻油、聚酯酰胺、聚丁二烯二醇等,主要使用的是聚酯型二元醇和聚醚型二元醇。

水性聚氨酯

水性聚氨酯

外乳化法
自乳化法即在聚合物链上引入适量的亲水基团,在一 定条件下自发分散形成乳液。 自乳化法制得的水性聚氨酷,乳液粒径小,稳定性高, 成膜性、粘附性好,是目前制备水性聚氨酯的主要方 法。
引入的亲水基团
自乳化制备水性聚氨酯的主要方法:
1.溶液法是在低沸点的能和水充分混合的惰性溶剂 (如丙酮、
甲乙酮和四氢呋喃,由于大多数采用丙酮为溶剂,故溶液法又被广
氢键的影响: 氢键可直接影响力学性能外,还可以影响聚集态结构。 如硬段之间的氢键能促进硬段的取向和有序排列,有利于 微相分离。 耐热性能与结构的关系: 聚氨酯的耐热性可用其软化温度和热分解温度来衡量。 一般来说,分子量提高,硬段的刚性和比例增加,交联密 度增大,均有利于提高软化温度。聚氨酯的分解温度则取 决于大分子结构中各基团的耐热性。
1. 按外观分类
名称 状态 外观 水溶液 溶解~胶体 透明 分散液 分散 半透明乳白 乳液 分散 白浊
粒径,μm
分子量
<0.001
1000~10000
0.001~0.1
数千~20万
>0.1
>5000
聚氨酯疏水性强,不能直接溶于水,也很难分散在水中。因此,用传统的工 艺先合成聚氨酷后,再分散到水中的方法不能制得水性聚氨酯,又由于异氰 酸酯遇水即迅速反应,也很难在水中进行制备,因而必须采用新的方法来合 成水性聚氨酯。
水性聚氨酯
2016.9.3
水性聚氨酯概念 水性聚氨酯分类 水性聚氨酯制备方法 水性聚氨酯影响性能的因素
水性聚氨酯的概念
水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系, 也称水分散聚氨酯、水系聚氨酯或水基聚氨酯。 水性聚氨酯以水为溶剂,无污染、安全可靠、机械性能优良、相容 性好、易于改性等优点。 水性聚氨酯可广泛应用于涂料、胶粘剂、织物涂层与整理剂、皮革 涂饰剂、纸张表面处理剂和纤维表面处理剂。

水性聚氨酯的制备及改性方法

水性聚氨酯的制备及改性方法

聚氨基甲酸酯(polyurethane),简称聚氨酯(PU),是分子结构中含有重复氨基甲酸酯(-NHCOO-)结构的高分子材料的总称。

聚氨酯一般由二异氰酸酯和二元醇或多元醇为基本原料经加聚反应而成,根据原料的官能团数不同,可制成线形或体形结构的聚合物,其性能也有差异。

聚氨酯具有良好的力学性能、粘结性能及耐磨性等,在各领域得到了广发应用。

由于溶剂型聚氨酯的溶剂为有机物,具有挥发性,不仅污染环境,而且对人体有害。

在人们日益重视环境保护的今天以及环保法规的确立,溶剂型涂料中的有机化合物的排放量受到了严格的控制,因此,开发污染小的水性涂料已成为研究的主要方向。

水性聚氨酯(WPU)具有优异的物理机械性能,其不含或含有少量可挥发性有机物,生产施工安全,对环境及人体基本无害,符合环保要求。

其生产方法分为外乳化法和内乳化法,外乳化法又称强制乳化法,由使用这种方法得到的乳液稳定性较差,所以使用较少。

目前使用较多的是内乳化法,也称自乳化法,即在聚氨酯分子链上引入一些亲水性基团,使聚氨酯分子具有一定的亲水性,然后在高速分散下,凭借这些亲水基团使其自发地分散于水中,从而得到WPU。

然而,亲水基团的引入在提高聚氨酯亲水性的同时却降低了它的耐水性和拒油性。

为了改善其耐水性和拒油性,通常是将强疏水性链段引入聚氨酯结构之中。

有机硅、有机氟由于其表面能低和热稳定性好受到人们的重视,已经得到了广泛应用。

同时利用纳米材料来提高涂膜的光学、热学和力学性能。

纳米改性WPU 完美地结合了无机物的刚性、尺寸稳定性、热稳定性及WPU的韧性、易加工性,纳米改性WPU为涂料向高性能化和多功能化提供了崭新的手段和途径,是最有前途的现代涂料研究品种之一。

[1]1.2 水性聚氨酯的基本特征及发展历史1937年德国的Otto Bayer博士首次将异氰酸酯用于聚氨酯的合成。

直到1943年德国科学家Schlack在乳化剂或保护胶体存在的情况下,将二异氰酸酯在水中乳化并在强烈搅拌下加入二胺,首次成功制备了水性聚氨酯。

水性聚氨酯的研究综述

水性聚氨酯的研究综述

水性聚氨酯前言聚氨酯( PU ) 是聚氨基甲酸酯的简称, 它是聚合物内含有相当数量的氨基甲酸酯( —NHCO— )的高分子化合物。

自从1937 年德国Bayer 教授首次合成聚氨酯以来, 聚氨酯以其软硬度可调节范围广、耐低温、柔韧性好、附着力强等优点逐渐被人们所认识。

其弹性体、泡沫塑料、涂料及粘接剂等均已获得广泛应用。

但由于溶剂型聚氨酯含有大量有机溶剂, 严重污染环境, 特别是溶剂型双组分聚氨酯中的残留异氰酸酯单体, 毒性极高。

随着人们环保意识的增强和各国政府环保立法, 急需一种可以替代传统有机溶剂型的新型聚氨酯材料。

水性聚氨酯是以水替代有机溶剂作为分散介质, 有人也称水性聚氨酯为水系聚氨酯或水基聚氨酯 , 它不仅具有溶剂型聚氨酯的一些重要性能特征。

同时还具有不燃、无毒、无污染、节省能源及易贮存, 使用方便等优点。

因此备受关注, 成为当今聚氨酯领域发展的重要方向。

目录一、水性聚氨酯的定义及分类二、水性聚氨酯的制备原理三、水性聚氨酯的制备方法四、水性聚氨酯的防水性能及应用五、水性聚氨酯的其他应用六、展望1水性聚氨酯的定义及分类水性聚氨酯是指聚氨酯以水为介质, 体系中不含或含很少的有机溶剂。

以外观分, 水性聚氨酯可以分为 3 类: 聚氨酯水溶液、聚氨酯分散液、聚氨酯乳液。

三者之间的区别在于聚氨酯大分子粒子在水中的分散形态的不同,并没有不可逾越的界限, 实际应用中我们所说的水溶性聚氨酯是指聚氨酯水分散体或聚氨酯乳液。

表 1 按外观分各类水性聚氨酯的特性以亲水性基团的电荷性质分, 水性聚氨酯可分为阴离子型水性聚氨酯、阳离子型水性聚氨酯和非离子型水性聚氨酯。

其中阴离子型最为重要, 分为羧酸型和磺酸型2 大类。

以合成单体分水性聚氨酯可分为聚醚型、聚酯型和聚醚、聚酯混合型。

依照选用的二异氰酸酯的不同, 水性聚氨酯又可分为芳香族和脂肪族, 或具体分为TDI 型、HDI 型等等。

以产品包装形式分水性聚氨酯可分为单组分水性聚氨酯和双组分水性聚氨酯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水性聚氨酯的分类由于聚氨酯原料和配方的多样性,水性聚氨酯开发40年左右的时间,人们已研究出许多种制备方法和制备配方。

水性聚氨酯品种繁多,可以按多种方法分类。

1.以外观分水性聚氨酯可分为聚氨酯乳液、聚氨酯分散液、聚氨酯水溶液。

实际应用最多的是聚氨酯乳液及分散液,本书中统称为水性聚氨酯或聚氨酯乳液,其外观分类如表5所示。

表5 水性聚氨酯形态分类2.按使用形式分水性聚氨酯胶粘剂按使用形式可分为单组分及双组分两类。

可直接使用,或无需交联剂即可得到所需使用性能的水性聚氨酯称为单组分水性聚氨酯胶粘剂。

若单独使用不能获得所需的性能,必须添加交联剂;或者一般单组分水性聚氨酯添加交联剂后能提高粘接性能,在这些情况中,水性聚氨酯主剂和交联剂二者就组成双组分体系。

3.以亲水性基团的性质分根据聚氨酯分子侧链或主链上是否含有离子基团,即是否属离子键聚合物(离聚物),水性聚氨酯可分为阴离子型、阳离子型、非离子型。

含阴、阳离子的水性聚氨酯又称为离聚物型水性聚氨酯。

(1)阴离子型水性聚氨酯又可细分为磺酸型、羧酸型,以侧链含离子基团的居多。

大多数水性聚氨酯以含羧基扩链剂或含磺酸盐扩链剂引人羧基离子及磺酸离子。

(2)阳离子型水性聚氨酯一般是指主链或侧链上含有铵离子(一般为季铵离子)或锍离子的水性聚氨酯,绝大多数情况是季铵阳离子。

而主链含铵离子的水性聚氨酯的制备一般以采用含叔胺基团扩链剂为主,叔胺以及仲胺经酸或烷基化试剂的作用,形成亲水的铵离子。

还可通过含氨基的聚氨酯与环氧氯丙烷及酸反应而形成铵离子。

(3)非离子型水性聚氨酯,即分子中不含离子基团的水性聚氨酯。

非离子型水性聚氨酯的制备方法有:①普通聚氨酯预聚体或聚氨酯有机溶液在乳化剂存在下进行高剪切力强制乳化;②制成分子中含有非离子型亲水性链段或亲水性基团,亲水性链段一般是中低分子量聚氧化乙烯,亲水性基团一般是羟甲基。

(4)混合型聚氨酯树脂分子结构中同时具有离于型及非离子型亲水基团或链段。

4.以聚氨酯原料分按主要低聚物多元醇类型可分为聚醚型、聚酯型及聚烯烃型等,分别指采用聚醚多元醇、聚酯多元醇、聚丁二烯二醇等作为低聚物多元醇而制成的水性聚氨酯。

还有聚醚-聚酯、聚醚—聚丁二烯等混合以聚氨酯的异氰酸酯原料分,可分为芳香族异氰酸酯型、脂肪族异氰酸酯型、脂环族异氰酸酯型。

按具体原料还可细分,如TDI型、HDI型,等等。

5.按聚氨酯树脂的整体结构划分(1)按原料及结构可分为聚氨酯乳液、乙烯基聚氨酯乳液、多异氰酸酯乳液、封闭型聚氨酯乳液。

聚氨酯乳液是指以低聚物多元醇、扩链剂、二异氰酸酯为原料,以通常方法制备的聚氨酯分散于水所形成的乳液。

乙烯基聚氨酯乳液一般指在乙烯基树脂水溶液或乳液中加入异氰酸酯而形成的乳液,是双组分体系。

多异氰酸酯乳液是指含亲水基团多异氰酸酯乳化于水,或多异氰酸酯的有机溶液分散于含乳化剂的水而形成的乳液,也是双组分即用即配体系,适用期较短。

封闭型异氰酸酯乳液是指分子中含有被封闭的异氰酸酯基团的聚氨酯乳液,是一种稳定的单组分体系。

在制备聚氨酯乳液时司引入封闭异氰酸酯基团,也可制成封闭异氰酸酯基团含量高的乳液,用于和其他乳液体系共混,起交联作用,水分挥发后加热交联o(2)聚氨酯乳液还可细分为聚氨酯乳液和聚氨酯-脲乳液,后者是指由聚氨酯预聚体在水中分散同时通过水或二胺扩链而形成的乳液,实质上生成了聚氨酯—脲,但由于由预聚体分散法制备较为普遍,习惯上称为聚氨酯乳液者居多。

(3)按分子结构可分为线性分子聚氨酯乳液(热塑性)和交联型聚氨酯乳液(热固性)。

交联型又可细分为内交联和外交联型。

内弋联型聚氨酯乳液是在合成时形成一定程度的支化交联分子结构,或引入可热反应性基团,它是稳定的单组分体系。

外交联是在乳液中添加能与聚氨酯分子链中基团起反应的交联剂,是双组分体系o6.根据聚氨酯的水性化方法划分根据制备方法有多种分类。

举例如下。

(1)自乳化法和外乳化法自乳化法又称内乳化法,是指聚氨酯链段中含有亲水性成分,因而无需乳化剂即可形成稳定乳液的方法。

外乳化法又称为强制乳化法,若分子链中仅含少量不足以自乳化的亲水性链段或基团,或完全不含亲水性成分,此时必须添加乳化剂,才能得到乳液。

比较而言,外乳化法制备的乳液中,由于亲水性小分子乳化剂的残留,影响固化后聚氨酯胶膜的性能,而自乳化法消除了此弊病。

水性聚氨酯的制备目前以离子型自乳化法为主。

(2)预聚体法、丙酮法、熔融分散法自乳化法制水性聚氨酯最常用的方法有预聚体分散法和丙酮法。

预聚体法即在预聚体中导人亲水成分,得到一定粘度范围的预聚体,在水中乳化同时进行链增长,制备稳定的水性聚氨酯(水性聚氨酯-脲)。

丙酮法属于溶液法,是以有机溶剂稀释或溶解聚氨酯(或预聚体),再进行乳化的方法。

在溶剂存在下,预聚体与亲水性扩链剂进行扩链反应,生成较高分子量的聚氨酯,反应过程可根据需要加人溶剂以降低聚氨酯溶液粘度,使之易于搅拌,然后加水进行分散,形成乳液,最后蒸去溶剂。

溶剂以丙酮、甲乙酮居多,故称为丙酮法。

此法的优点是丙酮、甲乙酮的沸点低、与水互容、易于回收处理,整个体系均匀,操作方便,由于降低粘度同时也降低了浓度,有利于在乳化之前制得高分子量的预聚体或聚氨酯树脂,所得乳液的膜性能比单纯预聚体法的好。

而预聚体法由于粘度的限制,为了便于剪切分散,预聚体的分子量不能太高,可能会影响水性聚氨酯性能,例如粘度高则乳化困难,粒径大,乳液稳定性差;预聚体分子量小则NCO基团含量高,乳化后形成的脲键多,胶膜硬,缺乏柔软性。

丙酮法和预聚体法的主要区别是,在丙酮法中,聚氨酯先预聚成分子量较大的预聚体,由于分子量大的预聚体粘度大,必须稀释降低粘度;而预聚体法中根据需要可加或不加少量丙酮等溶剂。

这两者的概念有所交叉,有的乳化方法既属丙酮法又属预聚体法。

熔融分散法又称熔体分散法、预聚体分散甲醛扩链法。

预先合成含叔胺基团(或离子基团)的端NCO基团预聚体,再与尿素(或氨水)在本体体系反应,形成聚氨酯双缩二脲(或含离子基团的端脲基)低聚物,并加入氯代酰胺在高温熔融状态继续反应,继续季胺化。

聚氨酯双缩二脲离聚物具有足够的亲水性,加酸的稀水溶液形成均相溶液,再与甲醛水溶液反应进行羟甲基化,含羟甲基的聚氨酯严缩二脲能在50—130℃用无限水稀释,形成稳定乳液。

当降低体系的pu值时,能在分散相中进行缩聚反应,形成高分子量聚氨酯。

含离子基团的端NCO 预聚体形成端脲基或缩二脲基聚氨酯低聚物后,则直接在熔融状态乳化于水,再加甲醛水溶液进行羟甲基化及扩链反应。

(3)二元胺直接扩链与酮亚胺—酮连氮法在预聚体分散法中,若采用溶于水的二元伯胺扩链剂扩链,由于一NCO与一NH2的反应速度快,不易得到微细而均匀的乳液,可采用酮亚胺或酮连氮法解决此问题。

酮亚胺-酮连氮法是指预聚体与被酮保护了的二元胺(酮亚胺体系)或肼(酮连氮体系)混合后,再用水分散,分散过程中,酮亚胺、酮连氮以一定的速率水解,释放出游离的二元胺或肼与分散的聚合物微粒反应,得到的水性聚氨酯—脲具有良好的性能。

水性聚氨酯制备用原料1.低聚物多元醇:聚醚二醇、聚酯二醇、聚醚三醇、聚丁二烯二二醇、丙烯酸酯多元醇等水性聚氨酯胶粘剂制备中常用的低聚物多元醇一般以聚醚二醇、聚酯二醇居多,有时还使用聚醚三醇、低支化度聚酯多元醇、聚碳酸酯二醇等小品种低聚物多元醇。

聚醚型聚氨酯低温柔顺性好,耐水性较好,且常用的聚氧化丙烯二醇(PPG)的价格比聚酯二醇低,因此,我国的水性聚氨酯研制开发大多以聚氧化丙烯二醇为主要低聚物多元醇原料。

由聚四氢呋喃醚二醇制得的聚氨酯机械强度及耐水解性均较好,惟其价格较高,限制了它的广泛应用。

聚酯型聚氨酯强度高、粘接力好,但由于聚酯本身的耐水解性能比聚醚差,故采用一般原料制得的聚酯型水性聚氨酯,其贮存稳定期较短。

但通过采用耐水解性聚酯多元醇,可以提高水性聚氨酯胶粘剂的耐水解性。

国外的聚氨酯乳液胶粘剂及涂料的主流产品是聚酯型的。

脂肪族非规整结构聚酯的柔顺性也较好,规整结构的结晶性聚酯二醇制备的单组分聚氨酯乳液胶粘剂,胶层经热活化粘接,初始强度较高。

而芳香族聚酯多元醇制成的水性聚氨酯对金属、RET等材料的粘接力高,内聚强度大。

其他低聚物二醇如聚碳酸酯二醇、聚己内酯二醇、聚丁二烯二醇、丙烯酸酯多元醇等,都可用于水性聚氨酯胶粘剂的制备。

聚碳酸酯型聚氨酯耐水解、耐候、耐热性好,易结晶,由于价格高,限制了它的广泛应用。

2.异氰酸酯:TDI、MDI、IPDI、HDI等制备聚氨酯乳液常用的二异氰酸酯有TDI、MDI等芳香族二异氰酸酯,以及TDI、MDI、HDI:MDI等脂肪族、脂环族二异氰酸酯。

由脂肪族或脂环族二异氰酸酯制成的聚氨酯,耐水解性比芳香族二异氰酸酯制成的聚氨酯好,因而水性聚氨酯产品的贮存稳定性好。

国外高品质的聚酯型水性聚氨酯一般均采用脂肪族或脂环族异氰酸酯原料制成,而我国受原料品种及价格的限制,大多数仅用TDI为二异氰酸酯原料。

多亚甲基多苯基多异氰酸酯一般用于制备乙烯基聚氨酯乳液和异氰酸酯乳液。

3.扩链剂:1,4—丁二醇、乙二醇、己二醇、乙二胺等水性聚氨酯制备中常常使用扩链剂,其中可引入离子基团的亲水性扩链剂有多种,除了这类特种扩链剂外,经常还使用1,4—丁二醇、乙二醇、一缩二乙二醇、己二醇、乙二胺、二亚乙基三胺等扩链剂。

由于胺与异氰酸酯的反应活性比水高,可将二胺扩链剂混合于水中或制成酮亚胺,在乳化分散的同时进行扩链反应。

4.水:蒸馏水、离子水水是水性聚氨酯胶粘剂的主要介质,为了防止自来水中的Ca2+、寸+等杂质对阴离子型水性聚氨酯稳定性的影响,用于制备水性聚氨酯胶粘剂的水一般是蒸馏水或去离子水。

除了用作聚氨酯的溶剂或分散介质,水还是重要的反应性原料,合成水性聚氨酯目前以预聚体法为主,在聚氨酯预聚体分散与水的同时,水也参与扩链。

由于水或二胺的扩链,实际上大多数水性聚氨酯是聚氨酯—脲乳液(分散液),聚氨酯—脲比纯聚氨酯有更大的内聚力和粘接力,脲键的耐水性比氨酯键好。

5.亲水性扩链剂:二羟甲基丙酸(DMPA)、二羟基半酯、乙二胺基乙磺酸钠、二亚乙基三胺等亲水性扩链剂就是熊引入亲水性基团的扩链剂。

这类扩链剂是仅在水性聚氨酯制备中使用的特殊原料。

这类扩链剂中常常含有羧基、磺酸基团或仲胺基,当其结合到聚氨酯分子中,使聚氨酯链段上带有能被离子化的功能性基团。

6.成盐剂:HCL、醋酸、环氧丙烷7.溶剂:丙酮、甲乙酮、甲苯等8.乳化剂:聚氧化乙烯-氧化丙烯共聚物9.交联剂:环氧树脂、三聚氰胺-甲醛树脂、多异氰酸酯10.增稠剂:羧甲基纤维素、羟甲基纤维素等。

相关文档
最新文档