2016年专升本试卷真题及答案(数学)
2016年河南专升本高数真题+答案解析

2016年河南省普通高等学校选拔专科优秀毕业生进入本科学校学习考试高等数学试卷一、单项选择题(每小题2分,共60分)1.函数()f x 的定义域是( )A .(,1]-∞-B .(,1)-∞-C .(,1]-∞D .(,1)-∞【答案】D【解析】要使函数有意义,则需10x ->,即1x <2.函数3()2f x x x =-是( )A .奇函数B .偶函数C .非奇非偶函数D .无法判断【答案】A【解析】33()2()2()f x x x x x f x -=---=-+=-,所以是奇函数.3.已知1()1f x x=-,则[]()f f x =( ) A .1x - B .11x - C .1x - D .11x- 【答案】D【解析】[]111()11111f f x f x x x ⎛⎫=-=-=⎪-⎝⎭-.4.下列极限不存在的是( )A .20lim1x xx →+ B .2lim1x xx →∞+C .lim 2x x →-∞D .lim 2x x →+∞【答案】D 【解析】20lim 01x x x →=+,2lim 01x x x →∞=+,lim 20x x →-∞=,lim 2xx →+∞=+∞.5.极限2212lim x x x x →∞--的值是( )A .0B .1C .1-D .2-【答案】C【解析】2212lim1x x x x →∞--=-,故选C .6.已知极限0lim 2sin x xax→=,则a 的值是( )A .1B .1-C .2D .12【答案】D 【解析】0001lim lim lim 2sin x x x x x ax ax a →→→===,故12a =.7.已知当0x →时,222cos ~x ax -,则a 的值是( )A .1B .2C .12D .1-【答案】A【解析】()222200001221cos 22cos 12lim lim lim lim 1x x x x xx x ax ax ax a →→→→⋅--====,故1a =.8.已知函数21,1()12,1x ax x f x x x ⎧-+≠⎪=-⎨⎪=⎩则在点1x =处,下列结论正确的是( )A .2a =时,()f x 必连续B .2a =时,()f x 不连续C .1a =-时,()f x 连续D .1a =时,()f x 必连续【答案】B【解析】要使函数()f x 在1x =处连续,则有1lim ()(1)x f x f →=,即211lim21x x ax x →-+=-,而当2a =时,2211121(1)limlim lim(1)0211x x x x x x x x x →→→-+-==-=≠--,故当2a =时,()f x 不连续.9.已知函数()x ϕ在点0x =处可导,函数()(1)(1)f x x x ϕ=--,则(1)f '=( )A .(0)ϕ'B .(1)ϕ'C .(0)ϕD .(1)ϕ【答案】C【解析】由()x ϕ在点0x =处可导,可知()x ϕ在点0x =处连续,111()(1)(1)(1)0(1)limlim lim (1)(0)11x x x f x f x x f x x x ϕϕϕ→→→----'===-=--.10.函数()11f x x =--在点1x =处( )A .不连续B .连续且可导C .既不连续也不可导D .连续但不可导【答案】D【解析】2,1()11,1x x f x x x x ->⎧=--=⎨≤⎩,显然()f x 在1x =处连续,而11()(1)21(1)lim lim 111x x f x f x f x x +++→→---'===---,11()(1)1(1)lim lim 111x x f x f x f x x -+-→→--'===--,由于(1)(1)f f -+''≠,故在1x =处不可导.11.若曲线3()1f x x =-与曲线()ln g x x =在自变量0x x =时的切线相互垂直,则0x 应为( )AB.C .13D .13-【答案】C【解析】200()3f x x '=-,001()g x x '=,由于切线相互垂直,则2003x x -=-,即013x =.12.已知4()1f x x =-在闭区间[]1,1-上满足罗尔中值定理,则在开区间(1,1)-内使()0f ξ'=成立的ξ=( )A .0B .1C .1-D .2【答案】A【解析】3()4f x x '=-,3()40f ξξ'=-=,则0ξ=.13.设函数()f x 在区间(1,1)-内连续,若(1,0)x ∈-时,()0f x '<,(0,1)x ∈时,()0f x '>,则在区间(1,1)-内( ) A .(0)f 是函数()f x 的极小值 B .(0)f 是函数()f x 的极大值C .(0)f 不是函数()f x 的极值D .(0)f 不一定是函数()f x 的极值【答案】A【解析】由极值第一判定定理,可知(0)f 应为函数()f x 的极小值.14.设函数()y f x =在区间(0,2)内具有二阶导数,若(0,1)x ∈时,()0f x ''<,(1,2)x ∈时,()0f x ''>,则( )A .(1)f 是函数()f x 的极大值B .点()1,(1)f 是曲线()y f x =的拐点C .(1)f 是函数()f x 的极小值D .点()1,(1)f 不是曲线()y f x =的拐点【答案】B【解析】函数()f x 在(0,1)上为凸,在(1,2)上为凹,故()1,(1)f 是曲线()y f x =的拐点.15.已知曲线4()f x x =,则( ) A .在(,0)-∞内4y x =单调递减且形状为凸 B .在(,0)-∞内4y x =单调递增且形状为凹 C .在(0,)+∞内4y x =单调递减且形状为凸D .在(0,)+∞内4y x =单调递增且形状为凹【答案】D【解析】34y x '=,当0x >时,0y '>;当0x <时,0y '<;212y x ''=,在(,)-∞+∞上有0y ''≥.16.已知()F x 是()f x 的一个原函数,则不定积分(1)f x dx -=⎰( )A .(1)F x C -+B .()F xC +C .(1)F x C --+D .()F x C -+【答案】A【解析】由题可知()()f x dx F x C =+⎰,(1)(1)(1)(1)f x dx f x d x F x C -=--=-+⎰⎰.17.设函数20()()xt f x e t dt -=+⎰,则()f x '=( )A .313x e x --+B .2x e x --+C .2x e x -+D .2x e x -+【答案】C【解析】()()220()x tx f x et dt e x --''=+=+⎰.18.定积分2ax axe dx --=⎰( )A .22a ae -B .2a ae -C .0D .2a【答案】C【解析】令2()x f x xe -=,2()()x f x xe f x --=-=-,可知()f x 为奇函数,故20ax axe dx --=⎰.19.由曲线x y e -=与直线0x =,1x =,0y =所围成的平面图形的面积是( )A .1e -B .1C .11e --D .11e -+【答案】C【解析】由题可知所求面积1101x A e dx e --==-⎰.20.设定积分2211I x dx =⎰,221I xdx =⎰,则( )A .12I I =B .12I I >C .12I I <D .不能确定【答案】B【解析】当(1,2)x ∈时,2x x >,由定积分保序性可知22211x dx xdx >⎰⎰,即12I I >.21.向量=+a j k 的方向角是( )A .4π,4π,2π B .4π,2π,2πC .4π,2π,4πD .2π,4π,4π 【答案】D【解析】向量a 的坐标表示应为(0,1,1),故方向余弦为cos 0α=,cosβ=,cos γ则应为α,β,γ应为2π,4π,4π.22.已知x e -是微分方程320y ay y '''++=的一个解,则常数a =( )A .1B .1-C .3D .13-【答案】A【解析】令x y e -=,x y e -'=-,x y e -''=,代入有320x x x e ae e ----+=,由0x e -≠,则有1320a -+=,1a =.23.下列微分方程中可进行分离变量的是( )A .()x y y x y e +'=+B .x y y xye +'=C .xy y xye '=D .()xy y x y e '=+【答案】B【解析】对于B 项,x y y xye e '=⋅,分离变量得x y dyxe dx ye=.24.设二元函数323z x xy y =++,则2zx y∂=∂∂( ) A .23y B .23x C .2y D .2x【答案】C【解析】223z x y x∂=+∂,22z y x y ∂=∂∂.25.用钢板做成一个表面积为254m 的有盖长方体水箱,欲使水箱的容积最大,则水箱的最大容积为( )A .318mB .327mC .36mD .39m【答案】B【解析】设水箱的长、宽、高分别为x ,y ,z ,则有22254xy yz xz ++=,即27xy yz xz ++=,体积V xyz =,令()(,,)27F x y z xyz xy yz xz λ=+++-,令()()()000270xyz F yz y z F xz x z F xy x y F xy yz xz λλλλ⎧=++=⎪=++=⎪⎨=++=⎪⎪=++-=⎩,解得333x y z =⎧⎪=⎨⎪=⎩,由于驻点(3,3,3)唯一,实际中确有最大值,故当3x =,3y =,3z =时长方体体积最大,最大值27V =.26.设{}22(,)14,0,0D x y x y x y =≤+≤≥≥,则二重积分4Ddxdy =⎰⎰( )A .16πB .8πC .4πD .3π【答案】D【解析】由二重积分的性质可知444D DDdxdy dxdy S ==⎰⎰⎰⎰,D S 为D 的面积,()2132144D S πππ=⋅-⋅=,故34434Ddxdy ππ=⋅=⎰⎰.27.已知100(,)(,)xD f x y d dx f x y dy σ=⎰⎰⎰⎰,则变换积分次序后(,)Df x y d σ=⎰⎰( )A .110(,)y dy f x y dx ⎰⎰ B .10(,)ydy f x y dx ⎰⎰C .1(,)xdy f x y dx ⎰⎰D .10(,)xdy f x y dx ⎰⎰【答案】A【解析】积分区域为D :01x ≤≤,0y x ≤≤,也可表示为:01y ≤≤,1y x ≤≤,故交换积分次序后11(,)(,)yDf x y d dy f x y dx σ=⎰⎰⎰⎰.28.设L 为连接点(0,0)与点的直线段,则曲线积分2L y ds =⎰( )A .1B .2C .3 D【答案】B【解析】L可表示为y =,01x ≤≤,则)21122322Ly ds xdx ==⋅=⎰⎰⎰.29.下列级数发散的是( )A .11n n∞=∑B .21(1)n n ∞=-∑C .211n n∞=∑D .221(1)n n∞=-∑【答案】A【解析】选项A 为调和级数,可知其发散.30.已知级数1n n u ∞=∑,则下列结论正确的是( )A .若lim 0n n u →∞=,则1n n u ∞=∑收敛 B .若部分和数列{}n S 有界,则1n n u ∞=∑收敛C .若1n n u ∞=∑收敛,则lim 0n n u →∞= D .若1n n u ∞=∑收敛,则1n n u ∞=∑收敛【答案】C【解析】lim 0n n u →∞=是1n n u ∞=∑收敛的必要条件,故应选C ,选项B 中,需要求1n n u ∞=∑为正项级数;选项D 应改为若1n n u ∞=∑收敛,则1n n u ∞=∑收敛.二、填空题(每小题2分,共20分)31.函数3()f x x =的反函数是y =________.【解析】令3()y f x x ==,x =,故()f x 的反函数y .32.极限1lim 21n n n →∞-=+________.【答案】12【解析】11lim 212n n n →∞-=+.33.已知函数2,0()1,0x x f x x -≠⎧=⎨=⎩,则点0x =是()f x 的________的间断点.【答案】可去【解析】00lim ()lim(2)2x x f x x →→=-=,(0)1f =,故0x =是()f x 的可去间断点.34.函数1()x f x e -=在点0.99x =处的近似值为________.【答案】1.01【解析】取01x =,0.01x ∆=-,有000()(0.99)()()11(0.01) 1.01f x x f f x f x x '+∆=≈+∆=-⋅-=.35.不定积分sin(1)x dx +=⎰________. 【答案】cos(1)x C -++【解析】sin(1)sin(1)(1)cos(1)x dx x d x x C +==++=-++⎰⎰.36.定积分1011dx x =+⎰________. 【答案】ln2 【解析】原式1110011(1)ln 1ln 211dx d x x x x =+=+=++⎰⎰.37.函数23z xy x y =--在点(0,1)处的全微分(0,1)dz =________.【答案】2dx dy - 【解析】2zy x x∂=-∂,2z x y y ∂=-∂,故(0,1)(0,1)(0,1)2zz dz dx dy dx dy xy∂∂=+=-∂∂.38.与向量(2,1,2)同向平行的单位向量是________. 【答案】212,,333⎛⎫⎪⎝⎭3,故与(2,1,2)同向平行的单位向量为212,,333⎛⎫⎪⎝⎭.39.微分方程20y xy '+=的通解是________. 【答案】22y x C=+或0y = 【解析】方程分离变量的2dy xdx y =-,两边积分得2112x C y =+,整理得22y x C=+,其中C 为任意常数,当0y =时,可知也为方程的解.40.幂级数13nn n x ∞=∑的收敛半径为________.【答案】3【解析】11131lim lim 313n n n n n na a ρ++→∞→∞==⋅=,故13R ρ==.三、计算题(每小题5分,共50分) 41.计算极限20lim(1)xx x →-.【答案】2e -【解析】21(2)200lim(1)lim(1)xxx x x x e ⋅---→→-=-=.42.求函数y =的导数.【解析】令2cos u x =-,y ''=.43.计算不定积分2ln 1x dx x -⎰. 【答案】()22ln 14x C -+【解析】()()()()22ln 12ln 112ln 1ln 2ln 12ln 124x x dx x d x x d x C x --=-=--=+⎰⎰⎰.44.计算定积分2sin x xdx π⎰.【答案】1【解析】22220sin cos cos cos 1x xdx xd x x x xdx ππππ=-=-+=⎰⎰⎰.45.设直线230:3571x y z l x y z ++=⎧⎨++=⎩,求过点(0,1,2)A 且平行于直线l 的直线方程. 【答案】12121x y z --==- 【解析】设已知直线l 的方向向量为s ,则123(1,2,1)357==--i j ks .由于所求直线与l 平行,故其方向向量可取(1,2,1)-,又直线过点(0,1,2)A ,故所求直线方程为12121x y z --==-.46.已知函数(,)z f x y =由方程0xz yz x y --+=所确定,求全微分dz . 【答案】11z z dx dy x y x y--+-- 【解析】令(,,)F x y z xz yz x y =--+,则1x F z =-,1y F z =-+,z F x y =-,故1x z F z zx F x y∂-=-=∂-,1y z F z z y F x y∂-=-=∂-,因此11z z dz dx dy x y x y --=+--.47.已知{}22(,)04D x y x y =≤+≤,计算二重积分D.【答案】163π【解析】20163Dd rdr ππθ==⎰⎰.48.求全微分方程0xy y x '+-=的通解. 【答案】2x C y x=+ 【解析】方程化简为11y y x'+=,为一阶线性微分方程,由通解公式得 ()11112dx dxx x x C y e e dx C xdx C xx-⎛⎫⎰⎰=⋅+=+=+ ⎪⎝⎭⎰⎰.49.求幂级数1(1)(1)1nnn x n ∞=--+∑的收敛区间.【答案】(0,2)【解析】令1t x =-,则级数1(1)1n nn t n ∞=-+∑为不缺项的幂级数,11lim lim 12n n n na n a n ρ+→∞→∞+===+,故收敛半径1R =,则11t -<<,即111x -<-<,02x <<,故收敛区间为(0,2).50.求级数11n n x n+∞=∑的和函数.【答案】()ln(1)S x x x =--【解析】1lim 11n n n ρ→∞=⋅=+,收敛半径1R =,令1111()()n nn n x x S x x xS x n n+∞∞=====∑∑,111101()1n n n n n n x S x x x n x ∞∞∞-==='⎛⎫'====⎪-⎝⎭∑∑∑,(1,1)x ∈-,所以()11()()()x S x xS x x S t dt '==⎰01ln(1)1x x dt x x t ⎛⎫==-- ⎪-⎝⎭⎰.四、应用题(每小题7分,共14分)51.求由直线1x =,x e =,0y =及曲线1y x=所围成平面图形的面积. 【答案】1 【解析】111e S dx x==⎰.52.某工厂生产计算器,若日产量为x 台的成本函数为2()7500500.02C x x x =+-,收入函数为2()800.03R x x x =-,且产销平衡,试确定日生产多少台计算器时,工厂的利润最大? 【答案】1500【解析】利润=收入-成本,故利润2()()()300.017500L x R x C x x x =-=--,令()0L x '=,1500x =,且(1500)0.020L ''=-<,故1500x =为()L x 的极大值,又由实际问题知,极值唯一,故1500x =为()L x 的最大值,即日生产1500台计算器时,工厂的利润最大.五、证明题(6分)53.已知方程35430x x x +-=有一负根2x =-,证明方程244950x x +-=必有一个大于2-的负根.【证明】令35()43f x x x x =+-,由题可知(2)0f -=,又有(0)0f =,()f x 在[]2,0-上连续,在()2,0-上可导,故由罗尔定理可知至少存在一点()2,0ξ∈-,使得24()4950f ξξξ'=+-=, 即方程244950x x +-=必有一个大于2-的负根.。
2016年浙江成人高考专升本高等数学一真题及答案

2016年浙江成人高考专升本高等数学一真题及答案一、选择题:1~10小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.1.A.2/3B.1C.3/2D.3答案:C2.设函数y=2x+sinx,则y/=A.1-cosxB.1+cosxC.2-cosxD.2+cosx答案:D3.设函数y=e x-2,则dy=A.e x-3dxB.e x-2dxC.e x-1dxD.e x dx答案:B4.设函数y=(2+x)3,则y/=A.(2+x)2B.3(2+x)2C.(2+x)4D.3(2+x)4答案:B5.设函数y=3x+1,则y/=A.0B.1C.2D.3答案:A6.A.e xB.e x-1C.e x-1D.e x+1答案:A7.A.2x2+CB.x2+CC.1/2x2+CD.x+C答案:C8.A.1/2B.1C.2D.3答案:C9.设函数z=3x2y,则αz/αy=A.6yB.6xyC.3xD.3X2答案:D10.A.0B.1C.2D.+∞答案:B二、填空题:11~20小题,每小题4分,共40分.把答案填在题中横线上.11.答案:e212.设函数y=x3,则y/=答案:3x213.设函数y=(x-3)4,则dy=答案:4(x-3)3dx14.设函数y=sin(x-2),则y"=答案:-sin(x-2)15.答案:1/2ln|x|+C16.答案:017.过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为答案:3x+2y-2z=018.设函数x=3x+y2,则dz=答案:3dx+2ydy19.微分方程y/=3x2的通解为y=答案:x3+C20.答案:2三、解答题:21-28题,共70分。
解答应写出推理、演算步骤。
21.(本题满分8分)22.(本题满分8分)23.(本题满分8分)求曲线y=x3-3x+5的拐点。
2016年河北省专接本高等数学(二)真题试卷(题后含答案及解析)

2016年河北省专接本高等数学(二)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.函数的定义域为( )A.(一2,+∞)B.(4,+∞)C.(-2,4)D.(-4,4)正确答案:B解析:考查函数的定义域.解方程组即得.2.设函数可导,且,则= ( )A.1B.2C.3D.5正确答案:D解析:考查导数的定义式.3.己知,则( )A.16B.8C.4D.2正确答案:A解析:考查方阵行列式的性质.4.已知函数,则=( )A.27B.28C.D.正确答案:D解析:考查函数的高阶导数.5.一阶微分方程2xydx+x2dy=0的通解为( )A.B.C.x2y=CD.xy2=C正确答案:C解析:考查一阶线性微分方程的通解.6.曲线y=x4?5x3+18x2+2x+1的凸区间是( )A.(2,3)B.(一3,一2)C.(一∞,一2)D.(3,+∞)正确答案:A解析:考查函数曲线的凹凸性.令yn=6x2—30x+36=( )A.B.C.D.正确答案:A解析:考查无穷区间上的广义积分.8.已知的一个原函数为sinx,则=( )A.xsinx+cosx+CB.xcosx+sinx+CC.xcosx?sinx+CD.xsinx?cosx+C正确答案:C解析:考查不定积分的分部积分法.9.定积分=( )A.2e2+2B.2e2—2C.6e2+2D.6e2—2正确答案:A解析:考查定积分的还原积分法及分部积分法.10.下列无穷级数中,条件收敛的是( )A.B.C.D.正确答案:D解析:考查常数项级数的敛散性.填空题11.己知函数z=x2ey,则dz=________.正确答案:dz=2xeydx+x2eydy.解析:考查多元函数的全微分.12.极限= ________.正确答案:解析:考查洛必达法则.13.向量组α1=(1,2,0,1),α2=(1,3,0,一1),α3=(一1,一1,1,0)的秩为________.正确答案:3解析:考查向量组的秩.14.已知函数在定义域内连续,则a=________,b= ________.正确答案:a=3,解析:考查函数的连续性.令即得.15.级数的收敛域为________.正确答案:[—3,7)解析:考查幂级数的收敛域.解答题解答时应写出推理、演算步骤。
江苏省2016年专转本高等数学真题

江苏省2015年普通高校“专转本”选拔考试一、 选择题(本大题共6小题,每小题4分,满分24分) 1、当0x→时,函数sin ()1x f x e =-是函数 ()g x x =的 ( )A. 高阶无穷小B. 低阶无穷小C. 同阶无穷小D. 等价无穷小 2、函数(1) (1)x y x x =-<的微分dy 为 ( )A. (1) [ln(1)]1x x x x dx x --+- B. (1) [ln(1)]1x x x x dx x---- C.1(1)x x x dx -- D. 1(1)x x x dx ---3、0x =是函数111, 0()11, 0x xe xf x e x ⎧+⎪≠⎪=⎨-⎪⎪=⎩的 ( ) A. 无穷间断点 B. 跳跃间断点 C.可去间断点 D. 连续点 4、设()F x 是函数()f x 的一个原函数,则(32)f x dx -=⎰ ( )A. 1(32)2F x C --+B. 1(32)2F x C -+ C.2(32)F x C --+ D. 2(32)F x C -+5、下列级数条件收敛的是 ( )A.21(1)n n nn ∞=--∑ B.11(1)21nn n n ∞=+--∑C.1!(1)nn n n n ∞=-∑ D.211(1)nn n n∞=+-∑ 6、二次积分11ln (,)eydy f x y dx =⎰⎰ ( )A.11ln (,)exdx f x y dy ⎰⎰ B.1(,)x edx f x y dy ⎰⎰ 1 0C. 0(,)xe dxf x y dy ⎰⎰ 1 0D.1(,)xe dxf x y dy ⎰⎰ 1 0二、填空题(本大题共6小题,每小题4分,共24分) 7设()lim(1)n n xf x n→∞=-,则(ln 2)f =_________.8、曲线33211x t t y t ⎧=-+⎪⎨=+⎪⎩在点(0,2)处的切线方程为____________.9、设向量b 与向量(1,2,1)a =--平行,且12a b ⋅=,则b =________.10、设1()21f x x =+,则()()n f x =_________.11、微分方程2xy y x '-=满足初始条件12x y==的特解为___ __.12、幂级数11)nn n x ∞=-的收敛域为____________. 三、计算题(本大题共8小题,每小题8分,共64分)13、求极限020arcsin lim222xxx t tdte x x →---⎰.14、设2sin , 0()0, 0x xx f x x x -⎧≠⎪=⎨⎪=⎩,求()f x '. 15、求通过直线112215x y z +-+==与平面32100x y z ++-=的交点,且与直线230240x y z x y z -++=⎧⎨+--=⎩平行的直线方程. 16、求不定积分3⎰.17、计算定积分222()sin xx xdx ππ-+⎰ .18、设(,()),xz f x yϕ=,其中函数f具有二阶连续偏导数,函数ϕ具有连续导数,求yx z∂∂∂2.19、计算二重积分Dxydxdy ⎰⎰,其中D为由曲线y =与直线y x =及直线2y =所围成的平面闭区域. 20、已知2312x x x y C e C e xe =++是二阶常系数非齐次线性微分方程()y py qy f x '''++=的通解,试求该微分方程.四、综合题(本大题共2小题,每小题10分,共20分) 21、设D 是由曲线2y x =与直线(0)y ax a =>所围成的平面图形,已知D 分别绕两坐标轴旋转一周所形成的旋转体的体积相等,试求: (1)常数a 的值; (2)平面图形D 的面积.22、设函数2()(1)ax b f x x +=+在点1x =处取得极值14-,试求: (1)常数,a b 的值;(2)曲线()y f x =的凹凸区间与拐点;(3)曲线)(x f y =的渐近线.五、证明题(本大题共2小题,每小题9分,共18分) 23、证明:当10<<x 时,(2)ln(1)2x x x -->.24、设(,)zz x y =是由方程22()y z xf y z +=-所确定的函数,其中f为可导函数,证明:z zxz y x y∂∂+=∂∂. 2016年试卷一、 选择题(本大题共6小题,每小题4分,满分24分) 1、函数()f x 在0x x =处有意义是极限0lim ()x x f x →存在的( D )A. 充分条件B. 必要条件C. 充分必要条件D. 无关条件 2、函数()sin f x x =,当0x +→时,下列函数中是()f x 的高阶无穷小的是 ( C )A.tan x B.1 C. 21sinx xD. 1-3、设函数()f x 的导函数为sin x ,则()f x 的一个原函数是( B )A.sin x B. sin x - C. cos x D. cos x -4、二阶常系数非齐次线性微分方程22x y y y xe -'''--= 的特解的正确形式为( D )A.x Axe - B. 2x Ax e - C. ()x Ax B e -+ D. ()x x Ax B e -+5、函数2()z x y =-,则1,0d x y z=== ( B )A.22dx dy + B. 22dx dy - C. 22dx dy -+ D. 22dx dy --6、幂级数212n nn x n∞=∑的收敛域为 ( A )A.11[,]22- B. 11[,)22- C. 11(,]22- D. 11(,)22- 二、填空题(本大题共6小题,每小题4分,共24分) 7.极限1lim(12)xx x →-=____2e -_____.8、已知向量(1,0,2)a =,(4,3,2)b =--,则(2)(2)a b a b -⋅+=___-48_________. 9、函数()x f x xe =的n 阶导数()()n f x =____()x n x e +_____.10、函数211()sin 2x f x x x+=的水平渐近线方程为___ 12y =___.11、函数2()ln ,xxF x tdt =⎰则()F x '=___ ln 4x __.12、无穷级数_____发散_______(填写收敛或发散). 三、计算题(本大题共8小题,每小题8分,共64分) 13、求极限201cos lim().sin x xx x x→-.14、设函数()y y x =由方程xy e x y =+确定,求dydx. 15、计算定积分51⎰.16、求不定积分2ln (1)xdx x +⎰ .17、求微分方程22sin xy xy x '+=满足条件()0y π=的解.18、求由直线L1:111131x y z ---==和直线L2:11213x ty t z t=+⎧⎪=+⎨⎪=+⎩所确定的平面方程. 19、设22(,)zf x y y x =--,其中函数f 具有二阶连续偏导数,求yx z∂∂∂2.20、计算二重积分Dxdxdy ⎰⎰,其中D 为由直线2y x =+,x轴及曲线y =所围成的平面区域.四、证明题(本大题共2小题,每小题9分,共18分) 21、证明函数||y x =在0x =处连续但不可导.22、证明12x ≥-时,不等式32213x x +≥成立. 五、综合题(本大题共2小题,每小题10分,共20分) 23、平面区域D 由曲线222xy y +=,y y 轴所围成(1)求平面区域D 的面积;(2)求平面图形D 绕x 轴旋转一周所得的旋转体体积. 24、设函数()f x 满足2211()2()f x f x dx x =+⎰, (1)求()f x 的表达式;(2)确定反常积分1()f x dx +∞⎰的敛散性.。
2016年成人高考高数一真题及答案

2016年成人高等学校专升本招生全国统一考试真题高等数学(一)第Ⅰ卷(选择题,共40分)一、选择题(1-10小题,每小题4分,共40分)1. limx→03sin x 2x =( ) A.23 B.1 C. 32 D. 32. 若函数y =2x +sin x ,则y′=( )A.1−cos xB.1+cos xC. 2−cos xD.2+cos x3.设函数y =e x−2,则dy =( )A.e x−3dxB.e x−2dxC.e x−1dxD.e x dx4.设函数y =(2+x)3,则y′=( )A.(2+x)2B.3(2+x)2C. (2+x)4D.3 (2+x)45.设函数y =3x +1,则y′′=( )A.0B.1C.2D.36.d dx ∫e t dt x 0=( ).A.e xB. e x −1C.e x−1D.e x+17. ∫xdx =( ).A 、2x 2+CB 、x 2+C C 、12x 2+CD 、x +C 8. ∫2sin x dx =π20( )A. 12B. 1C.2D.39.设函数 z =3x 2y ,则ðz ðy =( )A.6yB.6xyC.3xD.3x 210.幂级数∑1n x n ∞n=1的收敛半径为( ) A.0 B.1 C.2 D.+∞二、填空题(11-20小题,每小题4分,共40分)11. lim x→0(1+x )2x=12.设函数y =x 3,则y ′=13.设函数y =(x −3)4,则dy =14.设函数y =sin(x −2),则y ′′=15.∫12x dx =16. ∫x 71−1dx =17. 过坐标原点与直线x−13=y+12=z−3−2 垂直的平面方程为 .18.设函数z =3x +y 2,则dz =19.微分方程y′=3x 2的通解为y =20.设区域D =*(x,y)|0≤x ≤1,0≤y ≤1+,则∬2dxdy = .三、解答题(21-28题,共70分)21.若函数f (x )= 在x =0处连续,求a .22. lim x→01−e x sin x23.求曲线y =x 3−3x +5的拐点24.计算∫(x −e x )dxsin xx ,x ≠0a ,x =025.设函数z=x2sin y+ye x,求∂z.∂x26.设D为曲线y=x2与直线y=x所围成的有界平面图形,求D绕x轴旋转一周所得旋转体的体积Vdxdy,其中D为由曲线y=x2与直线y=1所围成的有界平面区27.求∬(x3+y)D域.28.求微分方程y′′−y′−2y=e x的通解。
2016年专升本考试真题及答案(数学)

2016年专升本考试真题及答案(数学)————————————————————————————————作者:————————————————————————————————日期:2016年重庆市专升本数学试卷一、单项选择题(每题4分,满分32分)1. 设()f x 在0x x =处可导,则()()0002lim h f x h f x h→+-= A.()'0f x - B.()'0f x C.()'02f x D.()'03f x2.定积分121sin x xdx -=⎰A.-1B.0C.1D.23.过OZ 轴及点()3,2,4-的平面方程是A.320x y +=B.20y z +=C.20x z +=D.230x y +=4.已知微分方程为dy y dx=通解为 A.x y e = B.x y e C =+C.y x C =+D.x y Ce =5.下列级数收敛的是 A.31113n n n ∞=⎛⎫+ ⎪⎝⎭∑ B.11sin n n ∞=∑ 1.1n n C n ∞=+∑ D.1!nn n n ∞=∑ 6.3阶行列式314895111中元素321a =的代数余子式为A.1B.8C.15D.177、设1002A ⎛⎫= ⎪⎝⎭,则3A = A.1002⎛⎫ ⎪⎝⎭B.3006⎛⎫ ⎪⎝⎭C.1008⎛⎫ ⎪⎝⎭D.3008⎛⎫ ⎪⎝⎭8、在0,1,2,3,4五个数中任意取3个数,则这三个数中不含0的概率为()A.0.4B.0.5C.0.6D.0.8二、填空题(每小4分,共16分)9、极限0sin 6lim tan 2x x x→= 10、设函数()320cos x f x t dt =⎰,求() f x '=11、设矩阵314035A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,矩阵1102B -⎡⎤=⎢⎥⎣⎦,则 AB = 12、已知()0.4P A =,()0.3P B =,()0.5P AB =,则()P A B ⋃= 三、计算题(每小题8分,,共64分)13、求极限0cos lim tan 2x x e x x→-14、讨论函数()23()21xf x x =+-的单调性、极值、凹凸性及拐点。
2016年成人高考专升本考试《高等数学》真题及标准答案

2016年成人高考专升本考试《高等数学》真题(总分150, 考试时间150分钟)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A 0B 1C 2D 3该问题分值: 4答案:C2.A -1B 0C 1D 2该问题分值: 4答案:C3. 设函数y=2+sinx,则y/=A cosxB -cosxC 2+cosxD 2-cosx该问题分值: 4答案:A4. 设函数y=ex-1+1,则dy=A exdxB ex-1dxC (ex+1)dxD (ex-1+1)dx该问题分值: 4答案:B5.A 1B 3C 5D 7该问题分值: 4答案:B6.A π/2+1B π/2C π/2-1D 1该问题分值: 4答案:A7.A 4x3+4xB 4x3+4C 12x2+4xD 12x2+4该问题分值: 4答案:D8.A -1B 0C 1D 2该问题分值: 4答案:C9. 设函数z=x2+y,则dz=A 2xdx+dyB x2dx+dyC x2dx+ydyD 2xdx+ydy该问题分值: 4答案:A10.A 1/2B 1C 3/2D 2该问题分值: 4答案:D填空题填空11-20小题。
每小题4分,共40分。
11.该问题分值: 4答案:-1/312. 设函数y=x2-ex,则y/=该问题分值: 4答案:2x-ex13. 设事件A发生的概率为0.7,则A的对立事件非A发生的概率为该问题分值: 4答案:0.314. 曲线y=lnx在点(1,0)处的切线方程为该问题分值: 4答案:y=x-115.该问题分值: 4答案:ln|x|+arctanx+C16.该问题分值: 4答案:cosx17.该问题分值: 4答案:cosx18. 设函数z=sin(x+2y),则αz/αx=该问题分值: 4答案:cos(x+2y)19. 已知点(1,1)是曲线y=x2+alnx的拐点,则a=该问题分值: 4答案:220. 设y=y(x)是由方程y=x-ey所确定的隐函数,则dy/dx=该问题分值: 4答案:1/(1+ey)解答题21-28题,共70分。
2016年山东省专升本考试高等数学真题试卷(含答案)

I 二 I~I : I : 口 一、选择题(本大题共 5 小题,每小题 3 分,共 15 分)
___
5 A
二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)
1. 12兀
2. e
3. 3
4. 15
5. 发散
三、解答题(本大题共 7 小题,每小题 6 分,共 42 分,解答应写出文字说明、证明过程
=
ln
X
1
...
+ ,J;_万平了
…...
2
分
= -ln(x +.fx2+i) = -fCx) ......... 2 分
所以y = ln(x +.j;.了了1) 为奇函数......... 1 分
2. 证... ; .. ,1 分 2
使得f.!1 f (x)dx = /(c)(l - -1) ......... 2 分
·150·
i 』二c-,二.二-::c一c~c---:=::-~:::::::cc::c, —-三三亏- -- - - ----
山东省专升本考试公共课历年真题及解析·高等数学
4. 解:由伈f(x)dx = arcsinx + c,
通过求导可得xf(x) = 1 ...... …2 分 �
即上-= X�, ••••••••• z 分 f(x)
·:y垂直于&, ... r. a= o…...... 2分一
恤
:即.:;t(=P髻-..应.)....a.=..p1.分芘-应. a= o, ... ·-:1分
应a
厮 =P..:. 彗 a.......... z分
2. 解:根据公式: A=;f02巴 lsinx - cosxl dx.... ·令.... z分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年重庆市专升本数学试卷
一、单项选择题(每题4分,满分32分)
1. 设()f x 在0x x =处可导,则()()
000
2lim
h f x h f x h
→+-=
A.()'
0f
x - B.()'0f x C.()'02f x D.()'03f x
2.定积分
1
21
sin x xdx -=⎰
A.-1
B.0
C.1
D.2 3.过OZ 轴及点()3,2,4-的平面方程是
A.320x y +=
B.20y z +=
C.20x z +=
D.230x y += 4.已知微分方程为
dy
y dx
=通解为 A.x
y e = B.x
y e C =+
C.y x C =+
D.x
y Ce = 5.下列级数收敛的是
A.113n n ∞
=⎛⎫+⎪
⎭∑
B.11sin n n ∞
=∑ 1
.1n n C n ∞
=+∑ D.1!n
n n n ∞
=∑
6.3阶行列式314
8
95111
中元素321a =的代数余子式为
A.1
B.8
C.15
D.17
7、设1002A ⎛⎫= ⎪⎝⎭
,则3
A =
A.1002⎛⎫
⎪
⎝⎭
B.3006⎛⎫ ⎪⎝⎭
C.1008⎛⎫ ⎪⎝⎭
D.3008⎛⎫ ⎪⎝⎭
8、在0,1,2,3,4五个数中任意取3个数,则这三个数中不含0的概率为() A.0.4 B.0.5 C.0.6 D.0.8
二、填空题(每小4分,共16分)
9、极限0sin 6lim
tan 2x x
x
→=
10、设函数()3
20
cos x f x t dt =
⎰
,求() f x '=
11、设矩阵314035A -⎡⎤⎢⎥=⎢⎥
⎢⎥-⎣⎦
,矩阵1102B -⎡⎤=⎢⎥⎣⎦,则 AB =
12、已知()0.4P A =,()0.3P B =,()0.5P AB =,则()
P A B ⋃=
三、计算题(每小题8分,,共64分)
13、求极限0cos lim tan 2x x e x
x
→-
14、讨论函数()
2
3()21x
f x x =+
-的单调性、极值、凹凸性及拐点。
15、求不定积分2cos x xdx ⎰
16、求定积分
3
0⎰
17、求函数2
ln()z x xy =的全微分dz
18、计算二重积分
(2)D
x y d σ+⎰⎰
,其中D 是由2
,1,0y x x y ===所围成的平面闭区域
19、设曲线()y f x =上任一点(,)x y 处的切线斜率为
2y x x +,且该曲线经过点11,2⎛⎫
⎪⎝⎭
,求函数()y f x =
20、求线性方程组123123
12312323424538213496
x x x x x x x x x x x x ++=⎧⎪-+=-⎪⎨+-=⎪⎪-+=-⎩的通解
四、证明题(本小题8分)
21、证明不等式:0x >
时,(
1ln x x +>
答案:
1、选择题1-8 C B D D A D C A
2、填空题 9、3 10、263cos x x 11、314437-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦
12、0.8 3、计算题 13、
1
2
14、单调递增区间:[1,1)-
单调递减区间:(,1]-∞-和(1,)+∞ 凸区间:(,2]-∞- 凹区间:[2,1)-和(1,)+∞
拐点:4(2,)3-;当1x =-是,有极小值5(1)4
f -=; 15、2sin 2cos 2sin x x x x x C +-+ 16、322ln
2-
17、2
2[ln()1]x dz xy dx dy y =++
18、
3
5
19、31()2y f x x ==
20、1232112()10x x C C R x --⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥=+∈⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
4
、证明题:提示:构造函数(
()1ln f x x x =+。