七年级数学图形认识初步单元测试题
七年级数学上册第四章《图形的初步认识》单元测试卷B卷标准训练

七年级数学上册第四章《图形的初步认识》单元测试卷B卷标准训练佳文韵赢(满分:120分,答卷时间:100分钟)一、选择题(每小题3分,共30分)1.下列四个图形中是三棱柱的表面展开图的是( )A B C D2.如图是由6个大小相同的小正方体拼成的几何体,若去掉最上面的小正方体,则下列说法正确的是( )A.主视图不变 B.左视图不变 C.俯视图不变 D.三种视图都不变3.下列实例中,能用基本实事“两点之间,线段最短”加以解释的是( )A.在正常情况下,射击时要保证目标在准星和缺口确定的直线上,才能射中目标B.栽树时只要确定两个树坑的位置,就能确定同一行树坑所在的直线C.建筑工人在砌墙时,经常在两根标志杆之间拉一根绳,沿绳可以砌出直的墙D.把弯曲的公路改直,就能缩短路程4.如图,下列叙述不正确的是( )A.点O不在直线AC上 B.图中共有5条线段C.射线AB与射线BC是指同一条射线 D.直线AB与直线CA是指同一条直线5.如图,点B,C在线段AD上,且AB=CD,则AC与BD的大小关系是( )A.AC>BD B.AC=BD C.AC<BD D.不能确定6.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )A.∠NOQ=42° B.∠NOP=132° C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补7.如图,将一副三角板叠放在一起,使直角的顶点重合于点O处,则∠AOC+∠DOB 的度数为( )A.90° B.120° C.160° D.180°8.如图为正方体的一种平面展开图,各面都标有数字,则数字为-2的面与其对面上的数字之积是( )A .-12B .0C .-8D .-109.如图,赵老师在点O 处观测到小明站位点A 位于北偏西54°30′的方向,同时观测到小刚站位点B 在南偏东15°20′的方向,那么∠AOB 的大小是( )A .69°50′B .110°10′C .140°50′D .159°50′ 10.如图,点C ,D 为线段AB 上两点,AC +BD =6,且AD +BC =75AB ,则CD 等于( )A .10B .8C .6D .4 二、填空题(每小题4分,共24分)11.计算:1.42°= 度 分 秒; 12.计算:22°32′24″= 度;13.已知线段AB =6 cm ,延长AB 到C ,使BC =13AB.若D 为AC 的中点,则BD 等于 cm ;14.时钟 3 点 30 分时,时针与分针的夹角是 °;15.已知∠1 与∠2 互余,∠1 与∠3 互补;若∠3=136°42′,则∠2= ; 16.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞? (填序号)。
七年级上册数学单元测试卷-第二章 几何图形的初步认识-冀教版(含答案)

七年级上册数学单元测试卷-第二章几何图形的初步认识-冀教版(含答案)一、单选题(共15题,共计45分)1、将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是()A. B. C. D.2、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A. B. C. D.33、把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A. B.5 C.4 D.4、下列语句错误的有①近似数0.010精确到千分位②如果两个角互补,那么一个是锐角,一个是钝角③若线段,则P一定是AB中点④A与B两点间的距离是指连接A、B两点间的线段A.4个B.3个C.2个D.1个5、如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后向下平移2个单位,则A 点的对应点的坐标为( )A. B. C. D.6、如图,在△ABC中,∠B=90°,AB=4,BC=3,将△ABC绕点A逆时针旋转,使点B落在线段AC上的点D处,点C落在点E处,则C、E两点间的距离为()A. B.2 C.3 D.27、若∠A=30°18′,∠B=30°15′30″,∠C=30.25°,则这三个角的大小关系正确的是()A.∠C>∠A>∠BB.∠C>∠B>∠AC.∠A>∠C>∠B D.∠A>∠B>∠C8、如图,在△ABC 中,∠ABC=40°,在同一平面内,将△ABC 绕点 B 逆时针旋转 100°到△A′BC′的位置,则∠ABC′=()A.40°B.60°C.80°D.100°9、北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,過极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道在点O南偏东70°的方向上,则这条跑道所在射线与正北方向所成角的度数为()A.160°B.110°C.70°D.20°10、下列说法中正确的有( )(1)过两点有且只有一条直线(2)连接两点的线段叫两点的距离(3)两点之间线段最短(4)如果AB=BC,则点B是线段AC的中点A.1B.2C.3D.411、如图,将绕点C顺时针旋转得到,使点A的对应点D恰好落在边上,点B的对应点为E,连接.下列结论一定正确的是()A. B. C. D.12、如图,在△ABC中,∠ACB=90°,将△ABC绕着点A逆时针旋转得到△ADE,点C落在边AD上,连接BD.若∠DAE=α,则用含α的式子表示∠CBD的大小是()A.αB.90°﹣αC.D.13、如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°14、如图1,在矩形ABCD中,AB=1,BC=.将射线AC绕着点A顺时针旋转α(0°<α≤180°)得到射线AE,点M与点D关于直线AE对称.若x=,图中某点到点M的距离为y,表示y与x的函数关系的图象如图2所示,则这个点为图1中的()A.点AB.点BC.点CD.点D15、下图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A. B. C. D.二、填空题(共10题,共计30分)16、40°的补角等于________;40°18′的余角等于________.17、如图中的图形绕着中心至少旋转________度能与自身重合.18、计算:=________度.19、如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是________.(结果保留根号).20、如图,平分,平分,,,则的度数为________.21、一个角的余角比它的补角的还少20°,则这个角是________.22、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是________.23、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=________度.24、如图,将Rt△ABC的斜边AC绕点C顺时针旋转()得到CD,直角边BC绕点C逆时针旋转()得到CE,若AC=5,BC=4,且,则DE=________.25、一个角的补角加上14°,等于这个角的余角的5倍,这个角的度数是________°.三、解答题(共5题,共计25分)26、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?27、如图1是三个直立于水面上的形状完全相同的几何体(下底面为圆面,单位:厘米),将它们拼成如图2的新几何体,求该新几何体的体积(结果保留π).28、已知:如图,线段MN=m,延长MN到点C,使NC=n,点A为MC的中点,点B为NC的中点,求线段AB的长.29、已知线段AB=12,点D、E是线段AB的三等分点,求线段BD的长.30、如图,已知是的余角,是的补角,且,求、的度数.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、B5、B6、A7、D8、B9、B10、B11、D12、A13、C14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
第4章图形的初步认识单元测试卷20212022学年华东师大版七年级上册数学.docx

2021-2022学年华东师大新版七年级上册数学《第4章图形的初步认识》单元测试卷一. 选择题1.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A, B, C,。
中的()位置接正方形.2.下列几何体中,是圆锥的为(4.如图所示的物体是一个几何体,从正面看到的图形是(B. C. D.5.如图是一个由4个相同的正方体组成的立体图形,则它的主视图为(A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹9.把14个棱长为1的正方体在地面上堆叠如图所示的立体,然后将露出的表面部分涂成红色,那么红色部分的面积为()A. 21B. 24C. 33D. 3710.如图所示是一个三棱柱,画出它的主视图和左视图均正确的是()主视图左视图二. 填空题11 •如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为12.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为主视方向13.请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是.14.若一个棱柱有30条棱,那么该棱柱有个面.15.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可).16.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走个小正方体.I上面7正面17.如图所示,在直角三角形中,以其中一条直角边所在的直线为轴旋转一周,得到几何体的体积为.(结果保留TT)18.长方体是一个立体图形,它有个面,条棱,个顶点.19.一个正〃棱柱共有15条棱,一条侧棱的长为5cm, 一条底面边长为3cm,则这个棱柱的侧面积为cnr.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.三. 解答题21.画出如图图形的三视图.23.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为8cm.宽为4cm的长方形,绕它的一条边所在的直线旋转一周,求得到的圆柱体的体积是多少?24.已知一个直棱柱有8个面,它的底面边长都是5ce侧棱长都是4cm.(1)它是几棱柱?它有多少个顶点?多少条棱?(2)这个棱柱的所有侧面的面积之和是多少?25.由7个相同的小立方块搭成的几何体如图所示,(1)请画出它的三视图?(2)请计算它的表面积?(棱长为1)IF而26.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.图①图②(1) 第1个几何体中只有2个面涂色的小立方体共有 个.第3个几何体中只有2个面涂色的小立方体共有 个.(2) 求出第100个几何体中只有2个面涂色的小立方体的块数.(3) 求出前100个几何体中只有2个面涂色的小立方体的块数的和.27. 如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱, 6个顶点,观察图形,填写下面的空. (1)四棱柱有——个面,_ ___ 条棱,_ __ 个顶点; (2)六棱柱有— —个面,_ ___ 条棱,— __ 个顶点;(3) 由此猜想”棱柱有 个面,条棱,个顶点.三棱柱四棱柱五棱柱六棱柱参考答案与试题解析一.选择题1.解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.2.解:观察可知,C选项图形是圆锥.故选:C.3.解:A、该几何体为四棱柱,不符合题意;3、该几何体为圆锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.4.解:该几何体是一个圆台,从正面看到的图形是一个等腰梯形,故选C.5.解:根据题干分析可得,从正面看到的图形是| | ..故选:A.6.解:A、圆柱的主视图和左视图都是长方形,俯视图是圆,故此选项错误;3、长方体的三视图不相同,故此选项错误;。
第6章 图形的初步认识单元测试卷(解析卷)

第6章图形的初步认识单元测试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹解:A、天空划过一道流星是“点动成线”,故本选项不合题意;B、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项符合题意.C、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项不合题意;D、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项不合题意;故选:B.2.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地在A地的北偏东43°的方向上,那么从B地测得C地在B地的()A.南偏西43°B.南偏东43°C.北偏东47°D.北偏西47°解:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=47°,∴C地在B地的北偏西47°的方向上.故选:D.3.已知AB=1.5,AC=4.5,且A,B,C三点不共线,若BC的长为整数,则BC的长为()A.3B.6C.3或6D.4或5解:当A,B,C三点在同一条直线上,点B在线段AC上,BC=AC﹣AB=3,点B在CA的延长线上,BC=AB+AC=6,∵BC边长为整数,A、B、C不共线,∴3<BC<6,∴BC=4或5.故选:D.4.将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的()A.另一边上B.内部C.外部D.无法判断解:将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的外部.故选:C.5.建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是()A.两点确定一条直线B.过一点有无数条直线C.两点之间,线段最短D.连接两点之间的线段叫做两点之间的距离解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是:两点确定一条直线.故选:A.6.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.解:A、∠α与∠β相等,不互补,故本选项错误;B、∠α与∠β不互补,故本选项错误;C、∠α与∠β互余,故本选项错误;D、∠α和∠β互补,故本选项正确;故选:D.7.点P为直线L外一点,点A、B、C为直线上三点,PA=6cm,PB=8cm,PC=4cm,则点P到直线l的距离为()A.4cm B.6cm C.小于4cm D.不大于4cm解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离≤PC,即点P到直线l的距离不大于4.故选:D.8.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A.①④B.②③C.③D.④解:①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确;故选:A.9.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为()A.42°B.98°C.42°或98°D.82°解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣28°=42°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°.故选:C.10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(300﹣m)+10(900﹣m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(300+n)+15n+10(600﹣n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.二.填空题(共6小题,满分24分,每小题4分)11.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于32°.解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°12.钟表显示10点30分时,时针与分针的夹角为135度.解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上10点30分,时针与分针的夹角可以看成4×30°+0.5°×30=135°.故答案为:135.13.如图,已知直线AB,CD,EF相交于点O,∠1=95°,∠2=53°,则∠BOE的度数为32°.解:∵∠BOE与∠AOF是对顶角,∴∠BOE=∠AOF,∵∠1=95°,∠2=53°,∠COD是平角,∴∠AOF=180°﹣∠1﹣∠2=180°﹣95°﹣53°=32°,即∠BOE=32°.故答案为:32°14.一副三角板按如图方式摆放,若∠α=21°37',则∠β的度数为68°23′.解:∵∠1=90°,∴∠α+∠β=180°﹣90°=90°,∵∠α=21°37',∴∠β=68°23′,故答案为:68°23′.15.由东营南到德州的某一次列车,运行途中停靠的车站依次是:东营南﹣﹣滨州﹣﹣阳信﹣﹣商河﹣﹣德州,那么要为这次列车制作的火车票有20种.解:如图,设东营南﹣﹣滨州﹣﹣阳信﹣﹣商河﹣﹣德州五站分别用A、B、C、D、E 表示,则共有线段:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10条,所以,需要制作火车票10×2=20种.故答案为:20.16.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.三.解答题(共8小题,满分66分)17.(6分)如图,直线AB、CD相交于点O,OE⊥CD,∠AOC=50°.求∠BOE的度数.解:∵∠BOD=∠AOC=50°,∵OE⊥CD,∴∠DOE=90°,∴∠BOE=90°﹣50°=40°,18.(6分)已知点C在线段AB上,线段AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,求MN的长度.解:∵AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,∴MC=AC=3.5cm,CN=BC=2.5cm,则MN=MC+CN=3.5+2.5=6(cm).19.(8分)如图,蒙古包可以近似地看作由圆锥和圆柱组成的,现想用毛毡搭建底面积为9πm3,高为6m,外围高为2m的蒙古包,求至少需要多少平方米的毛毡?(结果保留π)解:∵蒙古包底面积为9πm2,高为6m,外围(圆柱)高2m,∴底面半径=3米,圆锥高为:6﹣2=4(m),∴圆锥的母线长==5(m),∴圆锥的侧面积=π×3×5=15π(平方米);圆锥的周长为:2π×3=6π(m),圆柱的侧面积=6π×2=12π(平方米).∴故需要毛毡:(15π+12π)=27π(平方米).20.(8分)(1)如图,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC(2)如图,用适当的语句表述点A,B,P 与直线l 的关系解:(1)如图,(2)点A、点B在直线l上,点P在直线l外.21.(8分)如图,是A、B、C三个村庄的平面图,已知B村在A村的南偏西50°方向,C村在A村的南偏东15°方向,C村在B村的北偏东85°方向,求从C村村观测A、B 两村的视角∠ACB的度数.解:由题意∠BAC=50°+15°=65°,∠ABC=85°﹣50°=35°在△ABC中,∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣65°﹣35°=80°.22.(10分)把一副三角板按如图所示放置(直角顶点重合)(1)直接写出与∠DBC互余的角;(2)写出与∠DBC互补的角,并说明理由.解:(1)与∠DBC互余的角有:∠ABD,∠CBE.(2)与∠DBC互补的角是:∠ABE,理由:∠ABE+∠DBC=∠ABC+∠CBE+∠DBC,=∠ABC+∠DBE=90°+90°=180°,所以:∠ABE与∠DBC互补.23.(10分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE 的度数(不必写过程).解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,中小学教育资源及组卷应用平台∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.21世纪教育网。
人教版七年级数学几何图形初步单元试卷含答案

第四章幾何圖形初步單元測試卷第五章(時間:45分鐘,滿分:100分)一、選擇題(每小題4分,共32分)1.下列立體圖形中,側面展開圖是扇形的是()2.下列圖形中,∠1和∠2互為餘角的是()3.如圖,點A位於點O的方向上.()A.南偏東35°B.北偏西65°C.南偏東65°D.南偏西65°4.如圖,一個斜插吸管的盒裝飲料從正面看到的圖形是()5.下列現象中,可用基本事實“兩點之間,線段最短”來解釋的現象是()A.用兩個釘子就可以把木條固定在牆上B.把彎曲的公路改直,就能縮短路程C.利用圓規可以比較兩條線段的大小關係D.植樹時,只要定出兩棵樹的位置,就能確定同一行樹所在的直線6.一塊手錶如圖,早上8時的時針、分針的位置如圖所示,那麼分針與時針所成的角的度數是()A.60°B.80°C.120°D.150°7.將一長方形紙片,按下圖的方式折疊,BC,BD為折痕,則∠CBD的度數為()A.60°B.75°C.90°D.95°8.一個正方體的每個面都寫有一個漢字,其平面展開圖如圖所示,則在該正方體中,和“崇”相對的面上寫的漢字是()A.低B.碳C.生D.活二、填空題(每小題4分,共16分)9.已知∠A與∠B互補,若∠A=70°,則∠B的度數為.10.已知一個角的補角等於它的餘角的6倍,則這個角的大小為.11.(1)13°30'=°;(2)0.5°='=″.12.平面上有四個點,過每兩個點畫一條直線,一共可以畫條直線.三、解答題(共52分)13.(每小題5分,共10分)計算:(1)40°26'+30°30'30″÷6;(2)13°53'×3-32°5'31″.14.(10分)在一張城市地圖上,如圖,有學校、醫院、圖書館三地,圖書館被墨水污染,具體位置看不清,但知道圖書館在學校的東北方向,在醫院的南偏東60°方向,你能確定圖書館的位置嗎?15.(10分)已知C為線段AB的中點,D在線段BC上,且AD=7,BD=5.求線段CD的長度.16.(10分)如圖,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度數.17.(12分)如圖,把一副三角尺的直角頂點O重疊在一起.(1)如圖①,當OB平分∠COD時,則∠AOD和∠BOC的和是多少度?(2)如圖②,當OB不平分∠COD時,則∠AOD和∠BOC的和是多少度?參考答案一、選擇題1.B2.D3.B4.A5.B6.C7.C本題考查角平分線和平角的概念.由圖的折疊可知BC,BD分別是∠ABA',∠E'BE的角平分線,而∠ABE是一個平角,所以∠CBD=90°.8.A二、填空題9.110°10.72°設這個角的大小為x°,列方程得180°-x°=6(90°-x°),解得x°=72°.11.(1)13.5(2)30 1 80012.1或4或6本題沒指明這四個點的位置關係,所以應予以討論,不要遺漏.(1)當A,B,C,D四點在同一條直線上時,可畫1條直線,如圖①;(2)當三點(如A,B,C)在同一直線上,而另一個點D 在該直線外時,可畫出4條直線,如圖②;(3)當上述四點沒有任何三點在同一直線上時,可畫出6條直線,如圖③.三、解答題13.解:(1)40°26'+30°30'30″÷6=40°26'+5°5'5″=45°31'5″.(2)13°53'×3-32°5'31″=39°159'-32°5'31″=41°38'60″-32°5'31″=9°33'29″.14.解:如圖,點P就是圖書館所在的位置.15.解:因為AD=7,BD=5,所以AB=AD+BD=12.又因為C為線段AB的中點,所以AC=AB=6.所以CD=AD-AC=7-6=1.16.解:因為∠AOD=∠AOC-∠DOC=60°-∠DOC,∠BOC=∠BOD-∠DOC=90°-∠DOC,所以∠AOB=∠AOD+∠COD+∠BOC=60°-∠DOC+∠COD+90°-∠DOC=150°-∠DOC.所以150°-∠DOC=3∠DOC.所以∠DOC=37.5°.所以∠AOB=3×37.5°=112.5°.17.解:(1)∵∠AOB=∠COD=90°,當OB平分∠COD時,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.。
第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°,那么∠2的度数为()A.10°B.15°C.20°D.25°2、下列结论中,正确的是()A.﹣7<﹣8B.85.5°=85°30′C.﹣|﹣9|=9D.2a+a 2=3a 23、嘉嘉要在墙壁上固定一根横放的木条,他至少需要钉子()A.1枚B.2枚C.3枚D.随便多少枚4、若∠α=90°-m°,∠β=90°+m°,则∠α与∠β的关系是( )A.互补B.互余C.和为钝角D.和为周角5、将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A.6B.5C.3D.26、下列说法正确的是()A.射线AB和射线BA是两条不同的射线B.过三点可以画三条直线C.两点之间,直线最短D.﹣a是负数7、下列说法中正确的有()个⑴一条射线上只有一个点,一条线段上有两个点;⑵一条射线把一个角分成两个角,这条射线叫这个角的平分线;⑶连结两点的线段叫做两点之间的距离;⑷20°50ˊ=20.5°;⑸互余且相等的两个角都是45°.A.1B.2C.3D.48、下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BC C.若AC+BC>AB,则点C一定在线段AB外 D.若A,B,C,三点不在一直线上,则AB<AC+BC9、下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与已知直线平行;④长方体是四棱柱;其中正确的有()A.1个B.2个C.3个D.4个10、如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点NB.点M,点QC.点N,点PD.点P,点Q11、从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则()A.小强家在小红家的正东B.小强家在小红家的正西C.小强家在小红家的正南D.小强家在小红家的正北12、将21.54°用度、分、秒表示为()A. B. C. D.13、下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.相等的角是对顶角14、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线15、如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=25°,则∠AOB=( )A.100°B.75°C.50°D.20°二、填空题(共10题,共计30分)16、已知直线与直线相交于点,,垂足为.若,则的度数为________.(单位用度表示)17、如图,将矩形ABCD绕点A旋转至矩形AB'C'D'位置,此时AC'的中点恰好与D点重合,AB'交CD于点E.若DE=1,则AC的长为________.18、如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点灯A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则点C′到BC的距离为________.19、如图,将线段AB绕点O顺时针旋转90°得到线段A'B',那么点A(-2,5)的对应点A'的坐标是________.20、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为________.21、一个角的余角比这个角的补角的一半少,则这个角的度数是________.22、 ________°.23、A、B是半径为2的⊙O上不同两点,则AB的取值范围是________ .24、如图,直线,直线交,于,两点,交直线于点,若,则________.25、如图,要从B点到C点,有三条路线:①从B到A再到C;②从B到D再到C;③线段BC.要使距离最近,你选择路线________(填序号),理由是________三、解答题(共5题,共计25分)26、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?27、△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又∠B比大20°,则△ABC的三个内角的度数分别是多少?28、已知,如图,AE是的平分线,.求证:.29、用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?(π=3.14)30、一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、A5、B6、A8、A9、B10、C11、B12、D13、C14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、。
第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、中午12点15分时,钟表上的时针和分针所成的角是()A.90ºB.75ºC.82.5ºD.60º2、点A (4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90° D.绕原点顺时针旋转90°3、如图,在中,将绕点逆时针旋转得到使点落在边上,连接,则的长度是()A. B. C. D.4、如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BE的长为()A.1B.2C.3D.45、如图,直线 AB 与 CD 相交于点 O , OE 平分∠AOC,且∠AOC=80°,则∠BOE 的度数为()A. B. C. D.6、如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°。
要使OD∥AC,直线OD绕点O按逆时针方向至少旋转( )度。
A.12B.18C.22D.287、能用∠α、∠AOB、∠O三种方式表示同一个角的图形是()A. B. C. D.8、如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A. B. C. D.9、已知:如图,在等边△ABC中取点P,使得PA,PB,PC的长分别为3,4,5,将线段AP 以点A为旋转中心顺时针旋转60°得到线段AD,连接BD,下列结论:①△ABD可以由△APC绕点A顺时针旋转60°得到;②点P与点D的距离为3;③∠APB=150°;④S△APC+S△APB=6+,其中正确的结论有()A.①②④B.①③④C.①②③D.②③④10、如图所示,在正方形ABCD中,AB=4,点O在AB上,且OB=1,点P是BC上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OQ.要使点Q恰好落在AD 上,则BP的长是( )A.3B.2C.1D.无法确定11、有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°12、某校七年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的角等于()A.30°B.60°C.90°D.120°13、如图,将△绕点顺时针旋转到△的位置,且点恰好落在边上,则下列结论不一定成立的是()A. B. C. ∥ D. 平分14、下列说法正确的是()A.两点之间,线段最短B.若∠AOC= ∠AOB,则OC是∠AOB的平分线 C.已知A,B,C三个不同点,过其中每两点画一条直线,可以画出3条直线 D.各边都相等的多边形是正多边形15、经过圆锥顶点的截面的形状可能是()A. B. C. D.二、填空题(共10题,共计30分)16、一个角为53°,则这个角的余角是________17、如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.18、如图,∠ABC=90°,∠CBD=45°,BP平分∠ABD,则∠ABP的度数是________°.19、如图,AD∥BC,AB⊥BC于点B,AD=4,将CD绕点D逆时针旋转90°至DE,连接AE、CE,若△ADE的面积为6,则BC=________.20、如图,Rt△OA1B1是由Rt△OAB绕点O顺时针方向旋转得到的,且A、O、B1三点共线.如果∠OAB=90°,∠AOB=30°,OA= .则图中阴影部分的面积为________.(结果保留π)21、已知在中,,是的高,,则________.22、如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=30°,则∠BOE =________度,∠AOG=________度.23、已知角的余角比它的补角的还少10°,则________.24、如图,在Rt△ABC中,ABC=90°,AB=2,BC=4,点P在边BC上,联结AP,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B',延长AB'交BC于E,则EP的长等于________。
七年级上册几何图形的初步认识单元测试卷7

七年级上册几何图形的初步认识单元测试卷7一、选择题(共10小题;共50分)1. 下列说法中正确的是A. 大于直角的角叫钝角B. 小于平角的角叫钝角C. 不大于直角的角叫锐角D. 大于且小于直角的角叫锐角2. 如图,,,则等于D.3. 如图所示,,,是射线上的一个点,则图中的射线有条.A. B. C. D.4. 如图,下列角中还可以只用顶点的一个大写英文字母表示的是A. B. C. D.5. 的一半是A. B. C. D.6. 如图所示,将绕点顺时针旋转得,若点恰好落在上,且的度数为,则的度数为A. B. C. D.7. 若与互余,且,那么的度数是A. B. C. D.8. 下午点分时(如图),时钟的分针与时针所成角的度数为A. B. C. D.9. 借助一副三角尺,你能画出下面哪个度数的角A. B. C. D.10. 下列说法正确的是A. 若,则是的中点B. 若,则是的中点C. 若,则是的中点D. 若,则是的中点二、填空题(共6小题;共39分)11. 如果点在点的北偏东方向上,那么点在点的方向上.12. 如图,在四边形内找一点,使它到四边形四个顶点的距离之和最小,正确的作法是连接,交于点,则点就是要找的点,请你用所学过的数学知识解释这一道理.13. 观察下列图形,从运动的角度说说点,线,面,体之间存在的联系.从运动的角度去观察,我们发现:点动成,线动成,面动成.14. ()角的静态定义.画一画:你可以画出角的图形吗?想一想:角是怎样组成的?角的静态定义:有的组成的图形叫做.()角的动态定义.角的动态定义:角也可以看作是一条线绕着它的旋转而形成的图形.想一想:如图,射线绕点旋转,当终止位置和起始位置成一条直线时,形成角;继续旋转,和重合时,又形成角.()角的种表示方法.角用符号“”表示,和“”不同①用三个大写字母(顶点字母放到中间)表示:记作:或注意:用三个大写字母表示时,中间字母是顶点字母②用一个大写字母(顶点字母)表示:记作:注意:用一个大写字母表示时,顶点处能有一个角③用一条弧线加数字表示:记作:记作:④用一条弧线加小写希腊字母表示:记作:记作:注意:③④两种方法必须在靠近角的顶点处画上弧线和标上数字或小写希腊字母后才能使用.15. 如图,,是线段上的两点,且是线段的中点,若,,则的长为.16. 线段厘米,是的中点,是的中点,,两点间的距离是厘米.三、解答题(共8小题;共104分)17. 根据下列语句,画出图形.如图,已知平面内有四个点,,,,其中任意三点都不在同一直线上.①画直线;②连接,,相交于点;③画射线,,交于点.18. 如图,平面内有,,,四点.按下列语句画图.()画直线,射线,线段;()连接,交射线于点.19. 分析填空并进行说理.如图,已知平分,,若,,求.解:()又,,平分,()请继续完成本题说理过程.20. 一个角的倍等于它补角的一半,求这个角.21. 判断下列各角是直角、锐角还是钝角.(1周角.(2)周角.(3平角.(4平角.22. 如图所示的棱柱,该棱柱由个平面组成,有两个三角形,三个长方形,请你思考一下,该棱柱可以看做由什么图形怎样变动形成的?23. 十八世纪瑞士数学家欧拉证明了简单多面体中顶点数()、面数()、棱数()之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数()、面数()、棱数()之间存在的关系式是;(2)一个多面体的面数比顶点数大,且有条棱,则这个多面体的面数是;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有个顶点,每个顶点处都有条棱,设该多面体外表面三角形的个数为个,八边形的个数为个,求的值.24. 如图,为直角,为锐角,且平分,平分.(1)如果,求的度数.(2)如果为任意一个锐角,你能求出的度数吗?若能,请求出来,若不能,说明为什么?答案第一部分1. D2. A 【解析】,,,故选:A.3. B 【解析】图中的射线有射线,射线,射线,射线,射线.4. C5. D6. C 【解析】,,.,..,..7. A 【解析】设,的度数分别为,,则,解得..8. B9. B10. D第二部分11. 南偏西12. 两点之间线段最短.13. 线,面,体14. 公共端点,两条射线,角,射,端点,平,周,,,,,,,15.16.第三部分17. 解:如图,18. ()如图所示,直线,射线,线段即为所求.()连接,点即为所求.19. 邻补角互补;;角平分线定义20. .21. (1)钝角.(2)直角.(3)锐角.(4)钝角.22. 可以看做由上底(三角形)向下平移而得到,也可以看做由下底(三角形)向上平移而得到.(合理即可)23. (1);;(2)(3)有个顶点,每个顶点处都有条棱,两点确定一条直线;共有条棱,那么,解得,.24. (1)因为平分,平分,所以,.所以(2)同理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形认识初步习题精选
1. _________________ 右图中有___________________________ 条线段,分另H表示为_____________________
a C d ・■・,・ Y
A CD B
第1题
2. ______________ 60°=________________________ 平角,45° 45'= 度。
3. _____________________________________________________________ 时钟表面5点30分时,时针与分针所夹角的度数是_______________________________ 。
4. _______________________________________ 一个角的补角比它的余角大多少__________________________________________________ 度。
5•将一个正方体截去(至少)一个角,则其面数_________________ 。
6•下图是一个由小立方体搭成的几何体由上而看得到的视图,小正方形中的数字表示该位置小立方块的个数,则从正面看它的视图为()
7•如图,下面三个正方体的六个面按相同规律涂有红、黄、蓝、白、黑、绿六种颜色, 那么涂黄色、白色、红色的对面分别是()
A. 蓝、绿、黑
B. 绿、蓝、黑
C. 绿、黑、蓝
D. 蓝、黑、绿
董 绿 白
红
黄
红
蓝
白
它会变成右边的正方体是右边的
)
O A
C
D,
A 2
cm
B C. D .
4cm B
A
第7题
第8题
小于2cm 不大于2cm
&如图,把左边的图形折叠起来
PA = 4cm, PB= 5cm, PC = 2cm,则
10.如图,把一个立方体以一个顶点着地朝上立放,若此时该立方体正上方有一盏灯 则该立方体的影子是(
)
9.点P 是直线I 外一点,A B 、C 为直线I 上三点 点P 到直线I 的距离是(
)
fl
1
0 1
1
第10题
11. 计算:(1) 48° 39'+ 67° 41'; (2) 90°— 78° 19' 40〃; 12. 一个角的余角与这个角的补角之和为 130°,求这
个角。
13.
若如下平面展开图折叠成正方体后, 相对面上的两个数之和为
5,求x + y + z 的值。
第13题
14. 两根木条,一根长 80厘米,一根长130厘米,让它们的一端重合,连接着放在一 条直线上,求这时候两根木条的中点间的长度。
15. 一个物体从不同方向看的视图如下,画出该物体的立体图形。
第15题
16. 在下图中,(1)分别找出三组互相平行、 互相垂直的线段,并用符号表示出来;(2) 找出一个锐角、一个直角、一个钝角,将它们表示出来。
从正面看
从上面看
第18题
19. 已知线段 AD= 8,平面上有一点 P 。
(1) 若AP = 5
, PB 等于多少时,点 P 在AB 上? (2) PB 满足什么条件时,点 P 不在AB 上?
(3)
当PA = PB 时,确定点 P 的位置;并比较 PA + PB 与AB 的大小。
参考答案:
o — o —-6
o
D
E F
G
第16题
17. 下图中正方形的边长为 4cm,求出图案中所有线的总长。
18. 如下图所示,把一块长方形纸片 BGM 的大小。
ABCD 沿 EF 折叠,若/ EFC = 50°,求/ DEG 和/
1. 6, AD, AC, AB, DC, DB, CB
1
2. , 45.75 °
3
3. 15°
4. 90°
5•可能增加,也可能减小,也可能不变
6. C
7. B
8. B
9. C
10. C
11. (1) 116° 20'
(2) 11° 40' 20"
12. 70°
13. 4
14. 25厘米或105厘米
15. 这个几何体是“圆台”图略
16. 略
17. (16+ 8二)cm
18. / DEG= 100°,/ BG申80°
19. (1) 3;
(2)PA>3;
(3)当PA= PB时,点P的位置有两种情况:① P为AB的中点,此时PA+ PB= AB;②P 不在AB上,此时PA+ PB> AB。