紫外、荧光分光光度计说明

合集下载

紫外分光光度法和荧光分析法

紫外分光光度法和荧光分析法
可见光区(400~760nm)
1 Beer-Lambort 定律A=log T =Ecl *A为吸收度;
*T为透光率; *E为吸收系数(以 E *c为溶液浓度; *l为样品总厚度。
1% 1cm
表示,溶液浓度为1%(g/ml),厚度为1cm时的吸光度值)
适用条件:入射光为单色光 溶液是稀溶液 固体、 液体和气体样品在同一波长 下,各组分吸光度具有加和性
吸收光谱
10-4-10-7g/ml
选择性

一般
应用
硫色素荧光法测定维生素B1
维生素B1 在碱性溶液中被铁氰化钾氧化成硫色素,在紫(365nm)
照射下呈蓝色荧光(435nm)通过与对照品荧光强度比较。即可测得供试 品含量(课本260页)
荧光分光光度法测定维生素E
采用同步荧光扫描法测定血清中维生素E,有效的消除溶剂拉曼 光谱的干扰,提高灵敏度和准确性。(课本277页)
双波长分光光度法
不需空白溶液作参比;但需要两个单色器获得两
束单色光(λ1和λ2);以参比波长λ1处的吸光度Aλ1 作为参比,来消除干扰。在分析浑浊或背景吸收 较大的复杂试样时显示出很大的优越性。灵敏度、 选择性、测量精密度等方面都比单波长法有所提 高。 ΔA=A λ2 -A λ1 =(ελ2 -ελ1 ) b c 两波长处测得的吸光度差值ΔA与待测组分浓度 成正比 (例子:课本366页)
其他
卡尔曼滤波法
偏最小二乘法 小波变换
三波长分光光度法
系数倍率法
……
原理 与紫外-可见法异同点
应用
原理
荧光 — 分子吸收电磁波后,从其最低激发 态重新发射紫外线或可见光的现象 利用某些物质被一定波长的光照射后所产 生的,能够反映该物质特性的荧光来进行 定性定量的分析方法——荧光分析法。

荧光分光光度计使用操作注意事项 光度计操作规程

荧光分光光度计使用操作注意事项 光度计操作规程

荧光分光光度计使用操作注意事项光度计操作规程荧光分光光度计也被称作(荧光光谱仪),是一款利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子装扮置。

原子荧光光谱分析法具有设备简单、灵敏度高、光谱干扰少、工作曲线线性范围宽、可以进行多元素测定等优点。

在地质、冶金、石油、生物医学、地球化学、材料和环境科学等各个领域内获得了广泛的应用。

作为一款专业测量分析物质的设备,为避开荧光光谱仪在使用过程中显现分析误差,需要注意以下几点:1.在打开荧光光谱仪的主机之前,需要调整其设备各性能数值,比如需要先开氩气钢瓶总阀并将出口压力调至规范区域内,否则会导致仪器欠压报警并对荧光光谱仪的正常工作造成影响。

2.需要安装需测的元素灯,再打开仪器,开启设备后等仪器自检结束,再检查看元素灯有没有亮,然后取下排风罩,将调光器放在原子化器上,旋转元素灯座的可调螺钉,调整元素灯光斑中心至对光器横线与竖线的交叉点,便完成对元素灯的安装调整。

3.在使用荧光光谱仪的过程中应保持试验室通风情形良好,并对废液桶进行适时处理,以保持废液排放正常。

4.在荧光光谱仪完成测试后,需要对其进行适时清理,避开因残留异物导致下次检测显现错误。

5.在对荧光光谱仪清洁完后,依照规定操作对各开关进行关闭,并进行相应的存放操作。

6.定期对荧光光谱仪进行检修保养,适时清洁荧光光谱仪中的异物,避开其对设备造成损坏。

由于资料有限,因而上述(荧光光谱仪)操作注意事项并不全面,在实际进行操作的过程中,建议咨询相关专业技术人员,并查阅相应使用说明书。

原子吸取分光光度计有效的样品处理技术原子吸取分光光度计样品要被吸喷雾化后才能被分析,为了使测量的结果有代表性,必需要保证样品均匀的分布在溶液中。

所以有很多样品必需要经过前处理才能拿来测定,而不同的样品有不同的前处理方法,同一样品也有多种的前处理方法,选择不同方法的依据就是便利快捷、同时又要尽量削减样品的用量,削减有效成分的流失。

紫外可见分光光度计

紫外可见分光光度计

紫外可见分光光度计1.工作环境1.1尺寸和重量长570×宽660×高275mm,约重量36kg1.2使用温度范围15℃~35℃1.3使用湿度范围45% to 80%2.技术规格2.1分光系统2.1.1*光学系统:双光束能提高检测精度,是目前高灵敏度、高精度紫外检测设备的必要光学系统2.1.2*分光器:衍射光栅/衍射光栅型双单色器前级单色器:双波长闪耀全息光主单色器:高性能闪耀全息光栅,象差校正型切尼尔-特纳装置从物理结构上保证分光的纯净,减少杂散光,提高检测精确度。

2.1.3设定波长范围:190~1100nm2.1.4测试波长范围:190~900nm2.1.5*衍射光栅刻线数:1600 lines/mm,高刻线数光栅能保证检测数据的准确性2.1.6波长准确性:±0.3nm2.1.7波长重复精度:±0.1nm2.1.8波长扫描速度波长移动速度: 约 3200nm/min波长扫描速度: 约 900~160nm/min监控扫描速度: 约 2500nm/min2.1.9波长设定:扫描开始波长和扫描结束能够以1nm单位设置;其它为0.1nm单位。

2.1.10谱带宽度:0.1/ 0.2/ 0.5/ 1/ 2/ 5nm 6段转换2.1.11分辨率:0.1nm2.1.12*杂散光:0.0003% 以下(220nm,Nal 10g/L 溶液)使用低杂散光的紫外设备,能提高检测准确性,减少数据偏差。

2.1.13测光方式:双光束测光方式(负反馈直接比例方式)2.1.14测光类型:吸光度(Abs),透射率(%),反射率,能量(E)2.1.15测光范围:吸光度:-4~5 Abs2.1.16记录范围:吸光度-9.999~9.999 Abs2.1.17测光准确度:±0.002Abs(0~0.5Abs)2.1.18重复测光精度:±0.001Abs.(0~0.5Abs)2.1.19基线平滑度:±0.001 Abs以内(除去干扰,狭缝2nm,波长扫描速度低时)2.1.20基线校正:计算机自动校正(电源启动时,自动存储备份的基线,可以再校正)2.1.21漂移:小于0.0004Abs/h (电源启动2小时后)2.2光源:50W卤素灯(2000小时寿命)和氘灯(插座型)内置光源位置自动调整机构2.3检测器:光电倍增管2.4计算机:主流品牌台式机一台内存≥2G硬盘≥320GDVD刻录光驱显示器:19”液晶显示器2.5打印机:主流品牌激光打印机一台2.6供货配置一览表紫外可见分光光度计主机一台自动六联池一个10mm方形石英比色皿17个10mm带塞方形石英比色皿10个必要配件耗材3.随机资料: 中英文操作手册4.验收指标: 按技术指标5.售后服务5.1 厂家的技术人员在最终用户处进行安装,调试5.2 厂家工厂或分析中心内为最终用户的一名操作人员做三天的免费培训,用户差旅、食宿自理保修期: 安装验收后,保修一年定货量: 1 台交货期: 合同生效后30天内原子荧光光度计原子荧光光度计技术要求1、用途用于样品中As、Sb、Bi、Hg、Se、Te、Sn、Ge、Pb、Zn、Cd元素的痕量分析及后续元素形态功能的扩展。

紫外分光光度计及荧光积分球

紫外分光光度计及荧光积分球

前言:在分光光度计中,一个是作为检测器用的光电倍增管,另一个是作为附件用的积分球,两者看似没有直接的联系,实际上,积分球的问世和使用正是弥补了光电倍增管在检测多样化样品时的自身缺陷。

而对于积分球检测器这种附件,许多仪器使用者了解甚少,甚至没有听说过。

为此,本文针对这两者的关系做一简单介绍,以飨读者。

1.光电倍增管的使用:光电倍增管英文名称是photomultiplier tube,简称PTM。

在目前的一些双光束分光光度计中经常使用光电倍增管作为检测器。

由于光电倍增管具有灵敏度高,噪声低及响应速度快的特点,所以被广泛地应用在许多光学仪器中作为检测器,这是众所周知的常识。

2.光电倍增管的结构:光电倍增管有侧窗式和端窗式两种,在实际应用范围里又以侧窗式居多,因此、本文以R 928型侧窗式光电倍增管为例加以介绍。

R928型光电倍增管有11个电极,分别为:1个光阴极(K),9个倍增极,也称打拿极(D Y)和1个阳极(P);外观图和内部图如图-1,图-2所示:图-1、R928型光电倍增管外观图图-2、R928型光电倍增管内部结构顶视图3.光电倍增管的简单工作原理:当入射的检测光信号(S/R)照射到光阴极(K)后,光阴极向真空中激发出光电子。

这些光电子首先进入倍增系统的第一个打拿极DY1,然后通过进一步的二次电子发射,逐级通过其余的8个打拿极(DY2~DY9)而得到递增式的倍增放大;最后这些被多次放大后的电子被阳极(P)收集作为信号输出。

图-3是R928电极排列及供电电路示意图:图-3、R928电极排列及供电电路示意图4.光电倍增管灵敏度特性的分析:虽然光电倍增管有许多优点,但暇不掩玉,该器件自身也有两个致命的缺陷;①灵敏度因强光照射(这也就是为何仪器在通电的情况下样品室盖子不能打开的原因)或因照射时间过长而降低,停止照射后又部分地恢复;鉴于光电倍增管的这种特性致使它随着使用时间的累加,灵敏度会逐渐下降(一般从长波长开始下降,俗称“红外紫移”)且噪声输出却逐渐加大,直至被弃用。

分光光度计

分光光度计

分光光度计一.分光光度计基本结构简介能从含有各种波长的混合光中将每一单色光分离出来并测量其强度的仪器称为分光光度计。

分光光度计因使用的波长范围不同而分为紫外光区、可见光区、红外光区以及万用(全波段)分光光度计等。

无论哪一类分光光度计都由下列五部分组成,即光源、单色器、狭缝、样品池,检测器系统。

(1)光源要求能提供所需波长范围的连续光谱,稳定而有足够的强度。

常用的有白炽灯(钨比灯、卤钨灯等),气体放电灯(氢灯、氘灯及氙灯等),金属弧灯(各种汞灯)等多种。

钨灯和卤钨灯发射320-2000nm连续光谱,最适宜工作范围为360-1000nm,稳定性好,用作可见光分光光度计的光源。

氢灯和氘灯能发射150-400nm的紫外结,可用作紫外光区分光光度计的光源。

红外线光源则由纳恩斯特(Nernst)棒产生,此棒由ZrO2:Y2O3=17:3(Zr为锆,Y为钇)或Y2O3,GeO2(Ge为铈)及ThO2(Th为钍)之混合物制成。

汞灯发射的不是连续光谱,能量绝大部分集中在253.6nm波长外,一般作波长校正用。

钨灯在出现灯管发黑时应及更换,如换用的灯型号不同,还需要调节灯座的位置的焦距。

氢粘及氘灯的灯管或窗口是石英的,且有固定的发射方向,安装时必须仔细校正接触灯管时应戴手套以防留下污迹。

(2)分光系统(单色器)单色器是指能从混合光波中分解出来所需单一波长光的装置,由棱镜或光栅构成。

用玻璃制成的棱镜色散力强,但只能在可见光区工作,石棱镜工作波长范围为185 ̄4000nm,在紫外区有较好的分辩力而且也适用于可见光区和近红外区。

棱镜的特点是波长越短,色散程度越好,越向长波一侧越差。

所以用棱镜的分光光度计,其波长刻度在紫外区可达到0.2nm,而在长波段只能达到5nm。

有的分光光系统是衍射光栅,即在石英或玻璃的表面上刻划许多平行线,刻线处不透光,于是通过光的干涉和衍射现象,较长的光波偏折的角度大,较短的光波偏折的角度小,因而形成光谱。

f98荧光分光光度计说明书_概述

f98荧光分光光度计说明书_概述

f98荧光分光光度计说明书概述1. 引言:概述:本文是《f98荧光分光光度计说明书》的概述部分。

本部分将简要介绍该说明书的结构、目的以及主要内容,以便读者更好地理解并使用该荧光分光光度计。

文章结构:本说明书主要包括引言、正文、f98荧光分光光度计的使用指南、常见问题解答和故障排除、结论和展望等几个部分。

引言部分为整篇文章的开头,为读者提供了对全文内容的基本了解。

目的:该说明书旨在向用户详细介绍f98荧光分光光度计及其工作原理、特点和功能。

同时,通过使用指南和常见问题解答,帮助用户正确操作仪器,并解决在实验过程中可能遇到的问题和故障。

接下来,我们将逐一介绍“1. 引言”中所列出的各小节内容。

2. 正文:2.1 什么是f98荧光分光光度计:f98荧光分光光度计是一种专门用于测量和分析样品中的荧光特性的仪器。

它通过激发样品中的荧光物质并测量其产生的荧光信号来获取关于样品的信息。

f98荧光分光光度计可以广泛应用于许多领域,如生物学、化学、医学等。

2.2 f98荧光分光光度计的工作原理:f98荧光分光光度计使用一定波长范围内的激发源来激发样品中的荧光物质。

这些激发源可以是可见或紫外线的灯管或激光器。

当样品被激发时,其中的荧光物质会吸收能量并重新辐射出以较长波长的荧光信号。

f98荧光分光仪通过检测和记录这些荧光信号的强度来测量样品中所含有的荧-4.3 数据处理与结果解读”: {不要使用markdown,不要包含网址亮物质。

该仪器还可以根据用户需求进行专门设置和调整,以提高测量的准确性和灵敏度。

2.3 f98荧光分光光度计的主要特点和功能:- 高灵敏度:f98荧光分光光度计具有极高的灵敏度,可以检测到样品中微量的荧光物质,并提供准确的测量结果。

- 宽波长范围:该仪器可在可见光至紫外线范围内进行测量,适用于不同波长下的荧光样品。

- 多种测量模式:f98荧光分光仪支持多种不同的测量模式,如荧光强度、寿命等,方便用户根据需求进行选择。

一、荧光分光光度计配置及参数(进口)

一、荧光分光光度计配置及参数(进口)

技术参数:*1、单色器:机刻凹面衍射光栅,900g/mm,F2.2校正像差,且可见光区高的光通量,提高检测灵敏度。

2、闪跃波长:激发300nm,发射400nm。

*3、检测器测量波长范围:200~750nm和零次光;带自增益功能:连续可调(0-1000V)4、分辨率:最低分辨率1.0nm。

5、波长准确度:最低要求±1.0nm。

*6、波长扫描速度:30~60000nm/min,调节步距1nm,亦可按时间收集数据。

7、光谱带宽:EX:1,2.5,5,10,20nm;EM:1,2.5,5,10,20nm8、光源:150w连续光源氙灯。

*9、水平狭缝,最小试样体积:0.6mL(使用标准10mm池),微量池最小体积0.2ml。

*10、水拉曼检测激发波长350nm,带宽5nm,响应时间2.0s,取水拉曼峰处噪声,灵敏度大于800:1(RMS);11、可进行时间扫描和定量分析,三维荧光图谱。

*12、具有全波长预扫描功能,能自动、快速地寻找到最佳的激发和发射波长。

*13、线性动态范围:6个数量级;14、全波段的光谱校正,排除仪器的依赖性,确保高精度的数据。

15、控制系统和软件15.1计算机一台:计算机配置不低于i3处理器、2GB内存、500GB硬盘、DVD可刻录光驱、22英寸LED显示器,Windows7操作系统。

15.2分析软件:定性及定量分析软件,以及与此有关的应用分析软件。

16、固体支架:配套的标准固体支架。

17、恒温样品支架17.1、冷却循环水系统:与仪器标配套的标准的国产冷却循环水系统。

18、滤光片1套,带通滤光片250-390nm,低通截止滤光片,295、320、370、395、420nm19、氙灯1支20、激光打印机1台,满足仪器使用。

21、附件、配件按正常实验配齐,安装调试后能够正常进行实验。

技术参数1 技术规格1.1 电源电压:220V,50Hz1.2 温度:10~35℃1.3 相对湿度:45~85%2 现场免费培训,各项性能指标达到技术要求,由供需双方共同签字认可,现场验收,仪器验收合格后,供方须提供整机一年免费保修,并提供终身维修服务。

紫外分光光度计

紫外分光光度计

紫外分光光度计:工作原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。

由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。

因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。

分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。

又因为许多物质在紫外-可见光区有特征吸收峰,所以可用紫外分光光度法对这些物质分别进行测定(定量分析和定性分析)。

紫外分光光度法使用基于朗伯-比耳定律。

利用物质的分子或离子对某一波长范围光的吸收作用,对物质进行定性、定量分析以及结构分析。

紫外分光光度法首先确定实验条件,并在此条件下测得标准物质的吸收峰以及其对应波长值(同时可获得该物质的最大吸收波长);再在选定的波长范围内(或最大波长值处),分别以(不同浓度)标准溶液的吸光度和溶液浓度为横、纵坐标绘出化合物溶液的标准曲线得到其所对应的数学方程;接着在相同实验条件下配制待测溶液,测得待测溶液的吸光度,最后用已获得的标准曲线方程求出待测溶液中所需测定的化合物的含量。

使用范围:凡具有芳香环或共轭双键结构的有机化合物,根据在特定吸收波长处所测得的吸收度,可用于药品的鉴别、纯度检查及含量测定。

分光光度法只适用于微量组分的定量分析(稀溶液,浓度在线性范围内,(c <0.01 mol/L),浓溶液中光吸收定律将发生偏离,最适宜的吸光度测量范围为0.2-0.8之间(此时误差小)。

波长范围:可见-紫外分光光度计。

其应用波长范围为200~400nm的紫外光区、400~850nm的可见光区。

主要由辐射源(光源)、色散系统、检测系统、吸收池、数据处理机、自动记录器及显示器等部件组成。

光源:在仪器的波长范围内提供足够的、稳定的连续的光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、设备名称:
RF-5301PC荧光分光光度计;
二、使用原理
1、荧光分光光度计
由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。

荧光是光致发光,任何荧光物质都具有激发光谱和发射光谱,发射波长总是大于激发波长。

荧光激发光谱是通过测定荧光体的发光通量随波长变化而获得的光谱,反映不同波长激发光引起荧光的相对效率。

荧光发射光谱是当荧光物质在固定的激发光源照射后所产生的分子荧光,是荧光强度对发射波长的关系曲线,表示在所发射的荧光中各种波长相对强度。

由于各种不同的荧光物质有它们各自特定的荧光发射波长,可用它来鉴定荧光物质。

有些发荧光的物质其荧光强度与物质的浓度成正比,故可用荧光分光光度法测定其含量。

在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。

利用某些物质受激发出的荧光,其光强度与该物质的含量成一定函数关系的性质而制成的。

三、组成结构
光源、光件、样品池、检测器、数据处理器
1、荧光分光光度计
图RF5301PC荧光分光光度计
主要是由激发光源、激发单色器、样品池、发射单色器、检测器以及数据处理系统几部分组成
1. 光源:
为高压汞蒸气灯或氙弧灯,后者能发射出强度较大的连续光谱,且在300nm~400nm 范围内强度几乎相等,故较常用。

2.激发单色器:
置于光源和样品室之间的为激发单色器或第一单色器,筛选出特定的激发光谱。

3.发射单色器:
置于样品室和检测器之间的为发射单色器或第二单色器,常采用光栅为单色器。

筛选出特定的发射光谱。

4.样品室:
通常由石英池(液体样品用)或固体样品架(粉末或片状样品)组成。

测量液体时,光源与检测器成直角安排;测量固体时,光源与检测器成锐角安排。

5.检测器:
一般用光电管或光电倍增管作检测器。

可将光信号放大并转为电信号
四、功能用途
1、荧光分光光度计是用于扫描液相荧光标记物所发出的荧光光谱的一种仪器,扫描范围200-900nm,通常比紫外分光光度计检测灵敏度高2~3个数量级,能在紫外“力不能及”的领域发挥作用,是现代分析测试领域尤其是痕量分析领域一种应用广泛的重要分析仪器,在生命科学、医学及临检、药学及药理学、生化、食品、环保、公安等领域有广泛应用。

1.医学和临床检验———生物体试料的临床分析
2.药学和药理学———天然药物分析,药品质量控制和药物代谢的研究
3.生物化学———对于生物体内微量物质的测定
4.食品工业———食品中痕量组分的测定
5.污染物的分析———大气污染、环境卫生检测,食品污染物研究等
6.有机和无机化学———用吸光光度法不能测定的痕量组分分析
五、注意维护保养
1、仪器一定要安装在稳定牢固的实验台上,远离振动源。

2、氙灯寿命为500h,超过使用时间必须更换,否则易引起爆炸。

3、荧光分光光度计氙灯点亮后需一定时间稳定,故进行精密测试应在 30分钟以上。

关闭氙灯电源后,若要重新使用,请等待 60秒以后重新触发。

4、供试品测试完毕后应及时取出,长时间放置在样品室中会污染光学系统,引起性能下降。

样品室应保持干燥,应及时更换干燥剂。

六、仪器操作
现场具体操作
一、设备名称:UV2401紫外可见分光光度计
二、使用原理
由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。

因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量。

因为许多物质在紫外-可见光区有特征吸收峰,所以可用紫外分光光度法对这些物质分别进行测定(定量分析和定性分析)。

紫外分光光度法使用基于朗伯-比耳定律。

朗伯-比耳定律(Lambert-Beer)是光吸收的基本定律,俗称光吸收定律,是分光光度法定量分析的依据和基础。

当入射光波长一定时,溶液的吸光度A
是吸光物质的浓度C及吸收介质厚度l(吸收光程)的函数。

三、组成结构
主要由辐射源(光源)、色散系统、检测系统、吸收池、数据处理机、自动记录器及显示器等部件组成。

四、功能用途
1 检定物质
根据吸收光谱图上的一些特征吸收,特别是最大吸收波长虽ax和摩尔吸收系数是检定物质的常用物理参数。

这在药物分析上就有着很广泛的应用。

在国内外的药典中,已将众多的药物紫外吸收光谱的最大吸收波长和吸收系数载入其中,为药物分析提供了很好的手段。

2与标准物及标准图谱对照
将分析样品和标准样品以相同浓度配制在同一溶剂中,在同一条件下分别测定紫外可见吸收光谱。

若两者是同一物质,则两者的光谱图应完全一致。

如果没有标样,也可以和现成的标准谱图对照进行比较。

这种方法要求仪器准确,精密度高,且测定条件要相同。

3 比较最大吸收波长吸收系数的一致性
4 纯度检验
5 推测化合物的分子结构
6 氢键强度的测定
实验证明,不同的极性溶剂产生氢键的强度也不同,这可以利用紫外光谱来判断化合物在不同溶剂中氢键强度,以确定选择哪一种溶剂。

7 络合物组成及稳定常数的测定
8 反应动力学研究
9 在有机分析中的应用
有机分析是一门研究有机化合物的分离、鉴别及组成结构测定的科学,它是在有机化学和分析化学的基础上发展起来的综合性学科。

五、注意维护保养
1、样品池使用挥发性物质时比色皿要扣盖。

2、比色皿使用后要清理干净。

3、使用时要遵照使用手册来完成操作。

4、在更换保险丝或通电之间,应关闭电源开关断开电源线。

六、仪器操作
现场具体操作。

相关文档
最新文档