周期问题(含答案)

合集下载

高中函数周期性问题(含训练题及解析)

高中函数周期性问题(含训练题及解析)

f x-【详解】(2由条件可知函数在区间)(252f=函数在区间[0,4C .(sin)(cos )33f f ππ> D .33(sin )(cos )22f f >【答案】B 【解析】因为()()2f x f x =+,所以()f x 周期为2,因为当[]3,4x ∈时, ()2f x x =-单调递增,所以[]()1,0?,x f x 时∈- 单调递增,因为()f x 偶函数,所以[]()0,1,x f x ∈时 单调递减,因为110sin cos 122<<<,1sin1cos10,>>> 1> sin cos 033ππ>>,331sin cos 022>>> 所以11sin cos 22f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, ()()sin1cos1f f <, sin cos 33f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭ ,33sin cos 22f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.6.已知()f x 是在R 上的奇函数,满足()()2f x f x =-,且[]0,1x ∈时,函数()21x f x =-,函数()()log (1)a g x f x x a =->恰有3个零点,则a 的取值范围是( )A .10,9⎛⎫ ⎪⎝⎭B .11,95⎛⎫ ⎪⎝⎭C .()1,5D .()5,9【答案】D【解析】由题得,令()log ah x x =,定义域为0x >,()()log (1)a g x f x x a =->恰有3个零点,即()f x 和()h x 的图像在定义域内有3个交点,()(2)(2)[2(2)](4)(4)f x f x f x f x f x f x =-=--=---=--=-,故函数()f x 的一个周期是4,又[]0,1x ∈时,函数()21x f x =-,且图像关于轴x=1对称,由此可做出函数(),()f x h x 图像如图,若两个函数有3个交点,则有log 51log 91a a <⎧⎨>⎩,解得59a <<,则a 的取值范围是(5,9).7.已知函数()y f x =的定义域为R ,且满足下列三个条件:∵任意[]12,4,8x x ∈,当12x x <时,都有。

小学数学《周期性问题》练习题(含答案)

小学数学《周期性问题》练习题(含答案)

小学数学《周期性问题》练习题(含答案)基本概念:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.阳历中有闰日的年份叫闰年,相反就是平年,平年为365天,闰年为366天. 在公历纪年中,平年的二月为28天,闰年的二月为29天. 闰年的2月29日为闰日.一般的,能被4整除的年份是闰年,不能被4整除的年份是平年.如:1988年2008年是闰年;2005年2006年2007年是平年.但是如果是世纪年(也就是整百年),就只有能被400整除才是闰年,否则就是平年.如:2000年就是闰年,1900年就是平年.【复习1】(华罗庚学校五年级入学考试试题)从算式1998÷8991的除数和被除数中各划去两个数字,使得新算式的结果尽可能小,那么该结果小数点后第1998位数字是多少?分析:除数划去两个数字最小是18, 被除数划去两个数字最大是99 , 18÷99=0.1818……,1998÷2正好整除,所以小数点后面1998位是8.【复习2】(05福建迎春杯)有一串数列,第一个数是8,以后每个数的规律为:如果前一个数是奇数,就将它减去1以后再乘以3;如果前一个数是偶数,就将它除以2以后再加上2,那么这串数列的第102个数是多少?分析:写出这串数的若干项:8、6、5、12、8、6、5、12、……,每四个数一循环:102÷4=25…2,所以第102个数是6 .【复习3】有一列数:2、1000、998、2、996、994、…从第三个数起,每一个数都是它前面两个数中大数减小数的差,那么在这列数中第188个数是几?分析:我们把这个数列延伸一下:2、1000、998、2、996、994、2、992、990、2、988、986、…,3间隔两项出现,大数(非3的数)以2为公差减小,如上下划线所示,每三个一组,每组第二个数字差为4,188÷3=62……2 ,所以第188个数是第63组的第2个数,为:1000-(63-1)×4=752.数字大排队【例1】除0外的全体自然数如右表排列,请问(1)数43在哪个字母下面?(2)数47在哪个字母下面?(3)数56在哪个字母下面?分析:(1)43÷8=5…3,所以它在3的下面,也就是说在C的下面;(2)47÷8=5…7,所以它在7的下面,也就是说在E的下面;(3)56=7×8,所以它在8的下面,也就是说在D 的下面。

周期问题练习60道,含答案

周期问题练习60道,含答案

1.【2015年江苏省】,那么⼩数点后⾯的第个数字是( )。

A.B.C.D.2.【2016年全国】的商⽤循环⼩数表⽰,这个⼩数的⼩数点后⾯第位数字是( )A.B.C.D.3.【2016年浙江省】⼀辆⻓途客⻋从武汉开往潜江,再从潜江开往武汉,不断往返.⻓途客⻋⾏驶次后在( )。

A.武汉B.潜江C.不能确定4.【2016年全国】体育课上同学们站成⼀排,⽼师让他们按、、、、循环报数,最后⼀个报的数是,这⼀排同学可能有( )⼈。

A.B.C.5.【2015年福建省泉州市南安市】年⽉⽇是星期⼆,同年的⽉⽇是( )。

A.星期四B.星期五C.星期六6.【2015年江苏省】☆☆☆□□○☆☆☆□□○☆☆☆□□○…,照这样排列下去,左边起第个1÷14=0.0714285714285⋯6207145÷7200712520121234522627282008112139C.○D.⽆法判断7.【2014年安徽省池州市⽯台县】⼀排学⽣从前往后按、、、、、依次重复报数,从前往后数⼩明是第个,他应该报( )A.B.C.8.【2012年全国】年的⽉⽇是星期五,下个星期五是( )A.⽉⽇B.⽉⽇C.⽉⽇9.【2015年江苏省】⼩红要为妈妈穿⼀串圆形珠链.她想⽤⿊⽩两种颜⾊的珠⼦穿,且每两颗⽩珠⼦之间穿颗⿊珠⼦。

穿成这串珠链⾄少需( )颗珠⼦。

A.B.C.D.10.【2017年全国】有⼀排彩旗,按照⾯红旗、⾯⻩旗、⾯绿旗的顺序排列,第⾯是( )旗。

A.红B.⻩C.绿11.【2015年江苏省】年元旦是星期⽇,那年元旦是星期( )。

A.⼆B.三123123⋯24123201122532333456712141231002012201312.【2016年⼴西省百⾊市隆林各族⾃治县】为了迎接检查,学校在操场上按照红、⻩、绿的顺序布置了很多花,第盆是( )花。

A.红B.⻩C.绿13.【2017年全国】年⽉⽇是星期四,年⽉⽇是星期( )。

小升初数学专题训练 3.周期问题

小升初数学专题训练  3.周期问题

第3讲周期问题第一部分:知识介绍周期现象:事物在运动变化过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期。

分类:1.图形中的周期问题;2.数列中的周期问题;3.日期(时间)中的周期问题.第二部分:例题精讲【例 1】黑珠、白珠共101颗,穿成一串,排列如下图。

这串珠子中,最后一颗珠子应该是_____色的, 这种颜色的珠子在这串中共有_____颗.【考点】图形周期【解析】观察得从第二个珠子开始每4个一循环,所以(1011)425-÷=,判定最后一个为白色,共有253176⨯+=颗。

【答案】白色,76【例 2】(上外面试题汇编)有同样大小的红白黑珠共96个,按先5个红的,再4个白的,再3个黑的排列着,如图:◎◎◎◎◎○○○○●●●◎◎◎◎◎○○○○●●●◎◎…。

试问:黑珠共有()个?【考点】图形周期【解析】观察每12个珠子一循环(组),所以96128÷=,共有8组,其中黑珠共有24个【答案】24【例 3】(上外面试题汇编)节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接3盏黄灯,然后又是5盏红灯、4盏蓝灯、3盏黄灯、……这样排下去。

问:前200盏彩灯中有()盏蓝灯?【考点】图形周期【解析】每12盏灯一组,所以20012168÷=,共有16组还余8盏灯,其中蓝灯有164(85)67⨯+-=【答案】67【例 4】 (2007年上外面试题)给出一个表格,如下:1 2 3 4 5 6 7 8 9 10 11 12 13 14 …北 京 奥 运 会 北 京 奥 运 会 北 京 奥 运 …传 递 圣 火 传 递 圣 火 传 递 圣 火 传 递 … 问第72列是哪两个字?【考点】图形周期【解析】“北京奥运会”5字一循环,第72个是“京”; “传递圣火”4字一循环,第72个是“火”。

所以第72列的两个字分别是“京”、 “火”。

小学数学《周期问题》练习题(含答案)

小学数学《周期问题》练习题(含答案)

小学数学《周期问题》练习题(含答案)【例1】有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,红花、黄花、绿花各有多少朵?分析:这些花按5红、9黄、13绿的顺序轮流排列,它的一个周期内有5+9+13=27(朵)花。

因为249÷27=9……6,所以,这249朵花中含有9个周期还余下6朵花。

按花的排列规律,这6朵花中前5朵应是红花,最后一朵应是黄花。

答案:249÷(5+9+13)=9 (6)红花有:5×9+5=50(朵)黄花有:9×9+1=82(朵)绿花有:13×9=117(朵)最后一朵是黄花。

红花有50朵,黄花有82朵,绿花有117朵。

【例2】2002年元旦是星期二,那么,2003年1月1日是星期几?分析:2002年平年。

每7天为一个星期,也就是为一个周期;从2002年1月1日到2002年12月31日为365天,到2003年1月1日是第366天。

关键在于一个周期的第一天是星期几。

答案:366÷7=52(周)……2天。

本题一个周期的第一天是星期二,所以,余2天就是星期三。

2003年的1月1日是星期三。

拓展训练100个同学从前往后排成一列,按下面的规则报数:如果某个同学报的数是一位数,后面的同学就要报出这个数与7的和;如果某个同学报的数是两位数,后面的同学就要报出此数的个位数字与4的和.现在让第一个同学报1,问最后一个同学报的是多少?答案:依次为1,8,15,9,16,10,4,11,5,12,6,13,7,14,8,15…以13为周期。

最后一个同学报5。

【例3】有同样大小的红珠、白珠、黑珠共160个,按4个红珠,3个白珠,2个黑珠的顺序排列着。

黑珠共有几个?第101个珠子是什么颜色?分析:4+3+2=9,所以珠子9个为一周期。

答案:160÷9=17…7,所以黑珠有17×2=34个。

周期问题及参考答案

周期问题及参考答案

周期问题1……是按一定规律排列的,(!)其中第84个是)前84个图形中有多少个?2、李华把早时节省下来的100枚硬币按1个1角、2个5角、3个1元的顺序排成一行。

(1)最后一枚硬币的面值是多少?(2)李华一共节省了多少元钱?3、有240朵花,第一朵是红花,然后按照1朵黄花,3朵紫花,7朵绿花的顺序将黄花、紫花、绿花排列起来。

(1)最后一朵花是什么颜色?(2)黄花、紫花、绿花各多少朵?4、把25化成小数,小数点后面第60位是几?小数点后面60个数字74之和是多少?5、香港回归那天公路旁边插起了一面面彩旗,王芳看到每两面绿旗之间有红色、黄色的彩旗各一面,第一面是绿旗,第88面彩旗是什么颜色的?6、元旦之夜,街上的彩灯按照4盏红灯,3盏蓝灯,2盏黄灯,……的顺序排列,第80盏灯是什么颜色?前100盏灯中有多少盏红灯?7、有同样大小的红球、黄球、蓝球共150个,按3个红球,2个黄球,4个蓝球的顺序排列,红球共有多少个;第50个球是什么颜色?8、有一串数:2、3、5、8、13、21、34……前100个数中有多少个偶数?9、某部84集电视连续剧在某星期日开播,从星期一到星期五以及星期日每天都要播出1集,星期六停播,最后一集在星期几播放?10、小红按1至3报数,小军按1至5报数,两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?11、把1化成小数,小数点后面第100位数字是几?小数点后面前100 7个数字之和是多少?12、7×7……×7(80个7)+3×3……×3(90个3)结果个位上的数字是几?13、下面是一个1120,你知道14、某个月里有3个星期日的日期为偶数,请你算出这个月的15日是星期几?周期问题参考答案1、上面的四个图形循环出现,也就是说每四个图形为一个周期,因此有84÷4=21组,第个是 。

2×21=42个圆。

六年级奥数周期问题(含答案)

六年级奥数周期问题(含答案)

简单的周期问题一、填空题(共10小题,每小题3分,满分30分)1.(3分)某年的二月份有五个星期日,这年六月一日是星期_________ .2.(3分)1989年12月5日是星期二,那么再过十年的12月5日是星期_________ .3.(3分)按如图摆法摆80个三角形,有_________ 个白色的.4.(3分)节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_________ 灯.5.(3分)时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_________ 时.6.(3分)把自然数1,2,3,4,5…如表依次排列成5列,那么数“1992”在_________ 列.7.(3分)把分数化成小数后,小数点第110位上的数字是_________ .8.(3分)循环小数与.这两个循环小数在小数点后第_________ 位,首次同时出现在该位中的数字都是7.9.(3分)一串数:1,9,9,1,4,1,4,1,9,9,1,4,1,4,1,9,9,1,4,…共有1991个数.(1)其中共有_________ 个1,_________ 个9 _________ 个4;(2)这些数字的总和是_________ .10.(3分)所得积末位数是_________ .二、解答题(共4小题,满分0分)11.紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8×9=72,在9后面写2,9×2=18,在2后面写8,…得到一串数字:1 9 8 9 2 8 6…这串数字从1开始往右数,第1989个数字是什么?12.1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?13.n=,那么n的末两位数字是多少?14.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)某年的二月份有五个星期日,这年六月一日是星期二.考点:日期和时间的推算。

四年级思维训练 周期问题 附答案

四年级思维训练   周期问题 附答案

四年级思维训练周期问题附答案1、小明按1~5循环报数,小华按1~6循环报数,当两个人都报了600个数时,小花报的数字之和比小明报的数字之和多()。

2、1×1+2×2+3×3+…+2012×2012+2013×2013的个位数是多少?是()3、黑板上写着一个九位数222222222,对他做如下操作:擦掉末位数后乘4,再加上刚擦去的数字,然后在黑板上写下得到的数;……如此操作下去,直到在黑板上写下的是一位数,它是()。

4、某一年共有53个星期六,那么这一年的3月1日是星期()。

5、有6个属相相同的人在一起过生日,其中年龄最大的是85岁,那么这6个人年龄之和至少是()岁。

6、有白棋子和黑棋子共2014个,按照图的规律从左到右排成一排,其中黑棋子的个数是()。

当作黑棋)ΟΟ…7、有一根木条,从最左端开始,每隔3厘米做一个记号,每隔4厘米也做一个记号,然后从有标记的地方截断,这样木条一共被截成了75段,求木条原来的长的最大值是()。

8、一列有规律的数如下:1,1,2,3,5,8,13,21…按此规律,第12个数是()。

9、下面的算式是按一定的规律排列的,那么,第50个算式的得数是多少?2+3,3+7,4+11,5+15,…应是()。

10、2016个3相乘,乘积的个位数是()。

11、2013×2013×…×2013的个位数字是()。

2013 个201312、如果今天是星期五,那么从今天算起,57天后的第一天是星期()。

周期问题答案1、小明按1~5循环报数,小华按1~6循环报数,当两个人都报了600个数时,小花报的数字之和比小明报的数字之和多(300 )。

2、1×1+2×2+3×3+…+2012×2012+2013×2013的个位数是多少?是( 9 )3、黑板上写着一个九位数222222222,对他做如下操作:擦掉末位数后乘4,再加上刚擦去的数字,然后在黑板上写下得到的数;……如此操作下去,直到在黑板上写下的是一位数,它是( 6 )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单的周期问题一、填空题1.某年的二月份有五个星期日,这年六月一日是星期_________.2.1989年12月5日是星期二,那么再过十年的12月5日是星期_________.3.按如图摆法摆80个三角形,有_________个白色的.4.节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_________灯.5.时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_________时.6.把自然数1,2,3,4,5…如表依次排列成5列,那么数“1992”在_________列.7.把分数化成小数后,小数点第110位上的数字是_________.8.循环小数与.这两个循环小数在小数点后第_________位,首次同时出现在该位中的数字都是7.9.一串数:1,9,9,1,4,1,4,1,9,9,1,4,1,4,1,9,9,1,4,…共有1991个数.(1)其中共有_________个1,_________个9_________个4;(2)这些数字的总和是_________.10.所得积末位数是_________.二、解答题(共4小题,满分0分)11.紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8×9=72,在9后面写2,9×2=18,在2后面写8,…得到一串数字:1989286…这串数字从1开始往右数,第1989个数字是什么?12.1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?13.n=,那么n的末两位数字是多少?14.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)某年的二月份有五个星期日,这年六月一日是星期二.考点:日期和时间的推算。

分析:因为某年二月份有五个星期日,又知4×7=28,所以这年二月份应为29天,而且可知2月1日和2月29日均为星期天.所以3月1日为星期一.到六月一日经过了3月、4月、5月,因为3月、5月又1天,4月有30天,所以共有31+30+31+1=93天,每个星期有七天,所以93÷7=13…2,所以6月1日是星期二.解答:解:因为7×4=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了31+30+31+1=93(天).93÷7=13…2,所以这年6月1日是星期二.答:这年六月一日是星期二.故答案为:二.点评:本题是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.2.(3分)1989年12月5日是星期二,那么再过十年的12月5日是星期日.考点:日期和时间的推算。

分析:先求出这十年有多少天,再求这些天里有多少周,还余几天;再根据余数求出这一天是星期几.解答:解:这十年中1992年、1996年都是闰年,因此,这十年之中共有365×10+2=3652(天);3652÷7=521(周)…5(天),5+2=7,所以再过十年的12月5日是星期日.故答案为:日.点评:本题是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.3.(3分)按如图摆法摆80个三角形,有39个白色的.考点:简单周期现象中的规律。

分析:从图中可以看出,三角形按“黑黑白白黑白”的规律重复排列,也就是这一排列的周期为6,80÷6得出周期数和余数,一个周期有3个白色,加上余数的白色个数,即可得解.解答:解:80÷6=13…2,余数2全是黑色,所以,白色的三角形有:13×3=39;答:有39个白色的.故答案为:39.点评:看出规律,找到周期,是解决这类题的关键.4.(3分)节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是白灯.考点:简单周期现象中的规律。

分析:每四盏灯为一个周期,白灯、红灯、黄灯、绿灯,以此类推,73是多少个周期余数是几,排一下就知道了.解答:解:73÷4=18…1,所以是白灯;答:小明想第73盏灯是白灯.故答案为:白.点评:此题考查了简单周期现象中的规律.5.(3分)时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是13时.考点:时间与钟面。

分析:分针旋转一周为1小时,旋转1991周为1991小时;一天24小时,1991÷24=82(天)…23(小时),1991小时共82天又23小时;现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.解答:解:1991÷24=82天…23小时,1991小时共82天又23小时.14+23﹣24=13小时,答:时针表示的时间是13时.故答案为:13.点评:考查了时间与钟面,在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.6.(3分)把自然数1,2,3,4,5…如表依次排列成5列,那么数“1992”在第三列.考点:数表中的规律。

分析:9个数一个循环,这9个数不变的排列是第一列、第二列、第三列、第四列、第五列、第五列、第四列、第三列、第二列;那么求出1992是多少个循环,得出余数,即可得解.解答:解:1992÷9=221…3;所以,1992在第三列.故答案为:第三.点评:此题考查了数表中的规律,认真分析得出结论.7.(3分)把分数化成小数后,小数点第110位上的数字是7.考点:简单周期现象中的规律;循环小数与分数。

分析:先把化成小数:0.0.571428571428571428,是一个循环小数,它的循环周期是6,六个数字依次是:5,7,1,4,2,8.因为110÷6=18…2,所以第110位上的数是一周期的第二个数即7.解答:解:因为=0.571428571428,是个循环小数,它的循环周期是6,具体地六个数字依次是5,7,1,4,2,8;110÷6=18…2,所以第110个数字是上面列出的六个数中的第2个,就是7.故答案为:7.点评:做这类题先把分数化为小数,(一般为循环小数),周初他的循环周期及循环的数列,求第几位上的数字,就用这个数字除以循环周期,余几就是一个循环周期的第几个数字.8.(3分)循环小数与.这两个循环小数在小数点后第35位,首次同时出现在该位中的数字都是7.考点:循环小数及其分类;公约数与公倍数问题。

分析:根据已知条件可知,这两个小数的循环节分别是7位数和5位数,求出5和7的最小公倍数即可.解答:解:因为0.1992517的循环节是7位数,0.34567的循环节是5位数,又5和7的最小公倍数是35,所以两个循环小数在小数点后第35位,首次同时出现在该位上的数字都是7.故答案为:35.点评:此题答解答主要根据求两个数的最小公倍数解答.9.(3分)一串数:1,9,9,1,4,1,4,1,9,9,1,4,1,4,1,9,9,1,4,…共有1991个数.(1)其中共有853个1,570个9568个4;(2)这些数字的总和是8255.考点:数字串问题;数字和问题。

分析:不难看出,这串数每7个数即1,9,9,1,4,1,4为一个循环,即周期为7,且每个周期中有3个1,2个9,2个4.因为1991÷7=284…3,所以这串数中有284个周期,加上第285个周期中的前三个数1,9,9.其中1的个数是:3×284+1=853(个),9的个数是2×284+2=570(个),4的个数是2×284=568(个).这些数字的总和为1×853+9×570+4×568=8255.解答:解:(1)这串数每7个数即1,9,9,1,4,1,4为一个循环,且每个周期中有3个1,2个9,2个4.因为1991÷7=284…3,所以这串数中有284个周期,加上第285个周期中的前三个数1,9,9.其中1的个数是:3×284+1=853(个),9的个数是2×284+2=570(个),4的个数是2×284=568(个).(2)这些数字的总和为:1×853+9×570+4×568=8255.故答案为:853,570,568;8255.点评:在做题时应首先观察规律:7个数即1,9,9,1,4,1,4为一个循环.10.(3分)所得积末位数是9.考点:乘积的个位数。

分析:当7的个数是1时,末位是7;当7的个数是2时,末位是9;当7的个数是3时,末位是3;当7的个数是4时,末位是1;当7的个数是5时,末位又是7;由此发现积的末尾依次出现7、9、3、1;依此规律解答即可.解答:解:先找出积的末位数的变化规律:71末位数为7,72末位数为9,73末位数为3,74末位数1;75=74+1末位数为7,76=74+2末位数为9,77=74+3末位数为3,78=74×2末位数为1;由此可见,积的末位依次为7,9,3,1,7,9,3,1,以4为周期循环出现.因为50÷4=12…2,即750=74×12+2,所以750与72末位数相同,也就是积的末位数是9.故答案为:9点评:此题考查的目的是:通过计算发现规律,依照规律解答这类问题.二、解答题(共4小题,满分0分)11.紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8×9=72,在9后面写2,9×2=18,在2后面写8,…得到一串数字:1989286…这串数字从1开始往右数,第1989个数字是什么?考点:数字串问题。

相关文档
最新文档