基因组学复习资料整理

合集下载

基因组学复习

基因组学复习

联合基因:一段连续的DNA序列编码一组关联的彼此重叠的功能产物遗传图谱:利用遗传学的原理和方法,以遗传图距为单位绘制的染色体上基因与遗传标记之间相对位置物理图谱:采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置表观遗传学调控基因表达的方式包括DNA甲基化,组蛋白的共价修饰,染色体结构的重塑以及小RNA介导的基因沉默等多个方面。

研究证明表观遗传学机制在基因组防御、进化、基因调控等方面都发挥着重要作用。

大量研究表明,DNA甲基化能引起染色质结构、构象、染色体DNA稳定性及蛋白质与DNA 相互作用方式的改变,从而影响基因表达。

一般认为DNA甲基化抑制基因的表达。

印记的基因只占人类基因组中的少数,不超过5%,但在胎儿的生长和行为发育中起着至关重要的作用。

大量研究表明这些修饰与染色体构象、基因组稳定性及基因转录活性相关。

组蛋白甲基化的位点是赖氨酸和精氨酸,组蛋白H3K4的甲基化主要聚集在活跃转录的启动子区域。

组蛋白H3K9,K27的甲基化与基因的转录抑制及异染色质有关。

连锁群:在染色体中具有不同的连锁程度并按线性顺序排列的一组基因座位(存在于同一染色体上)物理连锁图:DNA分子标记在同源染色体上有具体的物理位置,因此采用DNA分子标记绘制的遗传连锁图又称物理连锁图连锁不平衡:群体遗传学中有关两个或多个不同座位的等位基因成员出现在个体中的非随机关联性序列间隙:因覆盖度的原因而留下的未能测序的序列,仍存在于克隆文库中,这类间隙称为序列间隙。

物理间隙:因克隆载体自身的限制或DNA序列特殊的组成等原因造成某些序列丢失或未能克隆,这些间隙称为物理间隙复制子是DNA的复制单位, 由复制起始点, 复制序列和复制终点组成DNA 复制的意义:1子代保留了亲代DNA的全部信息;2 DNA通过复制和基因表达决定生物特性;3体现了遗传过程的相对保守性;保守性是相对的,不能忽视其变异性DNA拓扑异构酶(DNA Topisomerase )的作用:通过切断、旋转和再连接作用,理顺DNA 链各种酶与蛋白质的作用小结解螺旋酶:解开DNA双螺旋DNA拓朴异构酶:理顺DNA链单链DNA结合蛋白:稳定维持DNA单链状态前导链的合成:在聚合酶III与滑动夹子结合下连续合成。

基因组学知识点总结

基因组学知识点总结

基因组学知识点总结基因组学是研究生物体的基因组结构、功能以及其与遗传性状的关系的学科。

下面将对基因组学的相关知识进行总结,包括基因组、基因、DNA测序技术等内容。

一、基因组和基因基因组指的是一个生物体所有基因和非编码DNA序列的总和。

基因是基因组中的一个特定区域,能够编码特定的功能性产物,如RNA和蛋白质。

基因组学研究着基因组中存在的各种基因的类型、数量以及它们在生物体中的分布和功能。

二、DNA测序技术DNA测序技术是基因组学中的重要工具,通过测序技术可以获取到DNA序列的信息,从而研究基因组结构和功能。

在过去的几十年里,DNA测序技术经历了多次技术革新,从传统的Sanger测序到现代的高通量测序技术,如二代测序和三代测序技术。

三、基因组测序项目基因组测序项目是基因组学研究的重要组成部分。

其中,人类基因组计划是最为著名的基因组测序项目之一,对人类基因组进行了全面的测序和分析,为后续的基因组学研究提供了重要的基础数据。

四、功能基因组学功能基因组学研究基因组中的各种功能元件,如调控区域、非编码RNA等,以及它们在基因调控网络中的作用和相互关系。

通过功能基因组学的研究,我们可以更好地理解基因组中各个功能区域的作用机制和生物学意义。

五、比较基因组学比较基因组学研究不同物种之间基因组的异同,以及这些差异对生物体特性的影响。

通过比较基因组学的研究,我们可以了解不同物种间的进化关系、基因家族的起源和演化等重要问题。

六、基因组编辑技术基因组编辑技术是基因组学中的一项重要技术,主要用于修饰和改变生物体的基因组。

目前,CRISPR-Cas9系统是最为常用的基因组编辑技术,能够实现高效、精确的基因组编辑,对基因组学研究和生物技术应用具有重要意义。

七、应用领域基因组学在许多领域都有广泛的应用,包括生物医学研究、农业与畜牧业、环境保护等。

通过基因组学的研究,我们可以揭示疾病的遗传基础、改良作物和畜牧动物的品质特性、了解生物多样性等重要问题。

基因组学复习大全

基因组学复习大全

基因组学复习大全第一章基因组:生物所具有的携带遗传信息的遗传物质总和基因组学:用于概括涉及基因组作图、测序和整个基因组功能分析的遗传学学科分支一、分子基础核苷酸、2’-脱氧核糖、含氮碱基:β-N-糖基键和嘧啶环1N或嘌呤环9N、磷酸基团dNTP,前一个3’-OH和后一个5’-三磷酸缩合成磷酸脂键。

双螺旋:碱基配对、碱基堆积:与DNA双螺旋主轴垂直的相邻碱基对杂环之间的互作,科增加双螺旋稳定性。

大小沟:沿着双螺旋的走向交替分布两个凹槽,具有特征性的结构信息,在基因表达中重要作用,结合蛋白的特定功能域可伸入大小沟,通过氨基酸侧链和碱基杂环上的基团互作读取DNA所包含信息。

DNA甲基化:细菌发生在腺嘌呤6N和胞嘧啶5C,高等只发生在后者。

哺乳动物CpG变为mCpG,植物包括CpG和CpNpG。

RNA:rRNA+tRNA80%、mRNA5%,大多数还含胞质内小RNA(sc)、核仁小RNA(sno),真核还有核内小RNA(sn),小分子干扰miRNA,小干扰siRNA。

几乎所有RNA都会单链区段回折形成分子内双螺旋。

G和U也可配对,形成两对氢键。

RNA核糖2’C上连的不是H而是OH,和DNA差别:⑴非常靠近连接两个核苷酸的磷酸二酯键位置,使RNA对碱性环境非常敏感⑵活泼使RNA构型受限,双螺旋区段在数十碱基对一下⑶限制RNA长度,其易与磷酸二酯键互作断链⑷其可参与同磷酸或碱基的互作而稳定RNA折叠构型,易于形成三级结构,并获得特殊功能⑸T变为U,因此C甲基化形成的U无法区分,增加RNA突变几率。

蛋白质结构:一级:N→C;二级:α螺旋:多肽链中一些连续氨基酸序列自发形成有规律的盘旋,螺距0.54,每圈3.6残基。

β折叠:由侧向平行的多肽链组成,羰酰O和酰胺H 形成氢键。

每条5~8残基。

转角(转环):由3~4个氨基酸残基组成的紧凑U型,两端多肽形成氢键来转折,大多位于蛋白质表面,形成回折使多肽链重新定向。

二级稳定性取决于多肽链中形成的氢键。

基因组学考点复习

基因组学考点复习

基因组学考点复习第一章绪论1.基因组学的发展历史和现状(人类基因组计划HGP)答:人类基因组计划与20世纪80年代中期开始酝酿,1989年美国正式资助,2000年6月宣布完成人类基因草图。

人类基因组计划是一项世界范围的科研项目,有六个国家16个单位参加,中国是其中之一。

人类基因组测序计划原定于2003年结束,由于采取一些新的技术提前3年完成。

国际人类基因组测序联合体公布的人类基因组草图覆盖了整个基因组的86.8%,包括常染色质区域的97%。

截止2012.1.31,国际上已完成的和正在进行的基因组测序计划共12251个,包括真核生物,真细菌和古细菌。

2.基因组学的研究内容答:Genomics: The studies of the structure and function of genomes.Structure and sequence of genomes;Function of genomics;Applied genomics.3.什么是基因组Genome、转录组和蛋白质组答:Genome:The entirety of an organism's hereditary information. It is encoded either in DNA or, for many types of virus, in RNA. 转录组:RNA copies of the active protein-coding genes。

蛋白质组:The cell’s repertoire of proteins第二章遗传作图1.遗传作图的分子标记类型(RFLP、STR/VNTR/Microsatellite、SNP)、分布特征和作图方法答:RFLP:Restriction fragment length polymorphisms, 限制性片段长度多态性;VNTR:小卫星序列STR:微卫星序列SNP:单核苷酸多态性single nucleotide polymorphisms 2.卫星、小卫星、微卫星的区别答:卫星的组成单位是短碱基序列,卫星序列位于染色体的异染色质区;小卫星在染色体上分布于常染色质区;微卫星重复单位仅2-5bp,也位于常染色质区。

基因组学期末复习资料

基因组学期末复习资料

第一章基因组概论1、基本概念隔裂基因:大多数真核生物蛋白质基因的编码顺序(Exon)都被或长或短的非编码顺序(Intron)隔开。

重叠基因/嵌套基因:指调控具有独立性但部分使用共同基因序列的基因/同一段DNA 能携带两种不同蛋白的信息.假基因:一般由先前的功能基因积累突变形成,称为假基因,用符号Ψ表示。

基因家族:真核基因组中有许多来源相同、结构相似、功能相关的基因,这组基因称为基因家族。

基因组:一个物种的一套完整遗传物质的总和,包括核基因组和细胞质基因组。

基因组学:研究生物体基因组的组成、结构与功能的学科。

结构基因组学:着重研究基因组的结构并构建高分辨的遗传图、物理图、序列图和转录图以及研究蛋白质组成与结构的学科。

功能基因组学:主要是利用结构基因组学研究所得到的各种信息在基因组水平上研究编码序列及非编码序列生物学功能的学科。

人类元基因组:指人体内共生的菌群基因组的总和,包括肠道、口腔、呼吸道、生殖道等处菌群。

Alu序列:灵长类动物细胞的主要散在的重复DNA序列。

含有限制性内切酶Alu的切点(AG↓CT)。

2、原核与真核生物基因组与顺反子的等价关系在简单基因组中基因与顺反子等价原核和低等真核细胞:基因与产物之间的关系比较简单。

通常是一基因一相应产物,而且基因往往与产物共线性。

基因和顺反子等价:基因是遗传的功能单位;也是可表达的遗传信息的单位。

在细菌中:基因是编码区(开放阅读框)。

细菌基因常常组合成一个操纵子,这样几种产物均由一条多顺反子mRNA翻译而成。

在真核细胞中:基因是转录的单位。

大多数基因以单顺反子mRNA的形式转录。

3、基因组C值与C值矛盾基因组C值是一个物种的基因组固有的DNA含量,一般是恒定的。

C值矛盾或C值悖论:C值大小与生物进化不协调的现象。

C值矛盾原因: 基因内(内含子)、基因间的间隔序列、重复序列和假基因序列4、基因组序列复杂性与基因组大小的关系①序列复杂性:不同序列的DNA总长。

基因与基因组知识点资料整理总结

基因与基因组知识点资料整理总结

第一章基因与基因组1.基因的概念:基因是指合成有功能的蛋白质多肽链或RNA所必需的全部核酸序列(通常指DNA)。

2.基因的结构:①真核生物的结构基因不是连续编码的,而是由编码序列和非编码序列两部分构成,二者相互间隔排列,因此这种基因又称作割裂基因(split gene).②人类编码基因主要由外显子、内含子和侧翼序列组成.③能转录、并存在于成熟RNA中的序列称为外显子(exon)④能转录、但不存在于成熟RNA中的序列称为内含子(intron)(注:GT-AG法则:每个内含子的5’端开始的两个核苷酸都是GT,3’端末尾的两个核苷酸都是AG。

)⑤不同数目的外显子和内含子组成的各个基因大小各不相同;无内含子的基因一般较小,有较大内含子的基因一般较大。

⑥每个结构基因的第一个外显子和最后一个外显子外侧,即基因的5′端和3′端都有一段不被转录的DNA序列,对基因的转录表达及表达水平具有重要的调控作用。

包括:启动子、增强子和终止子,属顺式调控因子,称为调控序列。

(启动子 (Promoter),通常位于基因转录起点上游的100bp范围内,是RNA聚合酶的结合部位,促进转录过程,包括TATA框、Hogness框(TATA box, Hogness box)、CAAT框(CAAT box)和GC框(GC box)。

终止子 (Terminator),一段回文序列以及特定的序列,例如:5’-AATAAA-3’是RNA停止工作的信号。

增强子(Enhancer),启动子上游或下游的一段DNA序列,无明显方向性,但具有组织特异性,可增强启动子转录的效率)3.基因家族、基因簇和假基因①基因家族 (gene family):基因组中来源相同、结构相似、功能相关且常成簇存在的一组基因。

②基因簇:家族成员成簇排列在同一条染色体上,形成一个基因簇;不同成员成簇地分布在几条不同的染色体上,形成几个基因簇。

基因簇成员可能同时表达,也可能在不同发育阶段或不同部位表达。

基因组学重点整理

基因组学重点整理

生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物具有催化活性的RNA分子称为核酶〔ribozyme〕核酶催化的生化反响有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成新基因的产生:基因与基因组加倍1〕整个基因组加倍;2〕单条或局部染色体加倍;3〕单个或成群基因加倍。

DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。

动物中由于种间隔离不易进展种间杂交,但其主要来源于真核细胞与原核细胞的内共生。

动物种间基因转移主要集中在逆转录病毒及其转座成分。

外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌基因冗余:一条染色体上出现一个基因的很多复份(复本〕当人们别离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。

许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。

这意味着,基因组中有冗余基因存在。

看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。

与个体发育调控相关的基因表达为转录因子,具有多功能域的构造。

这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。

非编码序列扩张方式:滑序复制、转座因子模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。

模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。

进化程度越高, G+C 含量和CpG 岛的比例就比拟低如果基因之间不存在重叠顺序,也无基因内基因〔gene-within-gene〕,那么ORF阅读出现过失的可能只会发生在非编码区。

细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。

细菌基因组的ORF阅读相比照拟简单,错误的机率较少。

基因组学复习资料

基因组学复习资料

基因组学复习资料基因组学复习资料名词解释1.蛋白质基序:由2或3个二级结构如α-螺旋,β-折叠和转环构成的组合,它们有特征性的序列,具有特定的功能,称为基序或模体。

2.C 值(C value):是指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。

3. C值悖理(paradox) 生物的复杂性与基因组的大小并不完全成比例增加的现象.4.遗传作图(genetic mapping):采用遗传学分析方法将基因或其他DNA顺序标定在染色体上构建连锁图。

这一方法包括杂交实验和家系分析。

基因或DNA标志在染色体上的相对位置与遗传距离。

遗传距离用重组率来衡量。

即通过计算两个连锁的遗传标记在每次减数分裂中的重组概率,确定两者的相对距离遗传图距单位为 cM,每单位厘摩定义为1%交换值5.物理作图(physical mapping):采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置。

物理图的距离依作图方法而异,辐射杂种作图的计算单位为厘镭(cR),限制性片段作图与克隆作图的图距单位为DNA的分子长度,即碱基对。

6.重组热点(recombination hot spot):染色体的某些位点之间比其他位点之间有更高的交换频率,被称为重组热点。

7.基因组测序覆盖面(coverage):随机测序获得的序列总长与单倍体基因组序列总长之比,覆盖面越大,遗漏的序列越少。

8.密码子偏爱(codon bias):生物有时更加偏爱地使用一个或者一组密码子的现象。

这是在进化过程中基因复制的差异所产生的结果。

(仅供参考)9.开放读框(open reading frame ORF)它们由一系列指令氨基酸的密码子组成,有一个起始点和一个终止点。

10.功能域或外显子洗牌(domain shuffling or exon shuffling)由不同基因中编码不同结构域的片段彼此连接形成的全新编码序列称为功能域或外显子洗牌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因组学1. 简述基因组的概念和其对生命科学的影响。

基因组:指一个物种的全套染色体和基因。

广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。

基因组计划对生命科学的影响:①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。

②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生物学生理学表观遗传学等③物种的起源与进化:Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。

Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。

④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。

2. Ac/Ds转座因子Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。

该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。

Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。

不同的Ds因子的长度差异由Ac因子发生不同缺失所致。

Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。

当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。

Ac/Ds两因子系统遗传特点:1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。

2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。

3)Ac对Ds的控制具有负剂量效应。

4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。

5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。

(分子生物学79-81)3. 正向遗传与反向遗传正向遗传学研究指从突变体开始的遗传学研究,关心的问题是突变体表型的变化是由哪一个基因功能丧失后引起。

反向遗传学研究指从基因序列开始的遗传学研究,关心的问题是基因功能丧失后会使植物的表型产生什么样的变化。

4. 分子标记,构建遗传图谱,原理,步骤遗传作图的遗传学原理:主要依据经典孟德尔遗传学的连锁和交换定律。

减数分裂时,同源染色体彼此靠拢,同源区段并排形成双联体。

在双联体中,并列的染色体臂在等价的位置发生DNA交换的频率与在染色体上所间隔的距离成正比,重组率则可成为衡量基因之间相对距离的尺度。

通过重组率可判断基因在染色体上的相对位置,从而绘制遗传图。

步骤:选择适合作图的DNA标记根据遗传材料之间的DNA多态性,选择用于建立作图群体的亲本组合建立分离群体测定群体中不同个体的标记基因型对标记基因型数据进行连锁分析,构建标记连锁图显性标记:仅能检测显性等位基因,不能够区分纯合和杂合基因型的遗传标记。

共显性标记:同时能检测出显性和隐性等位基因,能够区分纯合和杂合基因型的遗传标记。

5. 平衡化cDNA文库,原因及原理原因相关:为了将低丰度表达的基因识别和克隆出来,常采用均一化方法构建cDNA文库,其主要目的是减少测序量,尽量获得更多基因尤其是低转录基因的信息。

基因组中绝大多数基因属于中等或低表达丰度保留了表达丰度低的基因信息原理相关:1)基于复性动力学原理:高丰度的cDNA在退火条件下复性速度快,而低丰度的cDNA复性需要较长时间,通过控制复性时间来降低丰度。

2)基因组DNA饱和杂交:基于基因组DNA在拷贝数上具有相对均一化的性质,通过cDNA与基因组DNA饱和杂交而降低在文库中高拷贝存在的cDNA的丰度。

6. 非编码RNA, miRNA, siRNAmiRNA产生机制:动物细胞中,miRNA首先在细胞核内转录出较长的初级miRNA(pri-miRNA),然后在核内由Drosha加工成60~70个核苷酸的发夹状RNA,即前体miRNA (pre-miRNA),在Exprotin-5复合物的帮助下被转运出胞核,在胞浆中由Dicer剪切成为成熟miRNA,随即被整合进RNA沉默复合物(RISC)中,基于与mRNA完全或不完全配对来调节基因表达。

siRNA产生机制:由于RNA 病毒入侵、转座子转录、基因组中反向重复序列转录等原因,细胞中出现了dsRNA,Rde-1(RNAi缺陷基因-1)编码的蛋白质识别外源dsRNA,当dsRNA达到一定量的时候,Rde-1引导dsRNA与Rde-1编码的Dicer结合,形成酶-dsRNA复合体。

在Dicer 酶的作用下,细胞中的单链靶mRNA(与dsRNA具有同源序列)与dsRNA的正义链互换,原来dsRNA中的正义链被mRNA代替而从酶-dsRNA复合物中释放出来,然后,在ATP的参与下,细胞中存在的一种RNA诱导的沉默复合体(RISC)利用结合在其上的核酸内切酶的活性来切割dsRNA上处于原来正义链位置的靶mRNA分子中与dsRNA反义链互补的区域,形成21-23nt的dsRNA小片段,这些小片段即为siRNA。

两者异:1)miRNA是内源的,siRNA主要为外源导入;2)miRNA不仅能介导靶RNA的降解,还可与靶RNA通过不完全互补方式阻抑蛋白质的翻译。

两者同:形成都需要Dicer,形成的复合体中具有相同的蛋白组成,人工的siRNA在体内能产生类似miRNA的功能,内源的miRNA在与靶RNA完全互补的前提下,也能表现剪切靶RNA的干涉效应,两者可能具有基本相同的作用途径。

(分子生物257)7. 全基因组测序的原理和步骤。

全基因组鸟枪法测序的主要步骤:第一,建立高度随机、插入片段大小为2kb左右的基因组文库。

克隆数要达到一定数量,即经末端测序的克隆片段的碱基总数应达到基因组5倍以上。

第二,高效、大规模的末端测序。

对文库中每一个克隆,进行两端测序,TIGR在完成流感嗜血杆菌的基因组时,使用了14台测序仪,用三个月时间完成了必需的28,463个测序反应,测序总长度达6倍基因组。

第三,序列集合。

TIGR发展了新的软件,修改了序列集合规则以最大限度地排除错误的连锁匹配。

第四,填补缺口。

对某基因组文库全部克隆片段进行末端序列测定中未测到的碱基数,即缺(gap)。

有两种待填补的缺口,一是没有相应模板DNA的物理缺口,二是有模板DNA 但未测序的序列缺口。

他们建立了插入片段为15-20kb的λ文库以备缺口填补。

鸟枪法测序的缺点:随着所测基因组总量增大,所需测序的片段大量增加,各个片段重叠或一个连续体的概率是2n2-2n。

高等真核生物(如人类)基因组中有大量重复序列,导致判断失误。

对鸟枪法的改进:(1) Clone contig法。

首先用稀有内切酶把待测基因组降解为数百kb以上的片段,再分别测序。

(2) 靶标鸟枪法(direted shotgun)。

首先根据染色体上已知基因和标记的位置来确定部分DNA片段的相对位置,再逐步缩小各片段之间的缺口。

8. 全长cDNA文库的构建的三种方法。

(1)SMART技术:在合成cDNA的反应中事先加入的3’末端带Oligo(dG)的SMART引物,由于逆转录酶以mRNA为模板合成cDNA ,在到达mRNA的5’末端时碰到真核mRNA特有的帽子结构,即甲基化的G时会连续在合成的cDNA末端加上几个(dC),SMART引物的Oligo (dG)与合成cDNA末端突出的几个C配对后形成cDNA的延伸模板,逆转录酶会自动转换模板,以SMART引物作为延伸模板继续延伸cDNA单链直到引物的末端,这样得到的所有cDNA单链的一段含有Oligo(dT)的起始引物序列,另一端有已知的SMART引物序列,合成第二链后可利用通用引物进行扩增。

由于有5’帽子结构的mRNA才能利用这个反应得到扩增的cDNA,因此扩增得到的cDNA就是全长cDNA。

(2)Cap-trapper法:首先向反应体系中加入了海藻糖、山梨糖醇。

第二,全长cDNA的获得。

利用高碘酸钠的氧化特性,在低温、避光条件下特异氧化cDNA∕mRNA复合体中mRNA 5’和3’端末位核糖上的两个相邻的羟基。

第三,为防止揭短cDNA的掺入,采用RNaseⅠ对双链复合体进行酶切,RNaseⅠ可以消化以单链状态存在的mRNA,而且没有碱基特异性。

第四,第二链cDNA的合成。

第二链引物结合位点的引入可采用两种方法:一种是通过末端转移酶在单链cDNA的3’端加上一段poly(G),另一种是在利用DNA连接酶在cDNA的3’加上一段寡核苷酸。

(3)Oligo-capping法:首先,以mRNA 为起始材料,利用细菌碱性磷酸酶(BAP)水解5’端不完整mRNA 上的5’磷酸基团,防止截短的mRNA 与寡聚核苷酸链连接;再用烟草酸焦磷酸酶(TAP)除去mRNA5’端的帽子结构,在原mRNA 的5’端帽子处只留下一个磷酸基团;通过用T4RNA 连接酶在mRNA 的5’端连上一个寡聚核糖核酸,作为引发二链合成的引物,再经过反转录,PCR 扩增,这样只有完整的mRNA 才能够被合成cDNA,即全长cDNA。

9. 简述三种分子标记的原理与优缺点。

1)RFLP(限制性片段长度多态性):这种多态性是由于限制性内切酶酶切位点或位点间DNA区段发生突变引起的。

RFLP标记的特点:Ⅰ探针的制备:单拷贝DNA克隆或cDNA。

Ⅱ应具有探针/酶组合。

Ⅲ具有共显性、信息完整、重复性和稳定性好等优点。

Ⅳ过程较复杂,同位素操作。

ⅤRFLP标记两端测序,可转化为STS标记。

2)SSLP(简单序列长度多态性):SSLP是一系列不同长度的重复序列,不同的等位基因含有不同数目的重复单位。

有两种类型:小卫星(minisatellite)也称为可变数目的串联重复(variable number of tandem repeat, VNTR)。

重复单位长度为几十个核苷酸;微卫星或简单序列重复(simple sequence repeat, SSR)它的重复单位较短,通常为二、三或四核苷酸单位,重复次数一般为10-50。

Ⅰ.可变数目的串联重复多态性VNTR:利用PCR扩增,所得PCR产物通过电泳可比较其长度的变异许多小卫星序列太长,PCR无法扩增需要利用DNA southern杂交和放射性标记探针检测动物基因组中存在大量的小卫星序列植物基因组中的小卫星带谱很多,分析复杂谱带较困难,不太适合作图研究Ⅱ.SSR标记的特点:关键在于SSR引物的开发:SSR克隆的侧翼序列;检索数据库标记的多态性依赖于基本单元重复次数的变异设计引物和PCR反应,开发成本较低操作简便,稳定可靠3)单核苷酸多态性SNP。

相关文档
最新文档