专升本《信息论与编码》_试卷_答案
信息论与编码习题参考答案(全)

信息论与编码习题参考答案第一章 单符号离散信源同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:* (3)信源空间:bit x H 32.436log 3616236log 36215)(=⨯⨯+⨯⨯=∴bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==?如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解: !bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率bitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知 bitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为%.如果你问一位男士:“你是否是红绿色盲”他的回答可能是:“是”,也可能“不是”。
信息论与编码试卷及答案2

篇一:信息论与编码期末题(全套)〔一〕7、某二元信源一、判断题共 10 小题,总分值 20 分.1. 当随机变量X和Y相互独立时,条件熵H(X|Y)等于信源熵H(X). 〔〕2. 由于构成同一空间的基底不是唯一的,所以不同的基1X0P(X)1/21/2,其失真矩阵0a,那么该信源的Dmax= Da0三、此题共 4 小题,总分值 50 分.1、某信源发送端有2种符号xi(i1,2),p(x1)a;接收端底或生成矩阵有可能生成同一码集.符号 y( j 1 ,2) ,转移概率矩阵为有3 种,3〔〕3.一般情况下,用变长编码得到的平均码长比定长编码大得多. 〔〕4. 只要信息传输率大于信道容量,总存在一种信道编译码,可以以所要求的任意小的误差概率实现可靠的通信〔〕 5. 各码字的长度符合克拉夫特不等式,是唯一可译码存在的充分和必要条件. 〔〕 6. 连续信源和离散信源的熵都具有非负性. 〔〕7. 信源的消息通过信道传输后的误差或失真越大,信宿收到消息后对信源存在的不确定性就越小,获得的信息量就越小. 8. 汉明码是一种线性分组码. 〔〕 9. 率失真函数的最小值是0. 〔〕10.必然事件和不可能事件的自信息量都是0. 〔〕二、填空题共 6 小题,总分值 20 分.1、码的检、纠错能力取决于 .2、信源编码的目的是的目的是 .3、把信息组原封不动地搬到码字前k位的(n,k)码就叫做 .4、香农信息论中的三大极限定理是、、. 5、设信道的输入与输出随机序列分别为X和Y,那么I(XN,YN)NI(X,Y)成立的条件6、对于香农-费诺编码、原始香农-费诺编码和哈夫曼编码,编码方法惟一的是 . iP1/21/201/21/41/4.〔1〕计算接收端的平均不确定度H(Y);〔2〕计算由于噪声产生的不确定度H(Y|X);〔3〕计算信道容量以及最正确入口分布. 2、一阶马尔可夫信源的状态转移图2-13图如右图所示,信源X的符号集为{0,1,2}. 〔1〕求信源平稳后的概率分布;〔2〕求此信源的熵;〔 3 〕近似地认为此信源为无记忆时,符号的概率分布为平 X )稳分布.求近似信源的熵H(并与H进行比拟.4 、设二元( 7 , 4 ) 线〔1〕给出该码的一致校验矩阵,写出所有的陪集首和与之相对应的伴随式;),试计算出其对应的伴随式S并按照最小距离译码准那么试着对其译码. 〔二〕一、填空题〔共15分,每空1分〕1、信源编码的主要目的是,信道编码的主要目的是。
信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论与编码试题集与答案

一填空题(本题20分,每小题2分)1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成 客观信息和主观信息 。
人们研究信息论的目的是为了 高效、可靠、安全 地交换和利用各种各样的信息。
信息的 可度量性 是建立信息论的基础。
统计度量 是信息度量最常用的方法。
熵 是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生 概率的对数 来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用 随机矢量 描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。
12、自信息量的单位一般有 比特、奈特和哈特 。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是 ∞ 。
15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。
17、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。
信息论与编码考试题(附答案版)

1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln(2 ⅇ 2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信息论与编码考试题(附答案版)

1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln (2πⅇσ2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专升本《信息论与编码》一、(共48题,共150分)1. H(X)____________0,小概率事件对熵的贡献____________,确定事件的信息量____________0。
(6分).标准答案:1. >= ;2. 小;3. =;2. 确定信道的H(Y/X) ____0,H(X/Y) ____0。
(4分).标准答案:1. =;2. ;3. 霍夫曼编码可以编出不同的码,这些码的平均码长________,.编码效率________,码长方差________。
(6分).标准答案:1. 一样;2. 一样;3. 不一定一样;4. N个独立并联的信道,每个信道的信道容量为C,为了达到总的信道容量NC,所有信道的输入要________________,.所有信道的输入概率分布是各自信道的________________。
(4分).标准答案:1. 相互独立;2. 最佳分布;5. 通信系统中的编码器包括____________________,____________________,____________________。
(6分).标准答案:1. 信源编码器;2. 纠错编码器;3. 调制器;6. 率失真函数R(D)的最大值为________________,最小值为________________。
(4分).标准答案:1. H(X);2. 0;7. 某事件的概率为p(x),则自信息量为()。
(2分)A.-p(x)B.1/ p(x)C.-log p(x)D.log p(x).标准答案:C8. 有事件x,y,I(x)=2 bit,I(x/y)=1 bit,则互信息量I(x;y)的值为()。
(2分)A.1 bitB.2 bitC.3 bitD.4 bit.标准答案:A9. 下列关于条件熵的结论,不成立的是()(2分)A.H(X/Y)C.H(X/Y).标准答案:B10. 使I(X;Y)=0成立的条件是(): (2分)A.X和Y相互独立B.H (X) =H(Y)C.X和Y的概率分布相同.标准答案:A 11. 以下关于离散无记忆信源(熵为H(X))的结论,不正确的是(): (2分)A.是平稳信源B.其N次无记忆扩展信源的熵是NH(X)C.其极限熵大于H(X).标准答案:C12. 以下关于信道容量C和信息传输率R间的关系,正确的是(): (2分)A.C RB.C=RC.C R.标准答案:A13. 某信源有8个符号,其信源熵为2.4 bit,进行二元定长编码(不扩展),则其编码效率至少可达()(2分)A.80%B.85%C.90%D.95%.标准答案:A14. 在准对称信道中,要达到信道容量,要求(): (2分)A.信源和信宿的概率分布一致B.信源为等概分布C.信宿为等概分布.标准答案:B15. 在信道编码中,简单重复编码可以(): (2分)A.减小但降低了信息传输率B.提高了信息传输率,但增大了PEC.减小并提高了信息传输率.标准答案:A16. 二元码C={(000),(011),(101),(110),该码的最小码距是():。
(2分)A.1B.2C.3D.4.标准答案:B17. 率失真函数R(D)的取值与()无关(2分)A.信源的概率分布B.保真度DC.失真函数D.信道转移矩阵.标准答案:D18. 熵函数是信源概率分布的________函数,函数值________0。
(4分).标准答案:1. 上凸;2. ;19. I(x i,y j) ____ I(y j,x i),I(x i,y j) ____ I(x i),I(x i,y j) ____ I(y j)。
(6分).标准答案:1. =;2. ;3. ;20. 信源编码的目的是提高系统的____________,纠错编码的目的是提高系统的____________。
(4分).标准答案:1. 有效性;2. 可靠性;21. 无噪信道的H(X/Y)____0,收到Y可完全确定____,其最佳输入分布为____。
(6分).标准答案:1. =;2. X;3. 等概分布;22. 有m个输入符号的离散无损信道的信道容量为________________bit,其最佳输入分布为________________。
(4分).标准答案:1. logm;2. 等概分布;23. 一个(n,k)线性分组码的最小汉明距离为5,则其校验矩阵中任意____个列向量线性无关,可检测____个错误,可纠正____个错误。
(6分).标准答案:1. 4;2. 4;3. 2;24. 两个事件A和B,P(A)>P(B),则两者包含的自信息量I(A)和I(B)的关系是()。
(2分)A.I(A)>I(B)B.I(A)=I(B)C.I(A).标准答案:C25. 信源X包含n个不同的离散消息,其信源熵的最大值为()。
(2分)A.nB.1C.log nD.n+1.标准答案:C26. 离散无记忆信源X的熵为2,则其三次扩展信源的熵为(): (2分)A.2B.4C.6D.8.标准答案:C27. 对马尔科夫信源来说,下列结论不正确的是(): (2分)A.是有记忆信源B.其记忆长度是无限的C.是平稳信源.标准答案:B28. 对有n个输入符号、m个输出符号的确定信道来说,其信道容量为(): (2分)A.log nB.log mC.H(X)D.H(Y).标准答案:B29. 对一个两级串联信道,要使串联传输不增加信息损失,信道需满足(): (2分)A.两个信道都是对称信道B.两个信道的信道矩阵相同C.两个信道的信道容量相等D.总的信道矩阵等于第一级信道矩阵.标准答案:D30. 为了正确译码,信源编码必须是(): (2分)A.奇异码B.非奇异码C.唯一可译码.标准答案:C31. 信源X的熵为2,信源Y的熵为3,X、Y相互独立,则其联合熵H(XY)=()(2分)A.2B.3C.6D.5.标准答案:D32. 费诺编码在()的情况下,编码效率最高(2分)A.信源为等概分布B.概率分布极不平均C.编码时每次分组的概率相等.标准答案:C33. 香农信息论中,概率小的事件,信息量____,确定事件____信息量。
(4分).标准答案:1. 大;2. 不含;34. H(X/Y) ________H(X) 0;H(XY) ________H(X);H(XY) ________H(X/Y)。
(6分).标准答案:1.35. 对串联信道,如果串联信道的总的信道矩阵等于第一级信道矩阵,则________增加信息的损失;信息在传输中损失后,后续系统________恢复。
(4分).标准答案:1. 不会;2. 不能;36. 率失真函数R(D)是D的________、________下凸函数,当D>=Dmax时,R(D)= ________。
(6分).标准答案:1. 递减;2. 下凸;3. 0;37. 无记忆信源____平稳信源,马尔科夫信源____平稳信源,.平稳信源的极限熵____H(X)。
(6分).标准答案:1. 是;2. 是;3.38. 香农编码、费诺编码和霍夫曼编码的共同点是编出的码都是____________,大概率符号对应的码字码长____________。
(4分).标准答案:1. 即时码;2. 短;39. 一下关于条件自信息量的结论,不正确的是()。
(2分)A.条件自信息量不大于联合自信息量B.条件自信息量不能为负数C.条件自信息量不大于自信息量.标准答案:C40. 互信息量为负值的条件是():(2分)A.见图B.见图C.见图D.见图.标准答案:D41. 信源X有三个消息符号,当概率分布为(),H(X)的值最大: (2分)A.{1,0,0B.{1/3,1/3,/1/3C.{0,1/2,1/2.标准答案:B42. 对信源X和Y来说,下列值中最小的是(): (2分)A.I(X;Y)B.H(X)C.H(Y)D.H(X,Y).标准答案:A43. 信道容量C是()对信源分布的最大值: (2分)A.I(X;Y)B.H(X)C.H(Y)D.H(X,Y).标准答案:A44. 实现离散准对称无记忆信道信道容量的信源应满足(): (2分)A.信源为等概分布B.信源符号和信宿符号个数相等C.信源和信宿概率分布相同D.信宿为等概分布.标准答案:A45. 一个小型字库有220个汉字,要进行二元定长编码,为了保证唯一可译性,则码长至少是()。
(2分)A.5B.6C.7D.8.标准答案:D46. 选择译码规则总的原则是(): (2分)A.使平均错误概率PE最小B.使噪声熵最小C.使信道损失最小.标准答案:A47. 对连续信源和连续信道来说,下列结论不正确的是()(2分)A.条件熵可正可负B.无条件熵可正可负C.联合熵可正可负D.平均互信息可正可负.标准答案:D 48. 在线性分组码中,生成矩阵G和校验矩阵H的关系是:(2分)A.见图B.见图C.见图D.见图.标准答案:A。