提高旋风预热器换热效率的分析

合集下载

2.2 悬浮预热器

2.2 悬浮预热器
换热方式已对流换热为主 悬浮换热效果取决于生料 在气流中的分散程度。
Q = αF(tg — tm)(kW) 式中, Q——气、固相之间的换热量
(也称:换热速率),kW或kJ/s; α ——气、固相之间的换热系数
(包括对流和辐射,以对流为主); F——气、固相之间的接触面积,m2; tg - tm——气、固二相之间的平均温度差,℃。
2.2.4 各级旋风预热器性能的配合(以5级为例)
(1)各级旋风筒的气固分离效率
c1 c5 c 4 c3 c 2
为什么要求第一级旋风预热器的分离效率最高?第五级低于第一级?
旋风筒
C1
C2
C3
C4
C5
分离效率η(%) ≥95 ≈85 ≈85 85∽90 90 ∽ 95
如:
C1
2.2.6 旋风预热器分类以及几种典型的旋风预热器
分类:
传统的——洪堡型旋风预热器 新型的——低压损旋风筒(表2.7)
旋风筒改进的几个方面: 1)旋风筒入口或出口处增设导向叶片; 2)旋风筒筒体结构的改进; 3)旋风筒进风口与排气管(内筒)结构的改进; 4)旋风筒下料口结构的改进 5)旋风筒旋流方式的改进
进风口的形状现多采用多边形。
进风口形状尺寸特点: 1)多采用倾斜面,有利于防止积灰。 2)高宽比=1.5 ~ 2。
过大,柱体部分过高,阻力大。过小,气固分离率低。
3)进风口的尺寸应保证进口处工况风速在15~25m/s范围 为宜。
(3)出风管(内筒)的尺寸和插入深度: 一般来说,出风管(内筒)的直径越小,插入深度越深,旋风
(1)旋风筒的直径: 在其他条件相同时,筒径越小,分离效率越高
(2)旋风筒进风口的类型与尺寸: 进风口结构应以保证能沿切向入筒,减小涡流干扰为佳。

第二节新型干法窑系统中预烧过程和设备

第二节新型干法窑系统中预烧过程和设备

设置撒料装置是有利的。

预热器

回转窑 窑气
生料
Ⅱ Ⅳ
上长管道中的分散装置
下 料溜子
下料管管道分散装置源自闪动阀NC单板阀结构
锁风阀的作用及要求
主要作用是保持下料均匀畅通,又起密封作用,动作 必须灵活自如。要求:
⑴、阀体必须坚固、耐热,避免过热引起变形损坏; ⑵、阀板摆动轻巧灵活,重锤易于调整,既要避免阀
根据理论分析与计算还表明:
预热器废气温度随级数n的增加而降低,即回收 热效率有所提高。但它们之间不是线性关系,而是随 着n值增大、废气温度的降低趋势不断减小。也可以 说,级数愈多,平均每级所能回收的热量趋于减少。 反过来说物料预热升温曲线趋于平缓。
从理论上来讲,级数愈多,愈趋于可逆过程,能 量品位熵的损失愈小,愈合理。
影响旋风预热器预热效率的因素
因素之一:粉料在管道中的悬浮
保证悬浮效果的几项措施: (1)选择合理的喂料位置:
一般情况下,喂料点距出风管起始端应 有大于1m多的距离,此距离还与来料落差、 来料均匀程度、内筒插入深度以及管内气体 的流速有关。
(2)选择适当的管道风速
一般要求粉料悬浮区内的风 速在10—25m/s之间,通常要求大 于15m/s以上
C.气固分离
旋风预热器中气流所承载的粉体粒径很细,因此气 体流动状态对尘粒的运动起着决定性作用,对所能分离 的粉粒数量和大小有很大影响。
研究旋风预热器中气固分离问题,应着眼于气体流 动的流型、速度和压力分布等特征,给分析认识分离作 用提供依据。
其他因素如尘粒间的碰撞、凝聚、粘附和静电效应 均会对分离作用产生影响。
板开闭动作过大,又要防止物流发生脉冲,做到下料 均匀; ⑶、阀体具有良好的气密性,杜绝漏风; ⑷、支撑阀板的轴承要密封完好,防止灰尘掺入; ⑸、阀体各部件易于检修更换。

如何提高旋风分离效率的措施

如何提高旋风分离效率的措施

如何提高旋风分离效率的措施旋风分离器是一种常用的固体颗粒分离设备,它通过旋转气流产生离心力,将固体颗粒从气流中分离出来。

在许多工业领域,旋风分离器被广泛应用于颗粒物料的分离和回收。

然而,旋风分离器的效率受到许多因素的影响,如颗粒物料的性质、气流速度、旋风分离器的结构等。

为了提高旋风分离效率,我们可以采取一些措施来优化设备的运行和设计。

首先,要选择合适的旋风分离器结构。

旋风分离器的结构对其分离效率有着重要的影响。

一般来说,旋风分离器的结构包括进气口、旋风管、排气口和收集器。

进气口的设计应该能够使气流均匀进入旋风管,而旋风管的设计应该能够使气流产生旋转运动,从而产生离心力将固体颗粒分离出来。

排气口的设计应该能够使气流和固体颗粒有效分离,而收集器的设计应该能够方便固体颗粒的收集和回收。

因此,选择合适的旋风分离器结构对提高分离效率至关重要。

其次,要优化气流速度。

气流速度是影响旋风分离效率的重要因素之一。

一般来说,气流速度越大,离心力越大,分离效率越高。

然而,气流速度过大也会导致能耗增加和设备磨损加剧。

因此,要根据具体的颗粒物料性质和分离要求,合理选择气流速度,以达到最佳的分离效果。

另外,要加强颗粒物料的预处理。

颗粒物料的性质对旋风分离效率有着重要的影响。

一般来说,颗粒物料的大小、密度和形状都会影响其在旋风分离器中的分离效果。

因此,在使用旋风分离器之前,可以对颗粒物料进行预处理,如粉碎、筛分等,以使其符合旋风分离器的分离要求。

这样可以有效提高分离效率,并减少设备的磨损。

此外,要加强设备的维护和管理。

设备的维护和管理对于提高旋风分离效率至关重要。

定期对设备进行检查和维护,及时清理和更换磨损部件,可以保证设备的正常运行,提高分离效率。

此外,合理管理设备的运行参数,如气流速度、进料量等,也可以有效提高分离效率。

最后,要加强技术研发和创新。

随着科技的不断进步,新型的旋风分离器结构和材料不断涌现,可以更好地满足工业生产对于分离效率的要求。

影响预热器换热效率及收尘效率的因素

影响预热器换热效率及收尘效率的因素

一、悬浮预热技术的优越性传统干法回转窑生产水泥熟料,生料的预热、分解和烧成过程均在窑内完成。

回转窑作为烧成设备,由于它能够提供断面温度分布比较均匀的温度场,并能保证物料在高温下有足够的停留时间,尚能满足要求。

但作为传热、传质设备则不理想,对需要热量较大的预热、分解过程则甚不适应。

这主要由于窑内物料堆积在窑的底部,气流从料层表面流过,气流与物料的接触面积小,传热效率低所致。

同时,窑内分解带料粉处于层状堆积态,料层内部分解出的二氧化碳向气流扩散的面积小、阻力大、速度慢,并且料层内部颗粒被二氧化碳气膜包裹,二氧化碳分压大,分解温度要求高,这就增大了碳酸盐分解的困难,降低了分解速度。

悬浮预热技术的突破,从根本上改变了物料预热过程的传热状态,将窑内物料堆积态的预热和分解过程,分别移到悬浮预热器和分解炉内在悬浮状态下进行。

由于物料悬浮在热气流中,与气流的接触面积大幅度增加,因此传热速度极快,传热效率很高。

同时,生料粉与燃料在悬浮态下,均匀混合,燃料燃烧热及时传给物料,使之迅速分解。

因此,由于传热、传质迅速,大幅度提高了生产效率和热效率。

二、悬浮预热窑的特点悬浮预热窑的特点是在长度较短的回转窑后装设了悬浮预热器,使原来在窑内以堆积态进行的物料预热及部分碳酸盐分解过程,移到悬浮预热器内以悬浮状态进行,因此呈悬浮状态的生料粉能与热气流充分接触,气、固相接触面大,传热速度快、效率高,有利于提高窑的生产能力,降低熟料烧成热耗。

同时它尚具有运动部件少,附属设备不多,维修比较简单,占地面积较小,投资费用较低等优点。

三、悬浮预热器的构成及功能悬浮预热器主要有旋风预热器及立筒预热器两种。

现在立筒预热器已趋于淘汰。

预分解窑采用旋风预热器作为预热单元装备。

构成旋风预热器的热交换单元设备主要是旋风筒及各级旋风筒之间的联接管道(亦称换热管道)。

悬浮预热器的主要功能在于充分利用回转窑及分解炉内排出的炽热气流中所具有的热焓加热生料,使之进行预热及部分碳酸盐分解,然后进入分解炉或回转窑内继续加热分解,完成熟料烧成任务。

提高旋风预热器换热效率的分析

提高旋风预热器换热效率的分析

旋风预热器换热效率的分析悬浮预热器是实现气(废气)、固(生料粉)之间的高效换热,提高生料温度,降低排出废气温度的,有旋风预热器和立筒预热器两种,现在水泥行业主要以旋风预热器为主。

1.旋风预热器的工作原理旋风预热器由若干级换热单元组成,每级换热单元都是由旋风筒及其联接管道构成。

生料从第1级和第2级旋风筒之间的联接管道加入,被上升气流冲散,使其均匀的悬浮于气流之中。

此时进行的是对流换热,由于悬浮状态下气、固接触面积很大,对流换热系数较高,所以换热速度极快,完成换热只需0.02~0.04s。

之后,气流携带生料粉沿切向高速进入第1级旋风筒C1,被迫在圆筒体与排气管之间的圆柱内呈旋转运动状态。

从圆筒体到锥体,气流一边旋转,一边向下运动,直到锥体的顶部,气流被反射向上旋转,最后从排气口排出,而生料粉则从锥体顶部进入到C2和C3的联接管道,然后再次被携带到C2进行气、固分离。

以此类推,生料粉依次通过各级旋风筒及其联接管道。

在进入最后一级旋风筒前,生料进入分解炉完成大部分的CaCO3分解,分解后的生料再与废气一起进入最后一级旋风筒,完成气、固分离,生料最后进入回转窑煅烧。

2.旋风预热器的效率指标衡量预热器系统气、固之间换热效果有两个效率指标,热优良度和换热效率。

在旋风预热器系统中,二者相比,换热效率的使用要多一些。

热优良度:生料在预热器系统内温度的实际升高值与废气及生料进入预热系统时原始的温度差之比。

换热效率:生料出预热器系统所获得的热量与输入到预热器系统总热量的百分比。

EaØ=M Ee本次主要对换热效率的影响因素进行分析并归纳出提高热效率的有效措施。

3.影响旋风预热器换热效率的因素由于影响旋风预热器热效率的因素很多,而且相互之间有较密切的联系,某一因素的影响可用另一因素的影响解释,所以粗略总结以下几点,并查阅相关较新的研究数据(2010年后)用以直观分析:(1)粉料的悬浮效率由单元换热的工作原理可知,在旋风预热器中,气固之间热交换量的80%甚至90%是在旋风筒入口管道内瞬间进行的,前提条件是粉体物料充分均匀分散悬浮于气流中。

影响预热器换热效率及收尘效率的因素

影响预热器换热效率及收尘效率的因素

影响预热器换热效率及收尘效率的因素预热器是一种用来提高燃烧器进气温度的装置,通过加热和预先处理进气,提高换热效率和收尘效率。

然而,预热器的换热效率和收尘效率受到许多因素的影响。

下面将重点讨论以下几个因素:1. 温度差:预热器的换热效率主要受到进出口温度差的影响。

温度差越大,换热器的换热效率越高。

因此,预热器进出口温度设计要合理,以实现最大的换热效果。

2. 换热面积:换热器的换热面积也是影响换热效率的重要因素。

换热面积越大,与烟气接触的面积就越大,从而增加了换热效率。

因此,在预热器的设计过程中,需要考虑烟气和空气的流速,进而确定换热面积。

3. 烟气质量:烟气的质量也是影响换热效率的重要因素。

如果烟气中含有大量的灰尘、颗粒物和其他污染物,会在换热器的表面形成覆盖层,影响热量的传递。

因此,需要在进气口安装除尘装置,减少烟气中的杂质含量。

4. 燃料类型:不同的燃料类型也会影响预热器的换热效率和收尘效率。

不同燃烧物质产生的烟气成分和性质不同,从而对换热器的损坏和尘埃问题产生不同的影响。

因此,在设计预热器时,需要根据具体的燃料类型来选择适当的材料和设计方法。

5. 清洁程度和维护:预热器的换热效率和收尘效率还受到清洁程度和维护的影响。

如果预热器长期未清洗和维护,烟道和换热面会积累大量的灰尘和颗粒物,影响换热器的换热效率和收尘效率。

因此,需要定期清洗和维护预热器,保持其良好的工作状态。

6. 空气流量和烟气流量:预热器的换热效率和收尘效率还受到空气流量和烟气流量的影响。

空气流量和烟气流量越大,换热器的换热效率和收尘效率越高。

因此,在设计预热器时,需要根据实际情况确定合适的空气流量和烟气流量。

总之,预热器的换热效率和收尘效率受到许多因素的影响,包括温度差、换热面积、烟气质量、燃料类型、清洁程度和维护,以及空气流量和烟气流量等。

在设计和使用预热器时,需要综合考虑这些因素,以提高换热效率和收尘效率,节约能源和减少污染。

预热器主要结构、影响换热效果的主要因素分析,检修检查内容等

预热器主要结构、影响换热效果的主要因素分析,检修检查内容等

悬浮预热技术简介及检修检查事项一、预分解窑的特点预分解窑的特点是在悬浮预热器与回转窑之间增设一个分解炉或利用窑尾上升烟道,原有预热器装设燃料喷入装置,使燃料燃烧的放热过程与生料的碳酸盐分解的吸热过程,在其中以悬浮态或流化态下极其迅速地进行,从而使入窑生料的分解率从悬浮预热窑的30%左右提高到 85%~95%。

这样,不仅可以减轻窑内煅烧带的热负荷,有利于缩小窑的规格及生产大型化,并且可以节约单位建设投资,延长衬料寿命,有利于减少大气污染。

预分解窑是在悬浮预热窑基础上发展起来的,是悬浮预热窑发展的更高阶段,是继悬浮预热窑发明后的又一次重大技术创新。

1、悬浮预热技术悬浮预热技术是指低温粉状物料均匀分散在高温气流之中,在悬浮状态下进行热交换,使物料得到迅速加热升温的技术。

1.1、悬浮预热技术的优越性悬浮预热技术的突破,从根本上改变了物料预热过程的传热状态,将窑内物料堆积态的预热和分解过程,分别移到悬浮预热器和分解炉内在悬浮状态下进行。

由于物料悬浮在热气流中,与气流的接触面积大幅度增加,因此传热速度极快,传热效率很高。

同时,生料粉与燃料在悬浮态下均匀混合,燃料燃烧产生的热及时传给物料,使之迅速分解。

所以,由于传热、传质迅速,大幅度提高了生产效率和热效率。

1.2、悬浮预热器的构成及功能构成旋风预热器的热交换单元主要是旋风筒及各级旋风筒之间的连接管道(换热管道),悬浮预热器必须具备使气、固两相能充分分散均布、迅速换热、高效分离三个功能。

旋风预热器是主要的预热设备,是由旋风筒和连接管道组成的热交换器。

换热管道是旋风预热器系统中的重要装备,它不但承担着上下两级旋风筒间的连接和气固流的输送任务,同时承担着物料分散、均布、锁风和气、固两相间的换热任务,所以,换热管道除管道本身外还装设有下料管、撒料器、锁风阀等装备,它们同旋风筒一起组合成一个换热单元。

一次换热是达不到充分回收废气余热的目的,必需进行多次换热,即预热器要多级串联。

预热器堵塞的原因分析及预防处理措施

预热器堵塞的原因分析及预防处理措施

预热器堵塞的原因分析及预防处理措施摘要悬浮预热器的构成由旋风筒和连接管道(换热管道),具有使气、固两相能充分分散均布、迅速换热、高效分离等功能,预热系统的控制对水泥的烧成有着重要的影响。

预热系统堵塞,不仅会扰乱窑的热工制度,降低熟料产量和质量,影响窑的运转率,而且处理起来费时费力,甚至对人身安全造成危害。

所以,预热系统要以预防为主,根据预热系统的工艺特点、装备水平,制定相应的操作规程,正确处理预热器、分解炉、回转窑和冷却机之间的关系,稳定热工制度、提高热效率、实现优质高产低耗和长期安全运转的生产目的。

本文就生产中窑的预分解系统易出现的问题,特别是预热器结皮堵塞问题做了初步的综合分析,提出了一些解决办法。

关键词:预热器,结皮堵塞,预防处理措施PREHEATER OF PREVENTION AND TREATMENT MEASURES ARE ANALYZEDABSTRACTSuspension preheater composition by cyclone cone and connection (heat pipe), a contentious, solid two-phase can fully scattered uniformly, rapid, efficient heat function such as separation, the control system of cement firing has important influence. Preheat system, not only would disrupt the clogging of the kiln, reducing thermal clinker yield and quality, the influence of the kiln, and deal with amounts of time-consuming, even safety hazard. Therefore, the system of prevention, according to the technological characteristics, preheating system equipped level, formulate the corresponding operation procedures, correctly handle the preheater, decompose kiln stove, and cooling machine, the relationship between thermal system, improve the stability of high production efficiency, low consumption and long-term safety operation of production purposes. Based on the production of kiln precalcining system of the problem, especially the preheater and jam the comprehensive analysis, and puts forward somesolving measures.KEY WORDS: Pre-heater, Mantle jamming,Prevention processing measure目录前言................................. 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋风预热器换热效率的分析
悬浮预热器是实现气(废气)、固(生料粉)之间的高效换热,提高生料温度,降低排出废气温度的,有旋风预热器和立筒预热器两种,现在水泥行业主要以旋风预热器为主。

1.旋风预热器的工作原理
旋风预热器由若干级换热单元组成,每级换热单元都是由旋风筒及其联接管道构成。

生料从第1级和第2级旋风筒之间的联接管道加入,被上升气流冲散,使其均匀的悬浮于气流之中。

此时进行的是对流换热,由于悬浮状态下气、固接触面积很大,对流换热系数较高,所以换热速度极快,完成换热只需0.02~0.04s。

之后,气流携带生料粉沿切向高速进入第1级旋风筒C1,被迫在圆筒体与排气管之间的圆柱内呈旋转运动状态。

从圆筒体到锥体,气流一边旋转,一边向下运动,直到锥体的顶部,气流被反射向上旋转,最后从排气口排出,而生料粉则从锥体顶部进入到C2和C3的联接管道,然后再次被携带到C2进行气、固分离。

以此类推,生料粉依次通过各级旋风筒及其联接管道。

在进入最后一级旋风筒前,生料进入分解炉完成大部分的CaCO3分解,分解后的生料再与废气一起进入最后一级旋风筒,完成气、固分离,生料最后进入回转窑煅烧。

2.旋风预热器的效率指标
衡量预热器系统气、固之间换热效果有两个效率指标,热优良度和换热效率。

在旋风预热器系统中,二者相比,换热效率的使用要多一些。

热优良度:生料在预热器系统内温度的实际升高值与废气及生料进入预热系统时原始的温度差之比。

换热效率:生料出预热器系统所获得的热量与输入到预热器系统总热量的百分比。

Ea
Ø=
M Ee
本次主要对换热效率的影响因素进行分析并归纳出提高热效率的有效措施。

3.影响旋风预热器换热效率的因素
由于影响旋风预热器热效率的因素很多,而且相互之间有较密切的联系,某一因素的影响可用另一因素的影响解释,所以粗略总结以下几点,并查阅相关较新的研究数据(2010年后)用以直观分析:
(1)粉料的悬浮效率
由单元换热的工作原理可知,在旋风预热器中,气固之间热交换量的80%甚至90%是在旋风筒入口管道内瞬间进行的,前提条件是粉体物料充分均匀分散悬浮于气流中。

粉体物料成股地从加料口加入,由于惯性, 有一个向下的冲力,当遇到由下向上的气流时,部分物料被气流冲散带起向上悬浮于气流中,部分料股中间的物料继续下冲,又被下面的气流冲散,转而向上悬浮。

如果较大料股中间的粉料或料团,在下冲一定距离后仍不能被冲散浮起,一旦离开下级的内筒,由于气体流速锐减,这部分物料将不能悬浮,失去了在上级筒中的预热机会,这样将降低物料的预热效果。

悬浮效率的定义: 加入物料被气流冲散浮起进入该级旋风筒的质量百分数,以字母∃表示:∃=(m2+f2- f1)/m1。

悬浮效率示意图悬浮效率与物料平均温度和出口气体温度的关系上图表示五级旋风预热器中悬浮效率与物料平均温度和出口气体温度的关系图。

可见旋风筒加料时的悬浮效率直接影响到物料的整体预热效果。

为了使物料充分预热,提高旋风预热器系统的热效率,使物料迅速充分均匀悬浮必须采取以下措施:合理选择加料位置(靠近进风管的起端);合理选择管内风速(>15m/s);在喂料口加装撒料装置;保证来料均匀。

(2)系统固气比(Z)
理论研究表明,当Z<2时,气、固换热效率随Z值增加而升高,且非常敏感:当2<Z<3.6时,Z值对换热效率的影响变得非常缓慢;当Z>3.6时,Z值增加换热效率反而降低。

普通的预热器内的固气比在1以下(0.8~0.9),现在有一种新型方法为交叉料流法可使Z值达到2左右。

热效率和物料出口温度随物料固气比的变化
固气比控制在2左右为宜,但一般生产中受窑产量等指标限制,单纯控制生料加入量来提高固气比意义不大,可间接控制,下面将作介绍。

(3)旋风预热器的系列数和级数
在现有的串联多级旋风预热器系统中,固气比大多小于1,由于粉体加入量受窑产量等限制,单纯地提高系统固气比较难。

所以,将进入预热器的气体分成均等的气流通过并行的多系列预热器,全部粉料从一个系列到另一个以串流形式通过所有旋风预热器。

在系统固气比不变的前提下,使每个旋风预热器单体的固气比提高,这样就提高了每个单体的换热效率,从而大幅提高系统的热效率。

单级旋风预热器热效率与系列数的关系单级旋风预热器物料温度、气体温度与系列数的关系左图表示单级旋风预热器热效率与系列数的关系。

由图可知:系列数增加,系统热效率增
加。

由单系列到双系列,热效率增加48%;若系列数每再增加1列,热效率增幅<2%,增加的幅度较低。

右图表示单级旋风预热器物料温度、气体温度与系列数的关系。

由图可知,增加预热器系列数,物料温度升高,气体温度下降。

由单系列到双系列,出口气体温度下降约45℃, 再增加系列数,物料和气体温度变化缓慢。

由此可知,对于多系列旋风预热器系统而言,双系列预热器系统比较经济。

旋风预热器系统往往需要若干个换热单元相串联,串联级数越多,换热效果越好,但整个系统的流体阻力也会相应增大,电耗也会随之增加。

有研究数据表明,对于单系列旋风预热器,系统由3级变为4级时,热效率增加5%,4级变为5级时,热效率增加3%,5级变为6级时,热效率增加约2%,之后再增加级数,热效率增加小于1%。

增加级数会提高系统阻力,增加电耗,增加窑尾高度,增大一次性投资,所以单系列级数最好在5~6级。

级数与热效率的关系
最早的旋风预热器是四级旋风筒,随着科技的发展,目前现代化新型干法窑的预热器系统大多采用五级、六级。

(4)气、固相的分离效率
气、固相的分离效率如果不高,不仅会增加最上一级出口废气中的含尘浓度,因而增加后面收尘器的负担,更重要的是降低各级换热单元的传热效率,从而大幅度的降低整个系统的换热效率。

系统热效率随分离效率的变化
上图是一个五级旋风预热器的热效率随各级旋风筒的分离效率变化关系。

从图可以看出,随着分离效率的增加,系统热效率相应提高,在分离效率较低时,增幅更加显著。

对比各条曲线,可以看出对于第一级旋风筒,在分离效率变化的整个区间内,系统热效率变化明显,尤其是当分离效率<6.0时,分离效率极大地影响着系统的热效率。

对于其他各级旋风筒,在分离效率>6.0时,对系统热效率的影响基本相当;在分离效率<6.0时,从第二级旋风筒到第五级旋风筒的分离效率对系统热效率的影响程度逐渐减弱。

提高分解效率的具体措施有:
a.旋风筒的直径在其他条件相同时,筒径较小时,分解效率较高;
b.旋风筒进风口的型式和尺寸进风应以切向入筒,减少涡流干扰,进风口宜采用矩形,进口尺寸应使进口风速在16~22m/s之间;
c.排气管的尺寸及插入深度一般排气管直径较小,插入较深,气分离效率较高;
d.旋风筒的高度一般增加旋风筒的高度有利于提高分解效率;
e.旋风筒入口风速它将影响气料分离力的大小,风速过大过小都不好,最好在18~20m/s之间
(5)漏风的影响
旋风预热器的漏风分内漏风和外漏风。

内漏风是下一级的废气通过锁风不严的翻板阀,自旋风筒出料口倒流入上一级旋风筒,它虽不增加系统总风量,但超过一定限度时,将对该筒的分离效率有明显影响,内漏风量过2%时,旋风筒的分离效率开始明显降低,将引起系统热效率的降低。

外漏风是从预热器系统之外进入预热器系统之内的冷空气,冷空气漏入不但会降低热气流温度,还会降低固气比。

冷空气的漏入虽能使预热器出口气流温度下降, 但由于气流量增加,其带走的热量(热损失)却是增加的。

下图是三级单、双系列外漏风对系统热效率的影响。

随着外漏风系数增大,单、双系列热效率下降,热效率下降与漏风系数基本呈线性关系,漏风系数每增加2%,热效率下降约1%。

当漏风系数为10%时,与不漏风相比,热效率下降为5%。

因此应加强设备管理,严防冷空气的漏入,以免降低系统热效率和增加系统处理风量。

外漏风系数对系统热效率的影响
4.结论
根据以上对旋风预热器热效率的综合研究分析,得出以下结论:使物料迅速充分均匀悬浮;提高固气比值接近2;对于水泥行业所使用的单系列旋风预热器系统,级数5~6级为宜,不超过六级;强化物料分散;严防系统漏风。

相关文档
最新文档