(完整)高考抛物线专题做题技巧与方法总结,推荐文档
探讨高中数学抛物线的解题方法与技巧

探讨高中数学抛物线的解题方法与技巧高中数学作为一门重要的学科,其内容的难度也相对较高。
抛物线作为高中数学中的一个常见知识点,其涉及到的解题方法与技巧也非常重要。
在本文中,我将借助我的学习经验,向大家浅谈关于探讨高中数学抛物线的解题方法与技巧。
一、基本概念在探讨解题方法与技巧之前,首先我们需要了解抛物线的基本概念。
抛物线是一种在平面上呈现出u形的曲线。
其方程通常为y = ax² + bx + c。
抛物线有两个基本特性:首先,抛物线是对称的,它的对称轴是垂直于x轴的线,其公式为x = -b/2a。
其次,抛物线的最高点叫做顶点,其y坐标为y = c - b²/4a。
二、解题方法1. 求解抛物线的相关参数在解题的过程中,如果我们要求解抛物线的方程,我们需要知道其中的相关参数。
在抛物线方程y = ax² + bx + c中,参数a、b、c分别代表什么意思?我们可以这样理解:参数a代表抛物线的开口方向和开口的大小,参数b代表抛物线的上下平移位置,参数c代表抛物线的左右平移位置。
2. 求解抛物线与其他曲线的交点在解题的过程中,我们还需要求解抛物线与其他曲线(如直线、另一条抛物线等)的交点。
这时我们需要用到解方程的方法。
以求解抛物线和直线的交点为例,我们先将抛物线和直线的方程联立起来,然后将抛物线的方程中的x用直线的方程表示,我们最后就能够解出x的值。
将x的值代入其中一个方程就可以求出y的值。
3. 求解离散数据的抛物线方程在实际生活中,我们有时候需要通过一组离散的数据来求解抛物线的方程。
这时候我们需要用到最小二乘法。
最小二乘法是一种通用的解决线性回归问题的办法,将数据点投影到一个平滑的函数上,通过求解该函数的系数,最终得到最优的函数曲线。
三、解题技巧1. 确定坐标系在解题的过程中,我们应该确定好坐标系的选择,通常可以根据题目的要求来选择合适的坐标系。
如果我们要求解抛物线上的某一个点,可以选择原点为顶点,则求解过程更容易进行。
如何备考高考数学抛物线

如何备考高考数学抛物线高考数学抛物线是高考数学中的重要知识点,也是高中数学中的难点之一。
要想在高考中顺利通过抛物线这一关,就需要对抛物线的性质、图形、方程、对称性等方面进行深入的了解和掌握。
一、了解抛物线的性质1.定义:抛物线是平面上一条曲线,它的每一个点到抛物线所在的准线的距离等于这个点到抛物线焦点的距离。
2.标准方程:抛物线的标准方程为 y^2 = 4ax,其中 a 是抛物线的焦点到准线的距离,称为抛物线的参数。
当 a > 0 时,抛物线开口向右;当 a < 0 时,抛物线开口向左。
3.顶点:抛物线的顶点是曲线的最高点或最低点,位于对称轴上,坐标为 (0,0) 或 (0, -4a)。
4.对称性:抛物线具有轴对称性和中心对称性。
轴对称性指的是抛物线关于其对称轴对称,中心对称性指的是抛物线关于其顶点对称。
5.焦点和准线:抛物线的焦点位于对称轴上,坐标为 (a,0),准线的方程为 x = -a。
二、掌握抛物线的图形1.对称轴:抛物线的对称轴是垂直于准线的直线,方程为 x = 0。
2.焦点和顶点:抛物线的焦点和顶点都在对称轴上,且焦点在顶点的正下方。
3.渐近线:抛物线的渐近线是平行于对称轴的直线,方程为 y = 0。
4.开口方向:当 a > 0 时,抛物线开口向右;当 a < 0 时,抛物线开口向左。
5.顶点:抛物线的顶点是曲线的最高点或最低点,坐标为 (0,0) 或 (0, -4a)。
三、熟悉抛物线的方程1.标准方程:y^2 = 4ax,其中 a 是抛物线的焦点到准线的距离,称为抛物线的参数。
2.顶点式:当抛物线的顶点在原点时,方程可以写成 y^2 = 4px 或 y^2= -4px,其中 p 是顶点到焦点的距离。
3.焦点式:当抛物线的焦点在原点时,方程可以写成 x^2 = 4py 或 x^2= -4py,其中 p 是焦点到顶点的距离。
四、了解抛物线的应用1.光学:抛物线在光学中有着广泛的应用,如反射镜、折射镜等。
高三数学知识点总结抛物线

高三数学知识点总结抛物线(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高三数学知识点总结抛物线最新高三数学知识点总结抛物线(归纳)学数学要有阶段目标,阶段化小目标就是你在当前的一个阶段内想达到的程度,例如在月考时要考到班级多少名,这周要看什么科目书籍,什么时候看等。
高中数学抛物线的公式及复习技巧

高中数学抛物线的公式及复习技巧高中数学抛物线的公式1、抛物线:y=ax__+bx+c就是y等于ax的平方加上bx再加上c。
a0时,抛物线开口向上;a0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)__+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。
4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2p__^2=2pyx^2=-2py。
高考数学复习技巧1、训练想像力。
有的数学问题既要凭借图形,又要进行抽象思维。
同学们不但要学会看图,而且要学会画图,通过看图和画培养自己的空间想象能力比如,几何中的“点”没有大小,只有位置。
现实生活中的点和实际画出来的点就有大小。
所以说,几何中的“点”只存在于大脑思维中。
2、准确理解和牢固掌握各种数学运算所需的概念、性质、公式、法则和一些常用数据,概念模糊,公式、法则含混,必定影响数学运算的准确性。
为了提高运算的速度,收集、归纳、积累经验,形成熟练技巧,以提高运算的简捷性和迅速性。
3、审题。
有些题目的部分条件并不明确给出,而是隐含在文字叙述之中。
把隐含条件挖掘出米,常常是数学解题的关键所在,对题目隐含条件的挖掘,都要仔细思考除了明确给出的条件以外,是否还隐含着更多的条件,这样才能准确地理解数学题意。
高三提高数学成绩的窍门1、培养良好的学习兴趣常言到:兴趣是最好的老师,有兴趣才能产生爱好,爱好它才会去实践它,达到乐在其中,才会形成学习的主动性和积极性就自然的会立志学好数学,成为数学学习的成功者就连孔子不是也说过:知之者不如好之者,好之者不如乐之者“好”和“乐”就是愿意学,喜欢学,这就是兴趣2、培养良好的学习习惯很多数学成绩不好或是基础差的同学都没有好的学习习惯良好的学习习惯会让你的学习感到有序和轻松,高中数学良好的学习习惯应该是:多质疑、勤思考、好动手、重归纳、注意应用在跟着老师脚步学习的过程中应该养成把老师讲的知识翻译成自己的特殊语言,并永久记忆在自己的脑海中数学答题技巧有什么1.检查关键结果。
高中数学抛物线解题方法总结归纳

圆锥曲线抛物线知识点归纳1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。
②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。
④顶点平分焦点到准线的垂线段:2p OF OK ==。
3抛物线标准方程的四种形式:特点:焦点在一次项的轴上,开口与“±2p ”方向同向4抛物线px y 22=的图像和性质:①焦点坐标是:⎪⎭⎫⎝⎛02,p ,②准线方程是:2p x -=。
③焦半径公式: (称为焦半径)是:02pPF x =+, ④焦点弦长公式:过焦点弦长121222p pPQ x x x x p =+++=++ ⑤抛物线px y 22=上的动点可设为P ),2(2y p y或2(2,2)P pt pt5一般情况归纳:题型讲解 (1)过点(-3,2)的抛物线方程为 ;y 2=-34x 或x 2=29y , (2)焦点在直线x -2y -4=0y 2=16x 或x 2=-8y ,(3)抛物线 的焦点坐标为 ;(4)已知抛物线顶点在原点,焦点在坐标轴上,抛物线上的点 到焦点F 的距离为5,则抛物线方程为 ;或或.(5)已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时,M 点坐标是 )4,2(例2.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A B 、两点,求线段AB 的长. 解:法一 通法法二 设直线方程为1y x =-, 1122(,)(,)A x y B x y 、,则由抛物线定义得1212||||||||||22p pAB AF FB AC BD x x x x p =+=+=+++=++,又1122(,)(,)A x y B x y 、是抛物线与直线的交点,由24,1,y x y x ⎧=⎨=-⎩得2610x x -+=,则126x x +=,所以||8AB =.例3.求证:以通过抛物线焦点的弦为直径的圆必与抛物线的准线相切. 证明:(法一)设抛物线方程为22y px =,则焦点(,0)2p F ,准线2px =-.设以过焦点F 的弦AB 为直径的圆的圆心M ,A 、B 、M 在准线l 上的射影分别是1A 、1B 、1M ,则11||||||||||AA BB AF BF AB +=+=,又111||||2||AA BB MM +=,∴11||||2MM AB =,即1||MM 为以AB 为直径的圆的半径,且准线1l MM ⊥, ∴命题成立.(法二)设抛物线方程为22y px =,则焦点(,0)2p F ,准线2px =-.过点F 的抛物线的弦的两个端点11(,)A x y ,22(,)B x y ,线段AB 的中点00(,)M x y ,则1212||22p pAB x x x x p =+++=++,∴以通过抛物线焦点的弦为直径的圆的半径1211||()22r AB x x p ==++.M 1M点M 到准线2p x =-的距离120121()2222p x x p d x x x p +=+=+=++,∴圆M 与准线相切.例4.正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线 22(0)y px p =>上,求这个正三角形的边长. 解:设正三角形OAB 的顶点A 、B 在抛物线上,且设点11(,)A x y ,22(,)B x y ,则2112y px =,2222y px =,又||||OA OB =,所以22221122x y x y +=+,即221212()2()0x x p x x -+-=, 1212()(2)0x x x x p -++=.∵10x >,20x >,20p >,∴12x x =.由此可得12||||y y =,即线段AB 关于x 轴对称. 因为x 轴垂直于AB ,且30AOx ∠=,所以113tan 303y x ==. ∵2112yx p=,∴123y p =,∴1||243AB y p ==.例5 A,B 是抛物线y 2=2px(p>0)上的两点,满足OA ⊥OB(O 为坐标原点)求证:(1)A,B 两点的横坐标之积,纵坐标之积为定值;(2)直线AB 经过一个定点解:(1)设A(x 1,y 1), B(x 2,y 2), 则y 12=2px 1, y 22=2px 2, ∴y 12y 22=4p 2x 1x 2,∵OA ⊥OB, ∴x 1x 2+y 1y 2=0,由此即可解得:x 1x 2=4p 2, y 1y 2=─4p 2 (定值)(2)直线AB 的斜率k=1212x x y y --=py p y y y 22212212--=212y y p+, ∴直线AB 的方程为y─y 1=212y y p+(x─p y 221),即y(y 1+y 2)─y 1y 2=2px, 由(1)可得 y=212y y p+(x─2p),直线AB 过定点C(2p,0) 例6.定长为3的线段AB 的两端点在抛物线2y x =上移动,设点M 为线段AB 的中点,求点M 到y 轴的最小距离.解:抛物线焦点1(,0)4F ,准线l :14x =-,设点A 、B 、M 在准线l 上的射影分别是 1A 、1B 、1M ,设点00(,)M x y ,则11||||||||||AA BB AF BF AB +=+≥,M1M A又11111||(||||)||22MM AA BB AB =+≥,又101|4MM x =+,||3AB =,∴01342x +≥,所以054x ≥,即0x 的最小值是54.∴点M 到y 轴的最小距离是54,当且仅当AB 过点F 是取得最小距离例7 设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴证明直线AC 经过原点O分析:证直线AC 经过原点O ,即证O 、A 、C 三点共线,为此只需证k OC =k OA 本题也可结合图形特点,由抛物线的几何性质和平面几何知识去解决证法一:设AB :x =my +2p ,代入y 2=2px ,得y 2-2pmy -P 2=0由韦达定理,得y A y B =-p 2, 即y B =-Ay p2∵BC ∥x 轴,且C 在准线x =-2p上, ∴C (-2p,y B ) 则k OC =2p y B -=A y p 2=A Ax y =k OA 故直线AC 经过原点O证法二:如图,记准线l 与x 轴的交点为E ,过A 作AD ⊥l ,垂足为D 则AD ∥EF ∥BC 连结AC 交EF 于点N ,则||||AD EN =||||AC CN =||||AB BF ,BCNF ||=||||AB AF ∵|AF |=|AD |,|BF |=|BC |, ∴|EN |=||||||AB BF AD ⋅=||||||AB BC AF ⋅=|NF |,即N 是EF 的中点从而点N 与点O 重合,故直线AC 经过原点O点评:本题的“几何味”特别浓,这就为本题注入了活力在涉及解析思想较多的证法中,关键是得到y A ·y B =-p 2这个重要结论还有些证法充分利用了平面几何知识,这也提醒广大师生对圆锥曲线几何性质的重视,也只有这样才能挖掘出丰富多彩的解析几何的题目例8 、已知抛物线 ,点A(2,3),F 为焦点,若抛物线上的动点到A 、F 的距离之和的最小值为,求抛物线方程.N O CBD EF A y x分析:在解析几何中,关于到两个定点的距离之和的最小值(或距离之差的最大值)问题,运用纯代数方法解,导致复杂运算,因而常运用几何方法与相关曲线的定义。
探讨高中数学抛物线的解题方法与技巧

探讨高中数学抛物线的解题方法与技巧高中数学中,抛物线是一种非常重要的曲线,对于学习与应用数学都具有重要意义。
本文将对高中数学抛物线的解题方法与技巧进行详细探讨,帮助同学们更好地理解与掌握这一知识点。
一、了解抛物线的基本特征抛物线是一种平面曲线,具有对称轴、顶点、焦点等基本特征。
在解析几何中,常用的抛物线方程有三种形式。
顶点形式、一般形式与焦点形式。
不同形式的方程适用于不同的题型,因此学生需要熟练掌握它们的转换与运用。
二、求抛物线的焦点与顶点1.平移法求焦点。
通过将抛物线平移至标准位置(顶点为原点),可以简化求解焦点的过程。
平移法还可以被运用在其他抛物线的应用题中,如求凸面镜或抛物面的顶点与焦点位置等。
2.定义法求焦点。
对于给定的抛物线方程,可以利用定义法求解焦点。
定义法是以准线和焦点的定义出发,利用准线与焦点到平面上任意一点的距离和定义(如焦点到准线距离等于焦点到该点的距离)得到焦点的坐标。
3.判断抛物线的开口方向。
可以通过方程的二次项系数的符号来判断抛物线的开口方向。
当二次项系数大于零时,抛物线开口向上;当二次项系数小于零时,抛物线开口向下。
三、求抛物线与坐标轴交点通过解方程来求解抛物线与坐标轴的交点,这是很常见的题型。
有两种常用的方法。
1.因式分解法。
将抛物线的方程进行因式分解后,可以得到解析解或根的个数。
进一步,通过观察与分析,可以得出与坐标轴交点的具体坐标。
2.二次函数求根公式。
通过应用二次函数求根公式,可以得到抛物线与坐标轴交点的解析解。
需要注意的是,二次函数求根公式只适用于已经化为标准形式的抛物线。
四、求抛物线的切线与法线求抛物线的切线与法线是一类较难的题型,需要熟练掌握相关的知识与求解方法。
下面将介绍两种常见的方法。
1.切线与法线的斜率法。
通过斜率法可以求得切线与法线的斜率表达式。
具体而言,对于给定的抛物线方程,我们可以通过计算其导数来求得切线或法线的斜率表达式,然后利用该斜率表达式求解切线或法线的方程。
高三抛物线的知识点归纳

高三抛物线的知识点归纳一、抛物线的定义及方程抛物线是二次函数的图像,它的一般方程可以表示为 y = ax^2 + bx+ c。
在这个方程中,a、b、c 是常数,其中 a 决定抛物线的开口方向和大小,b 影响抛物线沿着 x 轴的位置,而 c 则决定了抛物线与y 轴的交点。
二、抛物线的性质1. 开口方向:当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
2. 对称性:抛物线是轴对称图形,对称轴为直线 x = -b/(2a)。
3. 顶点:抛物线的最高点或最低点称为顶点,其坐标可以通过公式(-b/(2a), -Δ/(4a)) 计算得出,其中Δ = b^2 - 4ac 称为判别式。
4. 焦点和准线:对于开口向上或向下的抛物线,可以定义一个焦点和一条准线。
焦点位于距离顶点 a/(4a) 的位置,准线则是与抛物线对称轴平行且距离顶点 a/(2a) 的直线。
三、抛物线的应用1. 物理现象:在物理学中,抛物线常用于描述物体在重力作用下的抛射运动轨迹。
2. 工程建筑:在建筑设计中,抛物线形状常用于拱桥、穹顶等结构,以实现良好的力学性能。
3. 艺术设计:在艺术领域,抛物线因其优美的曲线被广泛应用于雕塑和装饰品的设计。
四、解题技巧1. 确定方程:根据题目条件确定抛物线的一般方程 y = ax^2 + bx + c。
2. 计算顶点:通过公式 (-b/(2a), -Δ/(4a)) 快速求出抛物线的顶点坐标。
3. 判断交点:通过代入 x 值或 y 值,可以求出抛物线与 x 轴或 y轴的交点。
4. 应用对称性:利用抛物线的对称性简化计算,特别是在求解与抛物线相关的最值问题时。
五、例题分析例1:已知抛物线 y = 2x^2 - 4x + 3,求其顶点坐标和对称轴方程。
解:首先计算判别式Δ = b^2 - 4ac = (-4)^2 - 4*2*3 = 16 - 24= -8。
由于Δ < 0,该抛物线与 x 轴无交点。
高三抛物线知识点归纳总结

高三抛物线知识点归纳总结抛物线是数学中的一种曲线,它在高三数学课程中占据着重要的地位。
掌握抛物线的相关知识,对于高三学生来说至关重要。
本文将对高三抛物线的知识点进行归纳总结,以帮助学生更好地理解和应用这一概念。
一、抛物线的基本定义和性质抛物线是一条平面曲线,其定义为到一个定点距离与到一条直线距离相等的点的轨迹。
抛物线具有以下基本性质:1. 对称性:抛物线关于其对称轴对称。
2. 定点和定线:抛物线上的每个点到焦点的距离与到直线(准线)的距离相等。
3. 焦距和准线:焦距是定点到准线的距离,准线是焦点垂直平分切线的直线。
4. 弧长和面积:抛物线的弧长和面积计算可以通过积分得到。
二、抛物线的标准方程和一般方程抛物线的标准方程是 y = ax^2 + bx + c,其中 a、b、c 是常数,a ≠ 0。
通过标准方程我们可以了解抛物线的开口方向、顶点坐标以及对称轴的方程。
一般方程是经过对标准方程的平移、旋转、伸缩等变换得到的,形式为 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0。
通过一般方程可以确定抛物线的具体形状和位置。
三、抛物线的性质和应用1. 高考重点:掌握抛物线的性质对于应对高考数学考试非常重要。
在高考中,抛物线相关的题目通常包括求焦点、顶点、对称轴、切线等问题,也可能涉及到与其他图形的求交点等问题。
2. 物理应用:抛物线在物理学中有广泛的应用,描述了自由落体、抛体运动等过程。
理解抛物线的性质和应用可以帮助我们更好地理解和解决与自由落体和抛体运动相关的物理问题。
3. 工程应用:抛物线的形状具有美学上的优点,因此在建筑和设计中经常被应用。
例如,拱桥的形状和抛物线非常相似,这是因为抛物线形状具有均匀分散应力的特点,是一种力学上最优的形状。
四、抛物线的图像绘制和计算1. 使用计算机软件绘制抛物线的图像可以辅助我们更好地理解抛物线的形式和变化规律。
常用软件如Geogebra、MATLAB等都可以绘制抛物线的图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考抛物线专题做题技巧与方法总结知识点梳理:1.抛物线的标准方程、类型及其几何性质 (0>p ):2.抛物线的焦半径、焦点弦①)0(22≠=p px y 的焦半径=PF 2P x +;)0(22≠=p py x 的焦半径=PF 2P y +;② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.③ AB 为抛物线px y 22=的焦点弦,则=B A x x 42p,=B A y y 2p -,||AB =p x x B A ++3. px y 22=的参数方程为⎩⎨⎧==pt y pt x 222(t 为参数),py x 22=的参数方程为⎩⎨⎧==222pt y ptx (t 为参数). 重难点突破重点:掌握抛物线的定义和标准方程,会运用定义和会求抛物线的标准方程,能通过方程研究抛物线的几何性质 难点: 与焦点有关的计算与论证重难点:围绕焦半径、焦点弦,运用数形结合和代数方法研究抛物线的性质 1.要有用定义的意识问题1:抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A.1617 B. 1615 C.87D. 0点拨:抛物线的标准方程为y x 412=,准线方程为161-=y ,由定义知,点M 到准线的距离为1,所以点M 的纵坐标是16152.求标准方程要注意焦点位置和开口方向问题2:顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线的条数有点拨:抛物线的类型一共有4种,经过第一象限的抛物线有2种,故满足条件的抛物线有2条3.研究几何性质,要具备数形结合思想,“两条腿走路” 问题3:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切点拨:设AB 为抛物线的焦点弦,F 为抛物线的焦点,点''、B A 分别是点B A 、在准线上的射影,弦AB 的中点为M ,则''BB AA BF AF AB +=+=,点M 到准线的距离为AB BB AA 21)''(21=+,∴以抛物线焦点弦为直径的圆总与抛物线的准线相切3、典型例题讲解: 考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换 [例1 ]已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为解题思路:将点P 到焦点的距离转化为点P 到准线的距离[解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为3总结:灵活利用抛物线的定义,就是实现抛物线上的点到焦点的距离与到准线的距离之间的转换,一般来说,用定义问题都与焦半径问题相关 练习:1.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+B . 321y y y =+C .2312x x x =+ D. 2312y y y =+[解析]C 由抛物线定义,2132()()(),222p p px x x +=+++即:2312x x x =+.2. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时,M 点坐标是 ( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(- [解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MK MA +最小时,M 点坐标是)4,2(,选C考点2 抛物线的标准方程 题型:求抛物线的标准方程[例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2) (2)焦点在直线240x y --=上 解题思路:以方程的观点看待问题,并注意开口方向的讨论.[解析] (1)设所求的抛物线的方程为22y px =-或22(0)x py p =>, ∵过点(-3,2) ∴229)3(24⋅=--=p p 或∴2934p p ==或∴抛物线方程为243y x =-或292x y =,前者的准线方程是1,3x =后者的准线方程为98y =-(2)令0x =得2y =-,令0y =得4x =,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,42p=, ∴8p =,此时抛物线方程216y x =;焦点为(0,-2)时22p= ∴4p =,此时抛物线方程28x y =-.∴所求抛物线方程为216y x =或28x y =-,对应的准线方程分别是4,2x y =-=.总结:对开口方向要特别小心,考虑问题要全面 练习:3.若抛物线22y px =的焦点与双曲线2213x y -=的右焦点重合,则p 的值[解析]4132=⇒+=p p4. 对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件.5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)23,22(p-,代入方程py x 22=得2=p 或4,抛物线的方程y x 42=或y x 82=考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证[例3 ]设A 、B 为抛物线px y 22=上的点,且ο90=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.解题思路:由特殊入手,先探求定点位置[解析]设直线OA 方程为kx y =,由⎩⎨⎧==pxy kx y 22解出A 点坐标为)2,2(2k pk p⎪⎩⎪⎨⎧=-=pxy x k y 212解出B 点坐标为)2,2(2pk pk -,直线AB 方程为221)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p总结:(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B 点坐标可由A 点坐标用k1-换k 而得。
练习:6. 若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = [解析]-17.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( )A. ο45B. ο60C. ο90D. ο120 [解析]C基础巩固训练:1.过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于)(422R a a a ∈++,则这样的直线( )A.有且仅有一条B.有且仅有两条C.1条或2条D.不存在 [解析]C 44)1(52||22≥++=++=++=a a a p x x AB B A ,而通径的长为4. 2.在平面直角坐标系xOy 中,若抛物线24x y =上的点P 到该抛物线焦点的距离为5,则点P 的纵坐标为 ( )A. 3B. 4C. 5D. 6 [解析] B 利用抛物线的定义,点P 到准线1-=y 的距离为5,故点P 的纵坐标为4.3.两个正数a 、b 的等差中项是92,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( )A .1(0,)4-B .1(0,)4C .1(,0)2-D .1(,0)4-[解析] D. 1,4,5-=-==a b b a4. 如果1P ,2P ,…,8P 是抛物线24y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21*∈N n x x x n Λ成等差数列且45921=+++x x x Λ,则||5F P =( ).A .5B .6C . 7D .9[解析]B 根据抛物线的定义,可知12ii i pPF x x =+=+(1i =,2,……,n ),)(,,,21*∈N n x x x n ΛΘ成等差数列且45921=+++x x x Λ,55=x ,||5F P =65、抛物线,42F x y 的焦点为=准线为l ,l 与x 轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的部分相交于点A ,AB ⊥l ,垂足为B ,则四边形ABEF 的面积等于( )A .33B .34C .36D .38[解析] C. 过A 作x 轴的垂线交x 轴于点H ,设),(n m A ,则1,1-=-=+==m OF OH FH m AB AF ,32,3)1(21==∴-=+∴n m m m四边形ABEF 的面积==⨯++32)]13(2[21366、设O 是坐标原点,F 是抛物线24y x =的焦点,A 是抛物线上的一点,FA uu u r与x轴正向的夹角为60o,则OA u u u r 为 .[解析]21.过A 作AD x ⊥轴于D ,令FD m =,则m FA 2=即m m 22=+,解得2=m .)32,3(A ∴21)32(322=+=∴OA综合提高训练7.在抛物线24y x =上求一点,使该点到直线45y x =-的距离为最短,求该点的坐标[解析]解法1:设抛物线上的点)4,(2x x P ,点P 到直线的距离17|544|2+-=x x d 1717417|4)21(4|2≥+-=x , 当且仅当21=x 时取等号,故所求的点为),(121解法2:当平行于直线45y x =-且与抛物线相切的直线与抛物线的公共点为所求,设该直线方程为b x y +=4,代入抛物线方程得0442=--b x x , 由01616=+=∆b 得21,1=-=x b ,故所求的点为),(1218. 已知抛物线2:ax y C =(a 为非零常数)的焦点为F ,点P 为抛物线c 上一个动点,过点P 且与抛物线c 相切的直线记为l . (1)求F 的坐标;(2)当点P 在何处时,点F 到直线l 的距离最小? 解:(1)抛物线方程为y ax 12=故焦点F 的坐标为)41,0(a(2)设20000 ),(ax y y x P =则2 ,2'0ax k P ax y =∴=)的切线的斜率点处抛物线(二次函数在Θ直线l 的方程是)(2 0020x x ax ax y -=- 0 2 200=-ax y x ax -即. 411441)1()2(410 20222020ax a aax ax ad ≥+=-+--=∴)0,0( 0 0的坐标是此时时上式取“=”当且仅当P x = .L F 0,0)(P 的距离最小到切线处时,焦点在当∴9. 设抛物线22y px =(0p >)的焦点为 F ,经过点 F 的直线交抛物线于A 、B 两点.点 C 在抛物线的准线上,且BC ∥X 轴.证明直线AC 经过原点O .证明:因为抛物线22y px =(0p >)的焦点为,02p F ⎛⎫⎪⎝⎭,所以经过点F 的直线AB的方程可设为 2px my =+,代人抛物线方程得 2220y pmy p --=.若记()11,A x y ,()22,B x y ,则21,y y 是该方程的两个根,所以212y y p =-.因为BC ∥X 轴,且点C 在准线2p x =-上,所以点C 的坐标为2,2p y ⎛⎫- ⎪⎝⎭, 故直线CO 的斜率为21112.2y y p k p y x ===- 即k 也是直线OA 的斜率,所以直线AC 经过原点O .10.椭圆12222=+by a x 上有一点M (-4,59)在抛物线px y 22=(p>0)的准线l 上,抛物线的焦点也是椭圆焦点. (1)求椭圆方程;(2)若点N 在抛物线上,过N 作准线l 的垂线,垂足为Q 距离,求|MN|+|NQ|的最小值.解:(1)∵12222=+by a x 上的点M 在抛物线px y 22=(p>0)的准线l 上,抛物线的焦点也是椭圆焦点. ∴c=-4,p=8……①∵M (-4,59)在椭圆上∴125811622=+b a ……② ∵222c b a +=……③ ∴由①②③解得:a=5、b=3∴椭圆为192522=+y x 由p=8得抛物线为x y 162= 设椭圆焦点为F (4,0), 由椭圆定义得|NQ|=|NF| ∴|MN|+|NQ|≥|MN|+|NF|=|MF|=541)059()44(22=-+--,即为所求的最小值.参考例题:1、已知抛物线C 的一个焦点为F (21,0),对应于这个焦点的准线方程为x =-21.(1)写出抛物线C 的方程;(2)过F 点的直线与曲线C 交于A 、B 两点,O 点为坐标原点,求△AOB 重心G 的轨迹方程;(3)点P 是抛物线C 上的动点,过点P 作圆(x -3)2+y 2=2的切线,切点分别是M ,N .当P 点在何处时,|MN |的值最小?求出|MN |的最小值.解:(1)抛物线方程为:y 2=2x . (4分)(2)①当直线不垂直于x 轴时,设方程为y =k (x -21),代入y 2=2x ,得:k 2x 2-(k 2+2)x +042=k.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=222k k +,y 1+y 2=k (x 1+x 2-1)=k2.设△AOB 的重心为G (x ,y )则⎪⎪⎩⎪⎪⎨⎧=++=+=++=k y y y k k x x x 32303230212221,消去k 得y 2=9232-x 为所求,(6分)②当直线垂直于x 轴时,A (21,1),B (21,-1),(8分)△AOB 的重心G (31,0)也满足上述方程.综合①②得,所求的轨迹方程为y 2=9232-x ,(9分)(3)设已知圆的圆心为Q (3,0),半径r =2,根据圆的性质有:|MN |=22222||2122||||2||||||PQ PQ r PQ r PQ MQ MP -•=-=.(11分)当|PQ |2最小时,|MN |取最小值, 设P 点坐标为(x 0,y 0),则y 20=2x 0. |PQ |2=(x 0-3)2+ y 20= x 20-4x 0+9=(x 0-2)2+5, ∴当x 0=2,y 0=±2时,|PQ |2取最小值5, 故当P 点坐标为(2,±2)时,|MN |取最小值5302.抛物线专题练习一、选择题(本大题共10小题,每小题5分,共50分) 1.如果抛物线y 2=ax 的准线是直线x =-1,那么它的焦点坐标为( A )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0)2.圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 ( D )A .x 2+ y 2-x -2 y -41=0 B .x 2+ y 2+x -2 y +1=0 C .x 2+ y 2-x -2 y +1=0D .x 2+ y 2-x -2 y +41=0 3.抛物线2x y =上一点到直线042=--y x 的距离最短的点的坐标是( A)A .(1,1)B .(41,21)C .)49,23( D .(2,4)4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( B ) A .6mB . 26mC .4.5mD .9m5.平面内过点A (-2,0),且与直线x =2相切的动圆圆心的轨迹方程是 ( C )A . y 2=-2xB . y 2=-4xC .y 2=-8xD .y 2=-16x6.抛物线的顶点在原点,对称轴是x 轴,抛物线上点(-5,m )到焦点距离是6,则抛物线的方程是( B )A . y 2=-2xB . y 2=-4xC . y 2=2xD . y 2=-4x 或y 2=-36x7.过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|=( A )A .8B .10C .6D .48.把与抛物线y 2=4x 关于原点对称的曲线按向量a )3,2(-=平移,所得的曲线的方程是(C )A .)2(4)3(2--=-x yB .)2(4)3(2+-=-x yC .)2(4)3(2--=+x yD . )2(4)3(2+-=+x y9.过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有( C)A .0条B .1条C .2条D .3条10.过抛物线y =ax 2(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于 ( C )A .2aB . a21 C .4a D .a4二、填空题(本大题共4小题,每小题6分,共24分)11.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 2 .12.抛物线y =2x 2的一组斜率为k 的平行弦的中点的轨迹方程是 4k x = .13.P 是抛物线y 2=4x 上一动点,以P 为圆心,作与抛物线准线相切的圆,则这个圆一定经过一个定点Q ,点Q 的坐标是 (1,0) .14.抛物线的焦点为椭圆14922=+y x 的左焦点,顶点在椭圆中心,则抛物线方程为 x y 542-=三、解答题(本大题共6小题,共76分)15.已知动圆M 与直线y =2相切,且与定圆C :1)3(22=++y x 外切,求动圆圆心M 的轨迹方程.(12分)[解析]:设动圆圆心为M (x ,y ),半径为r ,则由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义可知:动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线,其方程为y x 122-=.16.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.(12分) [解析]:设抛物线方程为)0(22>-=p py x ,则焦点F (0,2p-),由题意可得 ⎪⎩⎪⎨⎧=-+=5)23(6222p m p m ,解之得⎩⎨⎧==462p m 或⎩⎨⎧=-=462p m , 故所求的抛物线方程为y x 82-=,62±的值为m17.动直线y =a ,与抛物线x y 212=相交于A 点,动点B 的坐标是)3,0(a ,求线段AB 中点M 的轨迹的方程.(12分)[解析]:设M 的坐标为(x ,y ),A (22a ,a ),又B )3,0(a 得 ⎩⎨⎧==ay a x 22消去a ,得轨迹方程为42y x =,即x y 42=18.河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?(12分) [解析]:如图建立直角坐标系,设桥拱抛物线方程为)0(22>-=p py x ,由题意可知, B (4,-5)在抛物线上,所以6.1=p ,得y x 2.32-=,当船面两侧和抛物线接触时,船不能通航,设此时船面宽为AA’,则A(A y ,2),由A y 2.322-=得45-=A y ,又知船面露出水面上部分高为0.75米,所以75.0+=A y h =2米19.如图,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C 的方程.(14分)[解析]:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.由题意可知:曲线C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A 、B 分别为C 的端点.设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A , 其中B A x x ,分别为A 、B 的横坐标,MN p =. 所以,)0,2(),0,2(pN p M -. 由17=AM ,3=AN 得 172)2(2=++A A px px ①92)2(2=+-A A px px ②联立①②解得p x A 4=.将其代入①式并由p>0解得⎩⎨⎧==14A x p ,或⎩⎨⎧==22Ax p .因为△AMN 为锐角三角形,所以A x p>2,故舍去⎩⎨⎧==22A x p . ∴p=4,1=A x . 由点B 在曲线段C 上,得42=-=pBN x B .综上得曲线段C 的方程为)0,41(82>≤≤=y x x y .20.已知抛物线)0(22>=p px y .过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,p AB 2||≤. (Ⅰ)求a 的取值范围;(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求NAB Rt ∆面积的最大值.(14分)[解析]:(Ⅰ)直线l 的方程为a x y -=,将px y a x y 22=-=代入,得 0)(222=++-a x p a x . 设直线l 与抛物线两个不同交点的坐标为),(11y x A 、),(22y x B ,则 ⎪⎩⎪⎨⎧=+=+>-+.),(2,04)(42212122a x x p a x x a p a 又a x y a x y -=-=2211,,∴221221)()(||y y x x AB -+-= ]4)[(221221x x x x -+=)2(8a p p +=.∵0)2(8,2||0>+≤<a p p p AB , ∴p a p p 2)2(80≤+<. 解得42p a p -≤<-.(Ⅱ)设AB 的垂直平分线交AB 于点Q ,令坐标为),(33y x ,则由中点坐标公式,得p a x x x +=+=2213, p a x a x y y y =-+-=+=2)()(221213.∴ 22222)0()(||p p a p a QM =-+-+=. 又 MNQ ∆为等腰直角三角形, ∴ p QM QN 2||||==, ∴||||21QN AB S NAB ⋅=∆||22AB p =p p 222⋅≤22p =即NAB ∆面积最大值为22p。